Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Sharks
GP: 22 | W: 16 | L: 6
GF: 86 | GA: 73 | PP%: 21.13% | PK%: 79.63%
DG: Marc-Andre Bois | Morale : 50 | Moyenne d’équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Sharks
16-6-0, 32pts
4
FINAL
2 Monsters
13-12-0, 26pts
Team Stats
W3StreakL3
8-4-0Home Record6-6-0
8-2-0Away Record7-6-0
8-1-1Last 10 Games3-6-1
3.91Buts par match 3.24
3.32Buts contre par match 3.20
21.13%Pourcentage en avantage numérique19.70%
79.63%Pourcentage en désavantage numérique84.00%
Monsters
13-12-0, 26pts
4
FINAL
5 Sharks
16-6-0, 32pts
Team Stats
L3StreakW3
6-6-0Home Record8-4-0
7-6-0Away Record8-2-0
3-6-1Last 10 Games8-1-1
3.24Buts par match 3.91
3.20Buts contre par match 3.32
19.70%Pourcentage en avantage numérique21.13%
84.00%Pourcentage en désavantage numérique79.63%
Meneurs d'équipe
Buts
Samuel Fagemo
16
Passes
Nolan Patrick
24
Points
Matthew Phillips
34
Plus/Moins
Alex Turcotte
14
Victoires
Pheonix Copley
15
Pourcentage d’arrêts
Pheonix Copley
0.92

Statistiques d’équipe
Buts pour
86
3.91 GFG
Tirs pour
1022
46.45 Avg
Pourcentage en avantage numérique
21.1%
15 GF
Début de zone offensive
41.9%
Buts contre
73
3.32 GAA
Tirs contre
921
41.86 Avg
Pourcentage en désavantage numérique
79.6%%
11 GA
Début de la zone défensive
40.3%
Informations de l'équipe

Directeur généralMarc-Andre Bois
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,634
Billets de saison300


Informations de la formation

Équipe Pro22
Équipe Mineure21
Limite contact 43 / 50
Espoirs18


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Cooper MarodyXX100.00696772666771726880666663634444050620241750,000$
2Nolan PatrickXX100.00754491797359647272655864255454050620231750,000$
3Matthew PhillipsXX100.00645391635365656880646960664444050600231600,000$
4Samuel Fagemo (R)XX100.00736982706972756250546763644444050600212795,000$
5Tyler BensonX100.00814482677052676225535660254747050570231792,500$
6Michal Teply (R)XX100.00797196637159595950565865554444050570202825,833$
7Alex Turcotte (R)X100.00754391746759615652505563254444050560202925,000$
8Austin WagnerXX100.00636949626964675750476061575959050560241722,000$
9Otto SomppiX100.00777190677159605569594763454444050560231600,000$
10Josh WilkinsX100.00797398636662595268455167474444050550242925,002$
11Jordy BelleriveX100.00666958636965685468564858464444050550223733,333$
12Cam DineenX100.006742956666686461255547782547470506202311,060,000$
13Reilly WalshX100.00756892676873785625524663444444050600222700,000$
14Wyatt KalynukX100.00696871726866695525494660444646050580243925,000$
15Helge Grans (R)X100.00827795607752525325464665444444050570194847,500$
16Anttoni Honka (R)X100.00453999686570954925513846405858050550204700,000$
17Brennan MenellX100.00676475706446464925434057384444050530241825,000$
Rayé
1Demetrios Koumontzis (R)X100.00474480646445583649323342365050050440213650,000$
2Henry Thrun (R)X100.00494599657158754525483447365454050530204650,000$
3Marshall Warren (R)X100.00423499665956773825373241345454050490204560,000$
4John St-Ivany (R)X100.00464188636442543225312743295454050460223650,000$
MOYENNE D’ÉQUIPE100.0066578567676066544550495942484805056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Pheonix Copley100.0058475982616061656363304646050600291777,777$
Rayé
MOYENNE D’ÉQUIPE100.005847598261606165636330464605060
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Matthew PhillipsSharks (San)C/RW2213213412401396107407512.15%1344020.022241654000073158.83%60000021.5400000241
2Alex TurcotteSharks (San)C22923321460255410928758.26%1546120.961121650000001037.21%8600001.3900000114
3Nolan PatrickSharks (San)C/RW228243274037127143481135.59%2055325.1514521600003402056.23%62600001.1600000121
4Samuel FagemoSharks (San)LW/RW2216163251154077166381289.64%2051423.4126825640001123158.33%4800011.2400010433
5Cam DineenSharks (San)D221118293120715584284913.10%7053224.203584366000043200.00%000001.0900000221
6Michal TeplySharks (San)LW/RW22111324101203039100227111.00%942119.160221452000011042.86%4200011.1400000201
7Tyler BensonSharks (San)LW223912-106047478925523.37%1437917.231349110000110032.65%4900000.6300000001
8Otto SomppiSharks (San)C22459-10161021757917465.06%1736216.4820237000000152.16%46400000.5000101001
9Jordy BelleriveSharks (San)C22639-10100272856115310.71%838917.72202330000223044.68%4700000.4600000010
10Reilly WalshSharks (San)D22178410070283811202.63%4143019.580112248000029000.00%000000.3700000010
11Anttoni HonkaSharks (San)D222464205822539.09%2043319.71101848000031100.00%000000.2800000001
Statistiques d’équipe totales ou en moyenne242841432272993153866349932736858.46%247491920.33152439180467000420116354.13%196200040.9200111121414
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleySharks (San)2215420.9203.12134520708720000.00%02222311
Statistiques d’équipe totales ou en moyenne2215420.9203.121345207087200002222311


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex TurcotteSharks (San)C202001-02-25Yes185 Lbs5 ft11NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Anttoni HonkaSharks (San)D202000-10-05Yes189 Lbs5 ft10NoNoNo4Pro & Farm700,000$0$0$No700,000$700,000$700,000$Lien
Austin WagnerSharks (San)LW/RW241997-06-23No185 Lbs6 ft1NoNoYes1Pro & Farm722,000$0$0$NoLien
Brennan MenellSharks (San)D241997-05-24No177 Lbs5 ft11NoNoYes1Pro & Farm825,000$0$0$NoLien
Cam DineenSharks (San)D231998-06-18No183 Lbs5 ft11NoNoNo1Pro & Farm1,060,000$0$0$NoLien
Cooper MarodySharks (San)C/RW241996-12-20No184 Lbs6 ft0NoNoYes1Pro & Farm750,000$0$0$NoLien
Demetrios KoumontzisSharks (San)LW212000-03-24Yes183 Lbs5 ft10NoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Lien
Helge GransSharks (San)D192002-05-10Yes205 Lbs6 ft3NoNoNo4Pro & Farm847,500$0$0$No847,500$847,500$847,500$Lien
Henry ThrunSharks (San)D202001-03-12Yes190 Lbs6 ft2NoNoNo4Pro & Farm650,000$0$0$No650,000$650,000$650,000$Lien
John St-IvanySharks (San)D221999-07-22Yes170 Lbs6 ft1NoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Lien
Jordy BelleriveSharks (San)C221999-05-02No195 Lbs5 ft10NoNoNo3Pro & Farm733,333$0$0$No733,333$733,333$Lien
Josh WilkinsSharks (San)C241997-06-11No181 Lbs5 ft11NoNoYes2Pro & Farm925,002$0$0$No925,002$Lien
Marshall WarrenSharks (San)D202001-04-20Yes163 Lbs5 ft11NoNoNo4Pro & Farm560,000$0$0$No560,000$560,000$560,000$Lien
Matthew PhillipsSharks (San)C/RW231998-04-06No150 Lbs5 ft7NoNoNo1Pro & Farm600,000$0$0$NoLien
Michal TeplySharks (San)LW/RW202001-05-27Yes187 Lbs6 ft3NoNoNo2Pro & Farm825,833$0$0$No825,833$Lien
Nolan PatrickSharks (San)C/RW231998-09-19No198 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien
Otto SomppiSharks (San)C231998-01-12No190 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$NoLien
Pheonix Copley (contrat à 1 volet)Sharks (San)G291992-01-18No198 Lbs6 ft4NoNoYes1Pro & Farm777,777$0$0$NoLien
Reilly WalshSharks (San)D221999-04-21No185 Lbs6 ft0NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien
Samuel FagemoSharks (San)LW/RW212000-03-14Yes190 Lbs5 ft11NoNoNo2Pro & Farm795,000$0$0$No795,000$Lien
Tyler BensonSharks (San)LW231998-03-15No192 Lbs6 ft0NoNoNo1Pro & Farm792,500$0$0$NoLien
Wyatt KalynukSharks (San)D241997-04-14No180 Lbs6 ft1NoNoYes3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2222.32185 Lbs6 ft02.14761,998$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Nolan PatrickSamuel Fagemo40122
2Michal TeplyMatthew PhillipsAlex Turcotte30122
3Tyler BensonOtto SomppiJordy Bellerive20122
4Alex TurcotteNolan Patrick10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen40122
2Reilly WalshAnttoni Honka30122
320122
410122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Nolan PatrickSamuel Fagemo60122
2Michal TeplyMatthew PhillipsAlex Turcotte40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen60122
2Reilly WalshAnttoni Honka40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Nolan Patrick60122
2Samuel FagemoMatthew Phillips40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen60122
2Reilly WalshAnttoni Honka40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Cam Dineen60122
2Nolan Patrick40122Reilly WalshAnttoni Honka40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Nolan Patrick60122
2Samuel FagemoMatthew Phillips40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cam Dineen60122
2Reilly WalshAnttoni Honka40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nolan PatrickSamuel FagemoCam Dineen
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nolan PatrickSamuel FagemoCam Dineen
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Tyler Benson, Otto Somppi, Jordy BelleriveTyler Benson, Otto SomppiJordy Bellerive
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Tirs de pénalité
, Nolan Patrick, Samuel Fagemo, Matthew Phillips, Michal Teply
Gardien
#1 : , #2 : Pheonix Copley


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bears54100000181353210000010912200000084480.8001835530037242142223213392907218549369518422.22%13284.62%047290152.39%43786750.40%21438256.02%552390572172297146
2Monsters541000002218432100000141312200000085380.80022396100372421426132133929072166491210418211.11%6266.67%047290152.39%43786750.40%21438256.02%552390572172297146
3Oceanics541000002016432100000141222200000064280.80020355500372421423332133929072250953511818422.22%14285.71%047290152.39%43786750.40%21438256.02%552390572172297146
4Spiders74300000262603210000014104422000001216-480.571264773003724214306321339290723201024215817529.41%21576.19%047290152.39%43786750.40%21438256.02%552390572172297146
Total22166000008673131284000005244810820000034295320.72786156242003724214102232133929072921295125475711521.13%541179.63%047290152.39%43786750.40%21438256.02%552390572172297146
_Since Last GM Reset22166000008673131284000005244810820000034295320.72786156242003724214102232133929072921295125475711521.13%541179.63%047290152.39%43786750.40%21438256.02%552390572172297146
_Vs Conference17125000006455996300000383178620000026242240.7066411718100372421476132133929072755246113371531324.53%48981.25%047290152.39%43786750.40%21438256.02%552390572172297146

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
2232W386156242102292129512547500
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
2216600008673
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
128400005244
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
108200003429
Derniers 10 matchs
WLOTWOTL SOWSOL
810100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
711521.13%541179.63%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
321339290723724214
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
47290152.39%43786750.40%21438256.02%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
552390572172297146


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2023-04-172Oceanics5Sharks4BLXSommaire du match
3 - 2023-04-1910Oceanics4Sharks5BWSommaire du match
5 - 2023-04-2118Sharks3Oceanics2AWXSommaire du match
7 - 2023-04-2326Sharks3Oceanics2AWSommaire du match
9 - 2023-04-2534Oceanics3Sharks5BWSommaire du match
15 - 2023-05-0158Bears5Sharks2BLSommaire du match
17 - 2023-05-0362Bears2Sharks4BWSommaire du match
19 - 2023-05-0566Sharks3Bears1AWSommaire du match
21 - 2023-05-0770Sharks5Bears3AWSommaire du match
23 - 2023-05-0974Bears2Sharks4BWSommaire du match
29 - 2023-05-1585Sharks2Spiders6ALSommaire du match
31 - 2023-05-1787Sharks2Spiders5ALSommaire du match
33 - 2023-05-1989Spiders2Sharks3BWXSommaire du match
35 - 2023-05-2191Spiders1Sharks7BWSommaire du match
37 - 2023-05-2393Sharks4Spiders2AWSommaire du match
39 - 2023-05-2595Spiders7Sharks4BLSommaire du match
41 - 2023-05-2797Sharks4Spiders3AWXSommaire du match
43 - 2023-05-2999Monsters5Sharks6BWXSommaire du match
44 - 2023-05-30100Monsters4Sharks3BLXSommaire du match
45 - 2023-05-31101Sharks4Monsters3AWSommaire du match
46 - 2023-06-01102Sharks4Monsters2AWSommaire du match
47 - 2023-06-02103Monsters4Sharks5BWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité17501250
Prix des billets5020
Assistance18,01713,596
Assistance PCT85.80%90.64%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
29 2634 - 87.81% 97,731$1,172,770$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,598,616$ 1,598,616$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Sharks Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Sharks Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Sharks Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Sharks Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Sharks Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA