Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Bears
GP: 10 | W: 5 | L: 5
GF: 30 | GA: 29 | PP%: 34.78% | PK%: 84.62%
DG: JF Langlais | Morale : 50 | Moyenne d’équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Sharks
16-6-0, 32pts
5
FINAL
3 Bears
5-5-0, 10pts
Team Stats
W3StreakL4
8-4-0Home Record2-3-0
8-2-0Away Record3-2-0
8-1-1Last 10 Games5-4-1
3.91Buts par match 3.00
3.32Buts contre par match 2.90
21.13%Pourcentage en avantage numérique34.78%
79.63%Pourcentage en désavantage numérique84.62%
Bears
5-5-0, 10pts
2
FINAL
4 Sharks
16-6-0, 32pts
Team Stats
L4StreakW3
2-3-0Home Record8-4-0
3-2-0Away Record8-2-0
5-4-1Last 10 Games8-1-1
3.00Buts par match 3.91
2.90Buts contre par match 3.32
34.78%Pourcentage en avantage numérique21.13%
84.62%Pourcentage en désavantage numérique79.63%
Meneurs d'équipe
Buts
Tim Schaller
6
Passes
Mikko Lehtonen
9
Points
Tim Schaller
10
Plus/Moins
Tim Schaller
7
Victoires
Alex Lyon
5
Pourcentage d’arrêts
Alex Lyon
0.927

Statistiques d’équipe
Buts pour
30
3.00 GFG
Tirs pour
339
33.90 Avg
Pourcentage en avantage numérique
34.8%
8 GF
Début de zone offensive
36.2%
Buts contre
29
2.90 GAA
Tirs contre
395
39.50 Avg
Pourcentage en désavantage numérique
84.6%%
6 GA
Début de la zone défensive
45.6%
Informations de l'équipe

Directeur généralJF Langlais
DivisionEst
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,665
Billets de saison300


Informations de la formation

Équipe Pro23
Équipe Mineure20
Limite contact 43 / 50
Espoirs14


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Philip Tomasino (R)X100.00674295786559787038736662255454050640203894,167$
2Joe VelenoXX100.00844589827565646272606269255252050630213894,167$
3Boris KatchoukX100.00885781727756716136575774255050050610232750,000$
4John HaydenXX100.00849959788558685731545670636464050610266800,000$
5Byron FroeseXX100.00757476627459586480566568625959050600302850,000$
6Michael Dal ColleXX100.00817692667660616150575970565757050600252750,000$
7Tim SchallerXX100.008076886376646756705054705162630505903041,000,000$
8Antoine MorandX100.00726687676662665063474760454444050540222778,334$
9Sam MileticXX100.00797196657154555164504763454444050540243894,167$
10Otto Kivenmaki (R)X100.00454081696055645155474445485050050500213560,000$
11Sean DayX100.00828086668071765525514566434444050610232750,000$
12Alex Vlasic (R)X100.00754495757764435525464973254545050600204916,667$
13Mikko LehtonenX100.00734489677163615825534467244646050590273925,000$
14Dakota MermisX100.00687161677158605425494161395555050570272655,000$
15Jack RathboneX100.00674192716364605825394765254545050570222925,000$
16Kaedan Korczak (R)X100.00767482737456584925434061384444050570202795,000$
17Layton Ahac (R)X100.00767091617047484725393961374444050530202897,500$
18Kim Nousiainen (R)X100.00423599676058754425423842405858050510204859,167$
Rayé
1Ethan Phillips (R)X100.00393099685453684146383637385454050460204650,000$
MOYENNE D’ÉQUIPE100.0071608669715963554250496240515105057
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Alex Lyon100.0059445575616168696868954646050610284800,000$
2Colton Point (R)100.0045465895454545504545454444050510232750,000$
Rayé
1Kaden Fulcher (R)100.0044425380454445494545454444050490232800,000$
2Daniil Chechelev (R)100.0044405076454445494545454444050480204650,000$
MOYENNE D’ÉQUIPE100.004843548249495154515158454505052
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tim SchallerBears (Was)C/LW1064107171518293242118.75%315215.2100001000011158.49%15900001.3100111020
2Boris KatchoukBears (Was)LW10369-34029124212277.14%420320.321342170000240025.00%1600000.8900000101
3Antoine MorandBears (Was)C104597605132161719.05%116216.2700000000011051.43%3500001.1100000000
4Mikko LehtonenBears (Was)D100992201799140.00%1818518.58033417011030000.00%000000.9700000002
5Byron FroeseBears (Was)C/RW10448-32072736122911.11%218618.63224717000051058.08%22900000.8600000110
6Michael Dal ColleBears (Was)LW/RW10347-32010173082310.00%418218.28112517000011057.14%1400000.7700000001
7Philip TomasinoBears (Was)C10437-5002253552311.43%022922.991233151013371037.74%31000000.6100000010
8Joe VelenoBears (Was)C/LW10325-54016143414188.82%622922.962025160110370144.44%1800000.4400000000
9John HaydenBears (Was)LW/RW10044-520269239160.00%419819.820112150000190035.29%3400000.4000000000
10Alex VlasicBears (Was)D10044-31001718195170.00%1821621.70022518000132000.00%000000.3700000001
11Sam MileticBears (Was)C/LW101347201911167126.25%216316.38000000000130052.17%2300000.4900000000
12Sean DayBears (Was)D10123-34027414467.14%1122022.07011618000036000.00%000000.2700000000
13Kaedan KorczakBears (Was)D10123218019291411.11%1317917.95112417000123000.00%000000.3300000000
14Jack RathboneBears (Was)D10022-1407910340.00%913013.0300000000113000.00%000000.3100000000
15Layton AhacBears (Was)D100221201552020.00%6828.210000000005000.00%000000.4900000000
16Dakota MermisBears (Was)D10011-11202545130.00%912212.220000100001000.00%000000.1600000000
17Otto KivenmakiBears (Was)C10000-100010000.00%0181.8600001000000028.57%700000.00%00000000
18Kim NousiainenBears (Was)D10000100102000.00%4767.680000000000000.00%000000.00%00000000
Statistiques d’équipe totales ou en moyenne180305787-69115260209339922268.85%114294116.34816244317612362855248.17%84500000.5900111245
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex LyonBears (Was)105410.9272.8960321293950000.00%0100310
Statistiques d’équipe totales ou en moyenne105410.9272.8960321293950000100310


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex Lyon (contrat à 1 volet)Bears (Was)G281992-12-08No201 Lbs6 ft1NoNoYes4Pro & Farm800,000$0$0$No800,000$800,000$800,000$Lien
Alex VlasicBears (Was)D202001-06-05Yes198 Lbs6 ft6NoNoNo4Pro & Farm916,667$0$0$No916,667$916,667$916,667$Lien
Antoine MorandBears (Was)C221999-02-18No184 Lbs5 ft11NoNoNo2Pro & Farm778,334$0$0$No778,334$Lien
Boris KatchoukBears (Was)LW231998-06-17No206 Lbs6 ft2NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Byron Froese (contrat à 1 volet)Bears (Was)C/RW301991-03-12No202 Lbs6 ft1NoNoYes2Pro & Farm850,000$0$0$No850,000$Lien
Colton PointBears (Was)G231998-03-04Yes230 Lbs6 ft5YesNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Dakota Mermis (contrat à 1 volet)Bears (Was)D271994-01-05No196 Lbs6 ft0NoNoYes2Pro & Farm655,000$0$0$No655,000$Lien
Daniil ChechelevBears (Was)G202001-02-23Yes187 Lbs6 ft3NoNoNo4Pro & Farm650,000$0$0$No650,000$650,000$650,000$Lien
Ethan PhillipsBears (Was)RW202001-05-07Yes154 Lbs5 ft9NoNoNo4Pro & Farm650,000$0$0$No650,000$650,000$650,000$Lien
Jack RathboneBears (Was)D221999-05-20No177 Lbs5 ft10NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Joe VelenoBears (Was)C/LW212000-01-13No206 Lbs6 ft1NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
John Hayden (contrat à 1 volet)Bears (Was)LW/RW261995-02-14No223 Lbs6 ft3NoNoYes6Pro & Farm800,000$0$0$No800,000$800,000$800,000$800,000$800,000$Lien
Kaden FulcherBears (Was)G231998-09-23Yes201 Lbs6 ft3NoNoNo2Pro & Farm800,000$0$0$No800,000$Lien
Kaedan KorczakBears (Was)D202001-01-29Yes192 Lbs6 ft4NoNoNo2Pro & Farm795,000$0$0$No795,000$Lien
Kim NousiainenBears (Was)D202000-11-14Yes170 Lbs5 ft9NoNoNo4Pro & Farm859,167$0$0$No859,167$859,167$859,167$Lien
Layton AhacBears (Was)D202001-02-22Yes187 Lbs6 ft2NoNoNo2Pro & Farm897,500$0$0$No897,500$Lien
Michael Dal ColleBears (Was)LW/RW251996-06-20No200 Lbs6 ft3NoNoYes2Pro & Farm750,000$0$0$No750,000$Lien
Mikko Lehtonen (contrat à 1 volet)Bears (Was)D271994-01-16No196 Lbs6 ft0NoNoYes3Pro & Farm925,000$25,000$0$No925,000$925,000$Lien
Otto KivenmakiBears (Was)C212000-03-24Yes172 Lbs5 ft9NoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Philip TomasinoBears (Was)C202001-07-28Yes179 Lbs6 ft0NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Sam MileticBears (Was)C/LW241997-05-04No196 Lbs6 ft0NoNoYes3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Sean DayBears (Was)D231998-01-09No218 Lbs6 ft3NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Tim Schaller (contrat à 1 volet)Bears (Was)C/LW301990-11-16No205 Lbs6 ft2NoNoYes4Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2323.26195 Lbs6 ft12.91806,268$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Joe VelenoPhilip TomasinoJohn Hayden40122
2Boris KatchoukByron FroeseMichael Dal Colle30122
3Sam MileticTim SchallerAntoine Morand20122
4Philip TomasinoAntoine MorandJoe Veleno10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic40122
2Mikko LehtonenKaedan Korczak30122
3Dakota MermisJack Rathbone20122
4Layton AhacKim Nousiainen10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Joe VelenoPhilip TomasinoJohn Hayden60122
2Boris KatchoukByron FroeseMichael Dal Colle40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic60122
2Mikko LehtonenKaedan Korczak40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Philip TomasinoJoe Veleno60122
2John HaydenBoris Katchouk40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic60122
2Mikko LehtonenKaedan Korczak40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Philip Tomasino60122Sean DayAlex Vlasic60122
2Joe Veleno40122Mikko LehtonenKaedan Korczak40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Philip TomasinoJoe Veleno60122
2John HaydenBoris Katchouk40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Sean DayAlex Vlasic60122
2Mikko LehtonenKaedan Korczak40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Joe VelenoPhilip TomasinoJohn HaydenSean DayAlex Vlasic
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Joe VelenoPhilip TomasinoJohn HaydenSean DayAlex Vlasic
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Otto Kivenmaki, Tim Schaller, Sam MileticOtto Kivenmaki, Tim SchallerSam Miletic
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Dakota Mermis, Jack Rathbone, Layton AhacDakota MermisJack Rathbone, Layton Ahac
Tirs de pénalité
Philip Tomasino, Joe Veleno, John Hayden, Boris Katchouk, Michael Dal Colle
Gardien
#1 : Alex Lyon, #2 : Colton Point


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Sharks514000001318-52020000048-431200000910-120.20013243700149701851161001212222574615413215.38%18477.78%115230649.67%18638548.31%6915444.81%2321572397613163
2Wolf Pack54100000171163210000012842200000053280.80017335001149701541161001212173574710610660.00%21290.48%015230649.67%18638548.31%6915444.81%2321572397613163
Total1055000003029152300000161605320000014131100.500305787011497033911610012123951149326023834.78%39684.62%115230649.67%18638548.31%6915444.81%2321572397613163
_Since Last GM Reset1055000003029152300000161605320000014131100.500305787011497033911610012123951149326023834.78%39684.62%115230649.67%18638548.31%6915444.81%2321572397613163
_Vs Conference1055000003029152300000161605320000014131100.500305787011497033911610012123951149326023834.78%39684.62%115230649.67%18638548.31%6915444.81%2321572397613163

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
1010L43057873393951149326001
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
105500003029
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
52300001616
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
53200001413
Derniers 10 matchs
WLOTWOTL SOWSOL
540100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
23834.78%39684.62%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
116100121214970
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
15230649.67%18638548.31%6915444.81%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2321572397613163


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2023-04-173Wolf Pack0Bears4BWSommaire du match
3 - 2023-04-1911Wolf Pack5Bears4BLXSommaire du match
5 - 2023-04-2119Bears2Wolf Pack1AWSommaire du match
7 - 2023-04-2327Bears3Wolf Pack2AWSommaire du match
9 - 2023-04-2535Wolf Pack3Bears4BWSommaire du match
15 - 2023-05-0158Bears5Sharks2AWSommaire du match
17 - 2023-05-0362Bears2Sharks4ALSommaire du match
19 - 2023-05-0566Sharks3Bears1BLSommaire du match
21 - 2023-05-0770Sharks5Bears3BLSommaire du match
23 - 2023-05-0974Bears2Sharks4ALSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance9,4863,841
Assistance PCT94.86%76.82%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
36 2665 - 88.85% 91,252$456,260$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,351,418$ 1,351,418$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Bears Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bears Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Bears Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Bears Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bears Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA