Manchots

GP: 53 | W: 29 | L: 22 | OTL: 2 | P: 60
GF: 206 | GA: 210 | PP%: 21.31% | PK%: 80.98%
DG: Raphael Belanger | Morale : 50 | Moyenne d'Équipe : 54
Prochain matchs #848 vs Cabaret Lady Mary Ann
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Joel L'EsperanceXX100.007775817775798462785367656445450506302442,240,000$
2Stefan NoesenXX100.00854678747561696635566666255859050620261800,000$
3Joel Kellman (R)X100.00734395776959685874615974254646050610251625,000$
4Mikhail VorobyevX100.00594190717256785585605766254747050590221650,000$
5Tyler SteenbergenXXX100.00736689686673775771575362504444050580212770,833$
6Gabriel GagneX100.00777389647364626252535667585050050580221825,000$
7C.J. Suess (R)X100.00736983606961625850516162584444050560254700,000$
8Ivan Chekhovich (R)X100.00756695616669745050494761454444050540204776,667$
9Graham KnottXX100.00757383507358554758404461425050050510221825,000$
10Carson SoucyX100.00805486647969785525464975255960050640254995,001$
11John GilmourX100.007868927471737553254251644847470506102641,251,000$
12Jacob Bryson (R)X100.00686283696265695225494158394444050560214889,167$
13Ian Mitchell (R)X100.00474086696261765125504248445454050540204925,000$
14Joe Morrow (R)X100.007171725171515248253941593944440505202611,200,000$
15Clayton Phillips (R)X100.00514479656451673925373346355454050500204575,000$
16Trevor MurphyX100.00473593695444313335323566463532050480242690,000$
Rayé
1Mikkel BoedkerXX100.006843988576586361316358666175770506302912,600,000$
2Christian ThomasX100.00434382695140284135423860444138050460271675,000$
3Emil Pettersson (R)X100.00333737375433333337333337353230050350252742,500$
MOYENNE D'ÉQUIPE100.0066558466675963524448496143484805055
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Tomas Vomacka (R)100.0047736764404841454043435454050490
2Cam Johnson (R)100.0042454476424141414141393230050440
Rayé
1Sami Aittokallio100.0044454263403537353333333734050400
MOYENNE D'ÉQUIPE100.004454516841414040383938413905044
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joel L'EsperanceManchots (Pit)C/RW50334679652209617433010023310.00%24124424.89413176514600091383459.40%152200121.2716112735
2Stefan NoesenManchots (Pit)LW/RW51283563847514497299952169.36%18105620.725611601500002872150.94%10600011.1926000545
3Joel KellmanManchots (Pit)C51212950-68047184248531508.47%26101319.883912401340003594058.26%129600010.9900000420
4Dante FabbroPittsburghD4783644-42606163145491045.52%89116224.7441115741390000122100.00%000000.7600000013
5Mikhail VorobyevManchots (Pit)C53172340-710017145177411179.60%1576314.4111211220001181062.46%89500011.0500000311
6Gabriel GagneManchots (Pit)RW51122537-333159976174551346.90%1293718.3806639132000001030.36%5600000.7900102211
7Tyler SteenbergenManchots (Pit)C/LW/RW51152136-88070651483911410.14%1094418.52641034130000022052.11%7100000.7600000211
8Carson SoucyManchots (Pit)D53161935-834010677134508611.94%81119122.4976135715000001233042.31%2600100.5900000020
9John GilmourManchots (Pit)D5362531-74951184410232845.88%62111521.05336391410001108100.00%000000.5600000011
10C.J. SuessManchots (Pit)LW51131528-82007257163481097.98%1070013.73000450001203149.02%5100010.8000000112
11Ivan ChekhovichManchots (Pit)LW51131427-23260515198326613.27%1179415.5800000000001250.98%5100000.6800000012
12Jacob BrysonManchots (Pit)D5132023-522080505818385.17%64106720.93268251400001106000.00%000000.4300000001
13Ian MitchellManchots (Pit)D5111314-9608222011155.00%3074514.61000013000018000.00%000000.3800000000
14Mikkel BoedkerManchots (Pit)LW/RW1146102004203061913.33%323921.781121260001352030.00%4000000.8300000001
15Joe MorrowManchots (Pit)D50246-7320125182811257.14%7074014.8000002000149000.00%000000.1600000011
16Graham KnottManchots (Pit)C/LW51022-9402344208160.00%32895.67000020003800052.58%32900000.1400000000
17Trevor MurphyManchots (Pit)D1000000000000.00%033.830000000000000.00%000000.0000000000
18Clayton PhillipsManchots (Pit)D25000240411000.00%31586.3500001000020000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne802192333525-863814511251188217564815268.83%5311417017.67366610244913410002399324857.91%444300260.74312214241924
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Tomas VomackaManchots (Pit)51272110.8933.9329472019318000210.92313510130
2Cam JohnsonManchots (Pit)41010.9472.501440061140000.6673051000
Stats d'équipe Total ou en Moyenne55282120.8963.8630912019919140210.875165151130


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
C.J. SuessManchots (Pit)LW251994-03-17Yes190 Lbs5 ft11NoNoNo4Pro & Farm700,000$214,516$70,000$21,452$No700,000$700,000$700,000$
Cam JohnsonManchots (Pit)G251994-07-11Yes205 Lbs6 ft1NoNoNo2Pro & Farm825,000$252,822$82,500$25,282$No825,000$Lien
Carson SoucyManchots (Pit)D251994-07-27No208 Lbs6 ft5YesNoNo4Pro & Farm995,001$304,919$99,500$30,492$No995,001$995,001$995,001$Lien
Christian ThomasManchots (Pit)RW271992-05-26No175 Lbs5 ft9NoNoNo1Pro & Farm675,000$206,854$67,500$20,685$NoLien
Clayton PhillipsManchots (Pit)D201999-09-09Yes182 Lbs5 ft10YesNoNo4Pro & Farm575,000$176,209$57,500$17,621$No575,000$575,000$575,000$Lien
Emil PetterssonManchots (Pit)C251994-01-14Yes176 Lbs6 ft1NoNoNo2Pro & Farm742,500$227,540$74,250$22,754$No742,500$Lien
Gabriel GagneManchots (Pit)RW221996-11-11No186 Lbs6 ft5NoNoNo1Pro & Farm825,000$252,822$82,500$25,282$NoLien
Graham KnottManchots (Pit)C/LW221997-01-13No191 Lbs6 ft3NoNoNo1Pro & Farm825,000$252,822$82,500$25,282$NoLien
Ian MitchellManchots (Pit)D201999-01-18Yes174 Lbs5 ft11NoNoNo4Pro & Farm925,000$283,467$92,500$28,347$No925,000$925,000$925,000$Lien
Ivan ChekhovichManchots (Pit)LW201999-01-04Yes185 Lbs5 ft10NoNoNo4Pro & Farm776,667$238,010$77,667$23,801$No776,667$776,667$776,667$Lien
Jacob BrysonManchots (Pit)D211997-11-18Yes179 Lbs5 ft9NoNoNo4Pro & Farm889,167$272,486$88,917$27,249$No889,167$889,167$889,167$Lien
Joe MorrowManchots (Pit)D261992-12-09Yes196 Lbs6 ft0NoNoNo1Pro & Farm1,200,000$367,741$120,000$36,774$NoLien
Joel KellmanManchots (Pit)C251994-05-25Yes192 Lbs5 ft11YesNoNo1Pro & Farm625,000$191,532$62,500$19,153$NoLien
Joel L'EsperanceManchots (Pit)C/RW241995-08-18No201 Lbs6 ft2NoNoNo4Pro & Farm800,000$245,161$224,000$68,645$No800,000$800,000$800,000$Lien
John GilmourManchots (Pit)D261993-05-17No195 Lbs6 ft0YesNoNo4Pro & Farm1,251,000$383,370$125,100$38,337$No1,251,000$1,251,000$1,251,000$Lien
Mikhail VorobyevManchots (Pit)C221997-01-04No194 Lbs6 ft2NoNoNo1Pro & Farm650,000$199,193$65,000$19,919$NoLien
Mikkel BoedkerManchots (Pit)LW/RW291989-12-15No210 Lbs6 ft0NoNoNo1Pro & Farm2,600,000$796,774$260,000$79,677$NoLien
Sami AittokallioManchots (Pit)G271992-08-06No174 Lbs6 ft1NoNoNo1Pro & Farm555,555$170,250$55,556$17,025$NoLien
Stefan NoesenManchots (Pit)LW/RW261993-02-12No205 Lbs6 ft1NoNoNo1Pro & Farm800,000$245,161$80,000$24,516$NoLien
Tomas VomackaManchots (Pit)G201999-05-02Yes165 Lbs6 ft3NoNoNo4Pro & Farm525,000$160,887$52,500$16,089$No525,000$525,000$525,000$Lien
Trevor MurphyManchots (Pit)D241995-07-17No180 Lbs5 ft10NoNoNo2Pro & Farm690,000$211,451$69,000$21,145$No690,000$Lien
Tyler SteenbergenManchots (Pit)C/LW/RW211998-01-07No187 Lbs5 ft10NoNoNo2Pro & Farm770,833$236,223$77,083$23,622$No770,833$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2223.73189 Lbs6 ft02.41873,669$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Joel L'EsperanceStefan Noesen40122
2Tyler SteenbergenJoel KellmanGabriel Gagne30122
3C.J. SuessMikhail VorobyevIvan Chekhovich20122
4Ivan ChekhovichGraham KnottJoel L'Esperance10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carson Soucy40122
2John GilmourJacob Bryson30122
3Ian MitchellJoe Morrow20122
4Clayton Phillips10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Joel L'EsperanceStefan Noesen60122
2Tyler SteenbergenJoel KellmanGabriel Gagne40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carson Soucy60122
2John GilmourJacob Bryson40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Joel L'Esperance60122
2Stefan NoesenJoel Kellman40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carson Soucy60122
2John GilmourJacob Bryson40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Joel L'Esperance60122Carson Soucy60122
240122John GilmourJacob Bryson40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Joel L'Esperance60122
2Stefan NoesenJoel Kellman40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carson Soucy60122
2John GilmourJacob Bryson40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Joel L'EsperanceStefan NoesenCarson Soucy
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Joel L'EsperanceStefan NoesenCarson Soucy
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mikhail Vorobyev, C.J. Suess, Graham KnottMikhail Vorobyev, C.J. SuessGraham Knott
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ian Mitchell, Joe Morrow, Clayton PhillipsIan MitchellJoe Morrow, Clayton Phillips
Tirs de Pénalité
Joel L'Esperance, , Stefan Noesen, Joel Kellman, Mikhail Vorobyev
Gardien
#1 : Tomas Vomacka, #2 : Cam Johnson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000046-21010000046-20000000000000.00047110088624983377272975739269620200.00%30100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
2Baby Hawks11000000541110000005410000000000021.000510150088624985177272975739297424500.00%20100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
3Bears1010000012-1000000000001010000012-100.00012300886249846772729757395015621800.00%3166.67%01230209358.77%944175553.79%49089854.57%13239211200386692350
4Bruins32001000141041000100043122000000107361.0001425390088624981367727297573911029387311327.27%12191.67%01230209358.77%944175553.79%49089854.57%13239211200386692350
5Cabaret Lady Mary Ann220000001275110000005141100000076141.00012213300886249813477272975739612021374125.00%40100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
6Chiefs2110000068-21010000025-31100000043120.500610160088624987477272975739682015427114.29%5260.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
7Chill20200000511-61010000036-31010000025-300.0005101500886249890772729757397618123914214.29%5340.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
8Comets21100000651110000004221010000023-120.500610160088624987777272975739821610324125.00%5180.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
9Cougars2020000038-5000000000002020000038-500.000347008862498757727297573979261248500.00%6183.33%01230209358.77%944175553.79%49089854.57%13239211200386692350
10Crunch11000000642110000006420000000000021.000691500886249845772729757394712625200.00%30100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
11Heat220000001266110000008351100000043141.0001222340088624989277272975739751516526233.33%8187.50%01230209358.77%944175553.79%49089854.57%13239211200386692350
12Jayhawks20200000213-111010000028-61010000005-500.000235008862498767727297573994241652300.00%7442.86%01230209358.77%944175553.79%49089854.57%13239211200386692350
13Las Vegas200010101082100010006511000001043141.00010112100886249881772729757396316204610330.00%10190.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
14Marlies11000000413110000004130000000000021.000471100886249839772729757392862215240.00%10100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
15Minnesota220000001385110000006331100000075241.0001323360088624981507727297573994238519222.22%4175.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
16Monarchs11000000541110000005410000000000021.00051015008862498427727297573947198314125.00%40100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
17Monsters30300000712-52020000048-41010000034-100.0007121900886249810677272975739145332680500.00%12466.67%01230209358.77%944175553.79%49089854.57%13239211200386692350
18Monsters2110000078-1110000005411010000024-220.50071320008862498867727297573966229329111.11%20100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
19Oceanics20000002810-21000000145-11000000145-120.50081422008862498105772729757398719183911218.18%7185.71%01230209358.77%944175553.79%49089854.57%13239211200386692350
20Oil Kings210010001183110000006421000100054141.0001121320088624987177272975739701812363266.67%5180.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
21Phantoms3300000013103220000008621100000054161.000132437008862498117772729757398732256213430.77%9188.89%01230209358.77%944175553.79%49089854.57%13239211200386692350
22Rocket20200000711-41010000035-21010000046-200.000711181088624986477272975739702418418225.00%90100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
23Senators1010000036-31010000036-30000000000000.00034700886249834772729757395614815000.00%4175.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
24Sharks11000000523110000005230000000000021.000581300886249847772729757392364184250.00%20100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
25Sound Tigers3110001010911010000024-22100001085340.66710152500886249811377272975739111312363600.00%9188.89%01230209358.77%944175553.79%49089854.57%13239211200386692350
26Spiders20200000711-41010000047-31010000034-100.000714210088624987477272975739832414296116.67%7357.14%01230209358.77%944175553.79%49089854.57%13239211200386692350
27Stars201000107701010000034-11000001043120.500710170088624988477272975739742984810220.00%4250.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
28Thunder20100010660000000000002010001066020.50069150088624987977272975739681815505240.00%50100.00%01230209358.77%944175553.79%49089854.57%13239211200386692350
Total53222203042206210-4271311020011111101269110104195100-5600.566206353559108862498227977272975739200355339311501833921.31%1633180.98%01230209358.77%944175553.79%49089854.57%13239211200386692350
29Wolf Pack11000000752000000000001100000075221.00071421008862498587727297573934813234375.00%6183.33%01230209358.77%944175553.79%49089854.57%13239211200386692350
_Since Last GM Reset53222203042206210-4271311020011111101269110104195100-5600.566206353559108862498227977272975739200355339311501833921.31%1633180.98%01230209358.77%944175553.79%49089854.57%13239211200386692350
_Vs Conference2710120102299105-61457010015058-813550002149472280.519991752740088624981119772729757391031281218584982222.45%891780.90%01230209358.77%944175553.79%49089854.57%13239211200386692350

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5360L220635355922792003553393115010
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
5322223042206210
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2713112001111110
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
26911104195100
Derniers 10 Matchs
WLOTWOTL SOWSOL
550000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1833921.31%1633180.98%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
772729757398862498
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1230209358.77%944175553.79%49089854.57%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
13239211200386692350


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-237Crunch4Manchots6WSommaire du Match
4 - 2020-10-2522Monsters4Manchots3LSommaire du Match
7 - 2020-10-2838Oceanics5Manchots4LXXSommaire du Match
9 - 2020-10-3050Admirals6Manchots4LSommaire du Match
11 - 2020-11-0171Manchots7Minnesota5WSommaire du Match
12 - 2020-11-0275Manchots4Oceanics5LXXSommaire du Match
15 - 2020-11-0592Monsters4Manchots5WSommaire du Match
17 - 2020-11-07108Stars4Manchots3LSommaire du Match
18 - 2020-11-08119Las Vegas5Manchots6WXSommaire du Match
21 - 2020-11-11135Manchots7Cabaret Lady Mary Ann6WSommaire du Match
22 - 2020-11-12144Manchots4Thunder3WXXSommaire du Match
25 - 2020-11-15166Manchots4Stars3WXXSommaire du Match
28 - 2020-11-18182Phantoms4Manchots5WSommaire du Match
32 - 2020-11-22204Oil Kings4Manchots6WSommaire du Match
34 - 2020-11-24220Manchots4Bruins2WSommaire du Match
37 - 2020-11-27239Manchots4Sound Tigers3WXXSommaire du Match
39 - 2020-11-29257Baby Hawks4Manchots5WSommaire du Match
42 - 2020-12-02274Manchots7Wolf Pack5WSommaire du Match
45 - 2020-12-05295Manchots3Spiders4LSommaire du Match
46 - 2020-12-06308Marlies1Manchots4WSommaire du Match
49 - 2020-12-09321Sound Tigers4Manchots2LSommaire du Match
51 - 2020-12-11335Manchots4Sound Tigers2WSommaire du Match
52 - 2020-12-12346Spiders7Manchots4LSommaire du Match
55 - 2020-12-15368Heat3Manchots8WSommaire du Match
57 - 2020-12-17382Comets2Manchots4WSommaire du Match
59 - 2020-12-19400Manchots3Monsters4LSommaire du Match
60 - 2020-12-20412Manchots4Chiefs3WSommaire du Match
64 - 2020-12-24435Chiefs5Manchots2LSommaire du Match
66 - 2020-12-26449Jayhawks8Manchots2LSommaire du Match
67 - 2020-12-27456Manchots0Cougars4LSommaire du Match
70 - 2020-12-30474Rocket5Manchots3LSommaire du Match
72 - 2021-01-01490Monsters4Manchots1LSommaire du Match
74 - 2021-01-03511Monarchs4Manchots5WSommaire du Match
77 - 2021-01-06531Manchots4Heat3WSommaire du Match
80 - 2021-01-09551Manchots5Oil Kings4WXSommaire du Match
81 - 2021-01-10563Manchots2Comets3LSommaire du Match
87 - 2021-01-16587Manchots2Chill5LSommaire du Match
88 - 2021-01-17597Chill6Manchots3LSommaire du Match
90 - 2021-01-19612Senators6Manchots3LSommaire du Match
93 - 2021-01-22631Sharks2Manchots5WSommaire du Match
95 - 2021-01-24647Manchots4Rocket6LSommaire du Match
96 - 2021-01-25654Cabaret Lady Mary Ann1Manchots5WSommaire du Match
98 - 2021-01-27673Manchots4Las Vegas3WXXSommaire du Match
101 - 2021-01-30691Manchots2Monsters4LSommaire du Match
103 - 2021-02-01706Manchots0Jayhawks5LSommaire du Match
105 - 2021-02-03718Minnesota3Manchots6WSommaire du Match
107 - 2021-02-05727Manchots6Bruins5WSommaire du Match
108 - 2021-02-06740Manchots3Cougars4LSommaire du Match
110 - 2021-02-08755Bruins3Manchots4WXSommaire du Match
112 - 2021-02-10763Manchots5Phantoms4WSommaire du Match
122 - 2021-02-20786Phantoms2Manchots3WSommaire du Match
124 - 2021-02-22806Manchots1Bears2LSommaire du Match
128 - 2021-02-26829Manchots2Thunder3LSommaire du Match
130 - 2021-02-28848Manchots-Cabaret Lady Mary Ann-
133 - 2021-03-03870Thunder-Manchots-
136 - 2021-03-06892Rocket-Manchots-
138 - 2021-03-08906Cougars-Manchots-
140 - 2021-03-10921Marlies-Manchots-
142 - 2021-03-12933Manchots-Marlies-
144 - 2021-03-14950Crunch-Manchots-
145 - 2021-03-15959Manchots-Bears-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
148 - 2021-03-18983Manchots-Monarchs-
150 - 2021-03-20998Manchots-Admirals-
151 - 2021-03-211010Manchots-Sharks-
154 - 2021-03-241022Senators-Manchots-
156 - 2021-03-261033Manchots-Crunch-
158 - 2021-03-281050Bears-Manchots-
159 - 2021-03-291059Caroline-Manchots-
161 - 2021-03-311072Manchots-Spiders-
163 - 2021-04-021088Manchots-Monsters-
165 - 2021-04-041104Manchots-Caroline-
166 - 2021-04-051115Sound Tigers-Manchots-
169 - 2021-04-081133Manchots-Wolf Pack-
171 - 2021-04-101146Wolf Pack-Manchots-
173 - 2021-04-121164Bears-Manchots-
175 - 2021-04-141180Caroline-Manchots-
176 - 2021-04-151186Manchots-Baby Hawks-
179 - 2021-04-181205Manchots-Caroline-
180 - 2021-04-191216Manchots-Phantoms-
182 - 2021-04-211230Spiders-Manchots-
184 - 2021-04-231247Wolf Pack-Manchots-
186 - 2021-04-251263Manchots-Senators-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna17501250
Prix des Billets5020
Assistance28,52622,881
Assistance PCT60.37%67.80%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
14 1904 - 63.47% 69,638$1,880,230$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,367,486$ 1,922,072$ 2,066,072$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
11,108$ 1,465,784$ 22 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
974,934$ 57 10,334$ 589,038$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT