Your STHS is out of Date! Please update your STHS version!
Login

Bruins
GP: 82 | W: 47 | L: 25 | OTL: 10 | P: 104
GF: 174 | GA: 131 | PP%: 15.27% | PK%: 88.19%
GM : Patrick Doyon | Morale : 50 | Team Overall : 58
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Bruins
47-25-10, 104pts
2
FINAL
1 Bears
29-38-15, 73pts
Team Stats
L1StreakL1
28-8-5Home Record16-17-8
19-17-5Home Record13-21-7
5-4-1Last 10 Games4-5-1
2.12Goals Per Game1.99
1.60Goals Against Per Game2.45
15.27%Power Play Percentage18.04%
88.19%Penalty Kill Percentage81.72%
Senators
46-32-4, 96pts
2
FINAL
1 Bruins
47-25-10, 104pts
Team Stats
W1StreakL1
21-16-4Home Record28-8-5
25-16-0Home Record19-17-5
7-3-0Last 10 Games5-4-1
2.30Goals Per Game2.12
2.12Goals Against Per Game1.60
18.67%Power Play Percentage15.27%
87.46%Penalty Kill Percentage88.19%
Team Leaders
Goals
Kiefer Sherwood
29
Assists
Jacob MacDonald
35
Points
Kiefer Sherwood
57
Plus/Minus
Kiefer Sherwood
37
Wins
Cayden Primeau
47
Save Percentage
Jesper Wallstedt
1

Team Stats
Goals For
174
2.12 GFG
Shots For
1453
17.72 Avg
Power Play Percentage
15.3%
42 GF
Offensive Zone Start
40.5%
Goals Against
131
1.60 GAA
Shots Against
1364
16.63 Avg
Penalty Kill Percentage
88.2%%
34 GA
Defensive Zone Start
38.2%
Team Info

General ManagerPatrick Doyon
DivisionAtlantique
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,860
Season Tickets300


Roster Info

Pro Team24
Farm Team21
Contract Limit45 / 50
Prospects23


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Kiefer SherwoodXX100.007459637473807371456667677166570506802721,000,000$
2Jean-Luc Foudy (R)X100.00634467706061596358625563635050050610203847,500$
3William Dufour (R)X100.00604463646560616442636154635050050600203859,167$
4Luke Henman (R)X100.00574865705663626051545356615150050580222791,667$
5Sampo RantaX100.00614568646562626141555554605150050580222925,000$
6Matthew WedmanX100.00624161596760605840545456575150050570233560,000$
7Akil Thomas (R)X100.00564467675960575647515353595150050560222795,000$
8Jack KopackaX100.00717280657249495049425261514444050550241800,000$
9Matej Pekar (R)XX100.00604766636461585647515153575150050550222764,167$
10Reece Newkirk (R)X100.00564765675859565550515153585050050550213828,333$
11Jonathan AngX100.00576181576159634868454257454444050520241825,000$
12Jacob MacDonaldX100.00715573727577787040656168686757050680292900,000$
13Nicolas MelocheX100.00714463697371676540625770635550050650252925,000$
14Marc Del Gaizo (R)X100.00585566716365646440625566635150050620221850,833$
15Declan Carlile (R)X100.00664863706462616040575668625150050620222750,000$
16Jeremy Groleau (R)X100.00654571686663625940545266605150050610222750,000$
17Josh BrookX100.00624068676360595740545466595150050600231795,000$
18Donovan Sebrango (R)X100.00604870666559575840515359595050050580202850,833$
Scratches
1Zachary GallantX100.00677266607246474762454258424444050520231525,000$
2Julius Nattinen (R)X100.00334544446629293344323244383230050390251899,000$
TEAM AVERAGE100.0062506765656059584654536058514905058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Cayden Primeau100.0072666974717173707371655451050650232925,000$
2Jesper Wallstedt (R)100.0068606369686971686966615050050620193925,000$
Scratches
1Mitchell Weeks (R)100.006658576563646664646257505005058N0212620,000$
2Alex D'Orio (R)100.0045394880464650504848284440050470231875,000$
TEAM AVERAGE100.006356597262636563646253504805058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kiefer SherwoodBruins (Bos)LW/RW82292857376401711722317217812.55%10192223.455382823601172549250.67%30000100.592150001149
2Jacob MacDonaldBruins (Bos)D821235471952014510276507315.79%58185622.637121951252022223331100.00%200000.5100000553
3Nicolas MelocheBruins (Bos)D79112738148951538282345013.41%58160420.315813472260003205620%000000.4700000435
4Jean-Luc FoudyBruins (Bos)C8282735301005413010427677.69%8158019.270771723210141792055.19%150400000.44212000243
5Luke HenmanBruins (Bos)C82111627-33008113697406811.34%6150618.373710182200001602248.26%129100000.3625000112
6Marc Del GaizoBruins (Bos)D82619251133571777524418.00%49153518.72347531990110209300%000000.3300010114
7Jake SandersonBostonD2752025300234734152314.71%1661022.62210122381011181110%000000.8200000223
8William DufourBruins (Bos)RW821212249300977112323769.76%5158719.362242322400011351240.43%14100000.3019000412
9Declan CarlileBruins (Bos)D811013233500152726254216.13%54138317.08729351620001142100%000000.3300000223
10Sampo RantaBruins (Bos)LW8271421-328089589027537.78%2144817.66268182200000152057.69%7800000.2911000100
11Jeremy GroleauBruins (Bos)D82020201247510553236220%40111213.57022221011041000%000000.3600000011
12Matthew WedmanBruins (Bos)LW82611172480102428823566.82%8121214.79101535000031152.13%9400000.2800000123
13Akil ThomasBruins (Bos)C826814310044966620519.09%5123815.100000221012671149.52%82600000.2300000120
14Josh BrookBruins (Bos)D82311146320616426152411.54%33104312.720003210000810133.33%300000.2700000110
15Matej PekarBruins (Bos)C/RW7774110280683859183611.86%2125016.250225930000303044.71%8500000.1800000220
16Jack KopackaBruins (Bos)LW82641010260352329132820.69%782910.11000061011771045.45%3300000.2400000011
17Donovan SebrangoBruins (Bos)D681344805618117109.09%164887.180000300007000%000000.1600000001
18Reece NewkirkBruins (Bos)C47224-2601629174911.76%24299.13000010000400052.72%23900000.1900000001
19Connor DewarBostonC/LW11121204252820.00%02222.3801101000051083.33%2400001.7900000100
20Zachary GallantBruins (Bos)C1410112015342125.00%0987.0600002000040160.00%1000000.2000000000
21Jonathan AngBruins (Bos)C9000000311010%0374.20000170000000100.00%40000000000000
Team Total or Average13871442754191575951515451316130342791711.05%3792279916.4437661033292273369231878371451.29%463400100.37842010393241
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Cayden PrimeauBruins (Bos)824725100.9121.454970101612013580220.68050820664
2Jesper WallstedtBruins (Bos)10001.000022000400000082010
Team Total or Average834725100.9121.44499310161201362022508282674


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Akil ThomasBruins (Bos)C222000-01-02Yes172 Lbs6 ft0NoNoNoNo2Pro & Farm795,000$0$0$No795,000$Link
Alex D'OrioBruins (Bos)G231999-04-28Yes209 Lbs6 ft2NoNoNoNo1Pro & Farm875,000$0$0$NoLink
Cayden PrimeauBruins (Bos)G231999-08-11No203 Lbs6 ft3NoNoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Declan CarlileBruins (Bos)D222000-05-18Yes190 Lbs6 ft1NoNoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Donovan SebrangoBruins (Bos)D202002-01-12Yes194 Lbs6 ft1NoNoNoNo2Pro & Farm850,833$0$0$No850,833$Link
Jack KopackaBruins (Bos)LW241998-03-05No191 Lbs6 ft2NoNoYesYes1Pro & Farm800,000$0$0$NoLink
Jacob MacDonald (1 Way Contract)Bruins (Bos)D291993-02-26No204 Lbs6 ft0NoNoYesYes2Pro & Farm900,000$0$0$No900,000$Link
Jean-Luc FoudyBruins (Bos)C202002-05-13Yes176 Lbs5 ft11NoNoNoNo3Pro & Farm847,500$0$0$No847,500$847,500$Link
Jeremy GroleauBruins (Bos)D221999-10-25Yes194 Lbs6 ft3NoNoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Jesper WallstedtBruins (Bos)G192002-11-14Yes214 Lbs6 ft3NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$
Jonathan AngBruins (Bos)C241998-01-31No165 Lbs5 ft11NoNoYesYes1Pro & Farm825,000$0$0$NoLink
Josh BrookBruins (Bos)D231999-06-17No190 Lbs6 ft2NoNoNoNo1Pro & Farm795,000$0$0$NoLink
Julius NattinenBruins (Bos)C251997-01-14Yes192 Lbs6 ft2NoNoYesYes1Pro & Farm899,000$0$0$NoLink
Kiefer Sherwood (1 Way Contract)Bruins (Bos)LW/RW271995-03-31No194 Lbs6 ft0NoNoYesYes2Pro & Farm1,000,000$100,000$0$No1,000,000$Link
Luke HenmanBruins (Bos)C222000-04-29Yes152 Lbs6 ft0NoNoNoNo2Pro & Farm791,667$0$0$No791,667$Link
Marc Del GaizoBruins (Bos)D221999-10-11Yes187 Lbs5 ft10NoNoNoNo1Pro & Farm850,833$0$0$NoLink
Matej PekarBruins (Bos)C/RW222000-02-10Yes185 Lbs6 ft1NoNoNoNo2Pro & Farm764,167$0$0$No764,167$Link
Matthew WedmanBruins (Bos)LW231999-05-25No209 Lbs6 ft4NoNoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Link
Mitchell Weeks (1 Way Contract)Bruins (Bos)G212001-06-22Yes185 Lbs6 ft3YesNoNoNo2Pro & Farm620,000$0$0$No620,000$Link
Nicolas MelocheBruins (Bos)D251997-07-18No205 Lbs6 ft3NoNoYesYes2Pro & Farm925,000$0$0$No925,000$Link
Reece NewkirkBruins (Bos)C212001-02-20Yes172 Lbs5 ft11NoNoNoNo3Pro & Farm828,333$0$0$No828,333$828,333$Link
Sampo RantaBruins (Bos)LW222000-05-31No194 Lbs6 ft2NoNoNoNo2Pro & Farm925,000$0$0$No925,000$Link
William DufourBruins (Bos)RW202002-01-28Yes194 Lbs6 ft3NoNoNoNo3Pro & Farm859,167$0$0$No859,167$859,167$
Zachary GallantBruins (Bos)C231999-03-06No194 Lbs6 ft2NoNoNoNo1Pro & Farm525,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2422.67190 Lbs6 ft11.92816,104$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kiefer SherwoodJean-Luc FoudyWilliam Dufour40122
2Sampo RantaLuke HenmanMatej Pekar30122
3Matthew WedmanAkil ThomasReece Newkirk20122
4Jack KopackaReece NewkirkKiefer Sherwood10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jacob MacDonaldNicolas Meloche40122
2Declan CarlileMarc Del Gaizo30122
3Jeremy GroleauJosh Brook20122
4Donovan SebrangoJacob MacDonald10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kiefer SherwoodJean-Luc FoudyWilliam Dufour60122
2Sampo RantaLuke HenmanMatej Pekar40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jacob MacDonaldNicolas Meloche60122
2Declan CarlileMarc Del Gaizo40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Kiefer SherwoodJean-Luc Foudy60122
2William DufourLuke Henman40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jacob MacDonaldNicolas Meloche60122
2Declan CarlileMarc Del Gaizo40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Kiefer Sherwood60122Jacob MacDonaldNicolas Meloche60122
2Jean-Luc Foudy40122Declan CarlileMarc Del Gaizo40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Kiefer SherwoodJean-Luc Foudy60122
2William DufourLuke Henman40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jacob MacDonaldNicolas Meloche60122
2Declan CarlileMarc Del Gaizo40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Kiefer SherwoodJean-Luc FoudyWilliam DufourJacob MacDonaldNicolas Meloche
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kiefer SherwoodJean-Luc FoudyWilliam DufourJacob MacDonaldNicolas Meloche
Extra Forwards
Normal PowerPlayPenalty Kill
Jonathan Ang, Matthew Wedman, Akil ThomasJonathan Ang, Matthew WedmanAkil Thomas
Extra Defensemen
Normal PowerPlayPenalty Kill
Jeremy Groleau, Josh Brook, Donovan SebrangoJeremy GroleauJosh Brook, Donovan Sebrango
Penalty Shots
Kiefer Sherwood, Jean-Luc Foudy, William Dufour, Luke Henman, Sampo Ranta
Goalie
#1 : Cayden Primeau, #2 : Jesper Wallstedt


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000716110000005141100000020241.0007132001505858133850548743873261114417342.86%70100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
2Baby Hawks2110000023-1110000002111010000002-220.50024600505858132750548743873331218437114.29%9188.89%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
3Bears31101000642110000002022010100044040.6676111701505858134650548743873541735567114.29%10190.00%11095209352.32%1039197352.66%599109754.60%2109147618555821036533
4Cabaret Lady Mary Ann42100010936210000104132110000052360.750915240150585813815054874387341928591715.88%13192.31%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
5Caroline31100010431211000002201000001021140.66746100150585813485054874387338918542114.76%8187.50%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
6Chiefs21100000642110000004131010000023-120.500691500505858134350548743873256103811327.27%50100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
7Chill21000001541110000003121000000123-130.750510150050585813275054874387331812436116.67%4250.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
8Comets2110000013-2110000001011010000003-320.50012301505858132450548743873308836500.00%30100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
9Cougars413000009902020000015-42110000084420.2509172601505858137050548743873791537701317.69%16475.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
10Crunch320000101138110000007252100001041361.00011193001505858138050548743873591724848112.50%110100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
11Heat2010001045-1100000104311010000002-220.500461000505858133350548743873311014438112.50%7357.14%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
12Jayhawks22000000826110000003031100000052341.000813210150585813625054874387337418586350.00%90100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
13Las Vegas22000000312110000002111100000010141.00036901505858132950548743873217640300.00%30100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
14Manchots31100001532210000015231010000001-130.50051015015058581346505487438735518286410220.00%130100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
15Marlies42100001770210000014402110000033050.62571421005058581362505487438737520328511218.18%16287.50%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
16Minnesota21100000550110000002111010000034-120.500591400505858132850548743873291412356116.67%5180.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
17Monarchs21000001422110000003031000000112-130.75046100150585813465054874387321622346233.33%100100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
18Monsters31100010651100000102112110000044040.667671300505858135150548743873602024489222.22%12191.67%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
19Monsters2110000045-1110000003211010000013-220.5004711105058581325505487438733381843500.00%90100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
20Oceanics21100000321110000002021010000012-120.500358015058581332505487438732958347114.29%4175.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
21Oil Kings22000000716110000004041100000031241.0007101701505858133350548743873231112536233.33%50100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
22Phantoms3120000057-21010000013-22110000044020.3335101510505858134550548743873421423581200.00%80100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
23Rocket4210000167-12110000034-12100000133050.6256101600505858136750548743873752038641317.69%19668.42%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
24Sags21000010642100000102111100000043141.000691500505858134250548743873311016346350.00%7271.43%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
25Seattle21000001532110000003031000000123-130.750510150150585813305054874387336116466233.33%30100.00%11095209352.32%1039197352.66%599109754.60%2109147618555821036533
26Senators32100000642211000004311100000021140.66761117005058581347505487438735412314515320.00%13192.31%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
27Sound Tigers3100000256-11000000123-12100000133040.6675712005058581346505487438735617345812216.67%16193.75%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
28Spiders3020000137-42010000125-31010000012-110.16736900505858134150548743873672031581317.69%11372.73%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
29Stars2010010036-31000010023-11010000013-210.2503690050585813335054874387339101842300.00%70100.00%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
30Thunder4210100015872100100011562110000043160.750152742015058581311850548743873742628105600.00%14285.71%01095209352.32%1039197352.66%599109754.60%2109147618555821036533
31Wolf Pack321000004402110000034-11100000010140.6674711015058581353505487438736020246910110.00%11190.91%11095209352.32%1039197352.66%599109754.60%2109147618555821036533
Total8239250216917413143412380114498593941161701025767241040.63417430247621650585813145350548743873136439564716402754215.27%2883488.19%31095209352.32%1039197352.66%599109754.60%2109147618555821036533
_Since Last GM Reset8239250216917413143412380114498593941161701025767241040.63417430247621650585813145350548743873136439564716402754215.27%2883488.19%31095209352.32%1039197352.66%599109754.60%2109147618555821036533
_Vs Conference42191202027876819211040102451331821980100336351530.631871532401750585813740505487438737352243628321372417.52%1561789.10%21095209352.32%1039197352.66%599109754.60%2109147618555821036533
_Vs Division266200013634122134000011342410132200002291712170.3276311317604505858135255054874387345711921851283910.84%1021684.31%01095209352.32%1039197352.66%599109754.60%2109147618555821036533

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82104L1174302476145313643956471640216
All Games
GPWLOTWOTL SOWSOLGFGA
8239252169174131
Home Games
GPWLOTWOTL SOWSOLGFGA
4123811449859
Visitor Games
GPWLOTWOTL SOWSOLGFGA
41161710257672
Last 10 Games
WLOTWOTL SOWSOL
540001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2754215.27%2883488.19%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
5054874387350585813
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1095209352.32%1039197352.66%599109754.60%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2109147618555821036533


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2023-10-116Baby Hawks1Bruins2BWBoxScore
5 - 2023-10-1421Chill1Bruins3BWBoxScore
10 - 2023-10-1961Bruins4Sags3AWBoxScore
12 - 2023-10-2179Bruins1Monarchs2ALXXBoxScore
13 - 2023-10-2281Bruins2Admirals0AWBoxScore
15 - 2023-10-2492Bruins0Baby Hawks2ALBoxScore
17 - 2023-10-26100Admirals1Bruins5BWBoxScore
19 - 2023-10-28120Cougars2Bruins1BLBoxScore
21 - 2023-10-30130Cabaret Lady Mary Ann1Bruins2BWXXBoxScore
24 - 2023-11-02145Marlies1Bruins2BWBoxScore
26 - 2023-11-04162Bruins6Cougars0AWBoxScore
28 - 2023-11-06178Bruins1Stars3ALBoxScore
31 - 2023-11-09193Sound Tigers3Bruins2BLXXBoxScore
33 - 2023-11-11212Bruins2Rocket1AWBoxScore
36 - 2023-11-14229Bruins2Crunch1AWXXBoxScore
40 - 2023-11-18260Rocket1Bruins2BWBoxScore
42 - 2023-11-20273Bruins4Thunder0AWBoxScore
44 - 2023-11-22282Bruins0Cabaret Lady Mary Ann1ALBoxScore
46 - 2023-11-24293Cougars3Bruins0BLBoxScore
47 - 2023-11-25308Bruins1Wolf Pack0AWBoxScore
49 - 2023-11-27321Bruins2Monsters1AWBoxScore
52 - 2023-11-30340Sags1Bruins2BWXXBoxScore
54 - 2023-12-02364Bruins3Marlies1AWBoxScore
55 - 2023-12-03371Monsters1Bruins2BWXXBoxScore
59 - 2023-12-07392Crunch2Bruins7BWBoxScore
61 - 2023-12-09408Jayhawks0Bruins3BWBoxScore
65 - 2023-12-13443Bruins1Spiders2ALBoxScore
67 - 2023-12-15457Bruins1Sound Tigers2ALXXBoxScore
68 - 2023-12-16463Wolf Pack1Bruins2BWBoxScore
71 - 2023-12-19484Minnesota1Bruins2BWBoxScore
74 - 2023-12-22512Bruins1Oceanics2ALBoxScore
75 - 2023-12-23516Bruins3Minnesota4ALBoxScore
79 - 2023-12-27532Bruins2Crunch0AWBoxScore
82 - 2023-12-30557Spiders3Bruins2BLXXBoxScore
83 - 2023-12-31565Bruins2Cougars4ALBoxScore
85 - 2024-01-02574Bruins2Monsters3ALBoxScore
87 - 2024-01-04589Manchots0Bruins4BWBoxScore
89 - 2024-01-06608Thunder2Bruins7BWBoxScore
91 - 2024-01-08624Bruins1Monsters3ALBoxScore
92 - 2024-01-09633Bruins5Jayhawks2AWBoxScore
94 - 2024-01-11650Bruins1Las Vegas0AWBoxScore
96 - 2024-01-13667Bruins2Chiefs3ALBoxScore
98 - 2024-01-15671Spiders2Bruins0BLBoxScore
101 - 2024-01-18692Monsters2Bruins3BWBoxScore
103 - 2024-01-20711Rocket3Bruins1BLBoxScore
105 - 2024-01-22724Oceanics0Bruins2BWBoxScore
107 - 2024-01-24741Caroline2Bruins1BLBoxScore
108 - 2024-01-25749Bruins2Senators1AWBoxScore
110 - 2024-01-27759Bruins2Phantoms3ALBoxScore
120 - 2024-02-06783Heat3Bruins4BWXXBoxScore
122 - 2024-02-08794Comets0Bruins1BWBoxScore
124 - 2024-02-10808Bears0Bruins2BWBoxScore
127 - 2024-02-13823Thunder3Bruins4BWXBoxScore
129 - 2024-02-15837Seattle0Bruins3BWBoxScore
131 - 2024-02-17855Monarchs0Bruins3BWBoxScore
133 - 2024-02-19868Stars3Bruins2BLXBoxScore
135 - 2024-02-21888Bruins3Oil Kings1AWBoxScore
136 - 2024-02-22896Bruins0Heat2ALBoxScore
138 - 2024-02-24907Bruins0Comets3ALBoxScore
140 - 2024-02-26926Bruins2Seattle3ALXXBoxScore
143 - 2024-02-29941Las Vegas1Bruins2BWBoxScore
145 - 2024-03-02957Bruins2Sound Tigers1AWBoxScore
147 - 2024-03-04978Bruins0Marlies2ALBoxScore
148 - 2024-03-05981Oil Kings0Bruins4BWBoxScore
150 - 2024-03-07993Marlies3Bruins2BLXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
152 - 2024-03-091012Manchots2Bruins1BLXXBoxScore
154 - 2024-03-111027Chiefs1Bruins4BWBoxScore
157 - 2024-03-141049Bruins1Rocket2ALXXBoxScore
159 - 2024-03-161065Phantoms3Bruins1BLBoxScore
162 - 2024-03-191082Senators1Bruins3BWBoxScore
164 - 2024-03-211098Wolf Pack3Bruins1BLBoxScore
166 - 2024-03-231114Bruins2Phantoms1AWBoxScore
169 - 2024-03-261136Bruins5Cabaret Lady Mary Ann1AWBoxScore
170 - 2024-03-271149Bruins0Thunder3ALBoxScore
173 - 2024-03-301176Bruins2Bears3ALBoxScore
176 - 2024-04-021194Bruins2Chill3ALXXBoxScore
178 - 2024-04-041202Bruins2Caroline1AWXXBoxScore
180 - 2024-04-061218Cabaret Lady Mary Ann0Bruins2BWBoxScore
183 - 2024-04-091239Caroline0Bruins1BWBoxScore
187 - 2024-04-131279Bruins0Manchots1ALBoxScore
189 - 2024-04-151291Bruins2Bears1AWXBoxScore
190 - 2024-04-161295Senators2Bruins1BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,10839,170
Attendance PCT95.25%95.54%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2860 - 95.35% 97,210$3,985,596$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,064,762$ 1,706,650$ 1,706,650$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,889$ 2,064,762$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 8,889$ 0$




Bruins Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bruins Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Bruins Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Bruins Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bruins Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA