Your STHS is out of Date! Please update your STHS version!
Login

Monsters
GP: 82 | W: 52 | L: 23 | OTL: 7 | P: 111
GF: 202 | GA: 145 | PP%: 15.18% | PK%: 85.46%
GM : Paul-André Desrochers | Morale : 50 | Team Overall : 59
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Monsters
52-23-7, 111pts
0
FINAL
2 Las Vegas
31-42-9, 71pts
Team Stats
L3StreakL2
25-12-4Home Record17-19-5
27-11-3Home Record14-23-4
3-6-1Last 10 Games2-7-1
2.46Goals Per Game1.73
1.77Goals Against Per Game2.01
15.18%Power Play Percentage13.92%
85.46%Penalty Kill Percentage90.70%
Oil Kings
34-38-10, 78pts
4
FINAL
2 Monsters
52-23-7, 111pts
Team Stats
W1StreakL3
19-17-5Home Record25-12-4
15-21-5Home Record27-11-3
6-4-0Last 10 Games3-6-1
2.30Goals Per Game2.46
2.50Goals Against Per Game1.77
14.60%Power Play Percentage15.18%
83.18%Penalty Kill Percentage85.46%
Team Leaders
Goals
Vasily Podkolzin
31
Assists
Alexander Alexeyev
46
Points
Vasily Podkolzin
62
Plus/Minus
Vasily Podkolzin
39
Wins
Dustin Tokarski
48
Save Percentage
Filip Larsson
1

Team Stats
Goals For
202
2.46 GFG
Shots For
1624
19.80 Avg
Power Play Percentage
15.2%
34 GF
Offensive Zone Start
40.4%
Goals Against
145
1.77 GAA
Shots Against
1501
18.30 Avg
Penalty Kill Percentage
85.5%%
49 GA
Defensive Zone Start
38.7%
Team Info

General ManagerPaul-André Desrochers
DivisionNord
ConferenceOuest
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,863
Season Tickets300


Roster Info

Pro Team27
Farm Team19
Contract Limit46 / 50
Prospects15


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Paul CotterXX100.00795880738277727248646966715650050680224900,000$
2Vasily PodkolzinXX100.00715479778182707250666766725750050680213925,000$
3Marian StudenicXX100.00654371726768656642636167675450050640231750,000$
4Carl HagelinX100.005743656563727463436154636086730506303411,250,000$
5Ben JonesX100.00655262716266656661646067665250050630232760,000$
6Oskar SteenXX100.00594467706165646458615759645350050610241809,168$
7Otto KoivulaXXX100.00685066607364636257605661605250050600241700,000$
8Olle Lycksell (R)X100.00564070695762626342645857635150050600232837,000$
9Daniel Torgersson (R)XX100.00614071626560616241565754605050050580203867,500$
10Justin Sourdif (R)X100.00574066665960606141615556615050050580203847,500$
11Alexander Pashin (R)XXX100.00554470685560605940545453605050050570203826,667$
12Aleksandr Kisakov (R)X100.00564069685557575840545554605050050560193859,167$
13Alexander AlexeyevX100.00634776718379666740645870655650050670222863,333$
14Mark BorowieckiX100.009399347379576054254243856069690506603321,411,111$
15Lucas CarlssonX100.00654370736870677040656569695550050660251800,000$
16Vladislav Kolyachonok (R)X100.00645170727069646540615668655150050640212795,000$
17Brayden PachalX100.00646255676664636240565366605152050610232900,000$
18Matthew Robertson (R)X100.00625366666862626340595464615050050610213797,500$
Scratches
1Ty RonningX100.00524371695364626141545651625350050570242750,833$
2Curtis Hall (R)X100.00634571606762605650515154565150050560222925,000$
3Grant MismashX100.00594470646262605340515153565250050550231825,000$
4Steven KampferX100.00544066646168696440625760626660050610341750,000$
5Daniil Zhuravlyov (R)X100.00564068685759585640545360595150050580223600,000$
6Hardy Haman Aktell (R)X100.0030403939652929303929293935323005038N0243900,000$
TEAM AVERAGE100.0061486667666462614357556161545105060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Jon Gillies100.0070696579696665626768706558050630282700,000$
2Filip Larsson (R)100.0039485671424246433839254438050440241750,000$
Scratches
1Tyler Parsons100.0041475670373948453940274438050430251620,000$
TEAM AVERAGE100.005055597349495350484941514505050
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Vasily PodkolzinMonsters (Col)LW/RW8231316239300881561987013215.66%6183022.336392919721373466552.36%80400010.68290007103
2Paul CotterMonsters (Col)C/LW82253156347551421591764814214.20%7165720.2257122719410131944154.54%158600000.6838001753
3Alexander AlexeyevMonsters (Col)D82546513139576716721417.46%74193223.5721113361890221285100%000000.5300001413
4Marian StudenicMonsters (Col)LW/RW82272249323408699153379917.65%3147417.984592517900061507545.13%11300000.6616000594
5Ben JonesMonsters (Col)C821234462040011713215038878.00%6133516.2921012221730000703155.94%123700000.6900000514
6Aliaksei ProtasColoradoLW/RW59152439284037711264011811.90%11133322.591672013101152426156.47%8500010.5906000333
7Lucas CarlssonMonsters (Col)D82112637227001527992365711.96%73185422.617411481790111251300%000000.4000000334
8Vladislav KolyachonokMonsters (Col)D82427311218041655317347.55%52169020.62246271720001244200%000000.3700000113
9Matthew RobertsonMonsters (Col)D82623293028095562972120.69%48137716.791013200000108100%000000.4200000214
10Mark BorowieckiMonsters (Col)D826202622184103416157213310.53%79165020.13235251670000184120%000000.3200101227
11Olle LycksellMonsters (Col)RW82179261260376691226618.68%7100812.300000100000534035.53%7600100.5200000413
12Brayden PachalMonsters (Col)D825192431755145553772713.51%45136316.62000228011173100%000000.3500001141
13Oskar SteenMonsters (Col)C/RW82715222120052569124757.69%3125715.3416715174000031157.14%7700000.3500000101
14Carl HagelinMonsters (Col)LW8241418920042528720654.60%4111413.591129670000561056.72%6700000.3200000110
15Otto KoivulaMonsters (Col)C/LW/RW82691514495100916924378.70%695411.6400019000151261.05%76000000.3100100112
16Justin SourdifMonsters (Col)C8275124180506551133313.73%46728.2000000000004149.17%54100000.3600000003
17Alexander PashinMonsters (Col)C/LW/RW824610418030233693411.11%36748.2200001000001154.84%3100000.3000000020
18Daniel TorgerssonMonsters (Col)LW/RW826287220413151123511.76%37709.39000000001272052.00%5000000.2100000031
19Aleksandr KisakovMonsters (Col)RW23123-140139100810.00%01988.6100001000000038.46%1300000.3000000010
Team Total or Average147619936556437175430168513971624466114412.25%4342415016.363460942891899369272299492054.49%544000120.47629204474949
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dustin TokarskiColorado69481650.9141.55414621210712390000.63622690832
2Jon GilliesMonsters (Col)144720.8762.3980200322590000.66761369001
3Filip LarssonMonsters (Col)10001.000017000300000013000
Team Total or Average84522370.9071.6849652121391501000288282833


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aleksandr KisakovMonsters (Col)RW192002-11-01Yes150 Lbs5 ft10NoNoNoNo3Pro & Farm859,167$0$0$No859,167$859,167$
Alexander AlexeyevMonsters (Col)D221999-11-15No213 Lbs6 ft4NoNoNoNo2Pro & Farm863,333$0$0$No863,333$Link
Alexander PashinMonsters (Col)C/LW/RW202002-01-28Yes154 Lbs5 ft8NoNoNoNo3Pro & Farm826,667$0$0$No826,667$826,667$
Ben JonesMonsters (Col)C231999-02-26No187 Lbs6 ft0NoNoNoNo2Pro & Farm760,000$0$0$No760,000$Link
Brayden PachalMonsters (Col)D231999-08-23No205 Lbs6 ft1NoNoNoNo2Pro & Farm900,000$0$0$No900,000$Link
Carl Hagelin (1 Way Contract)Monsters (Col)LW341988-08-23No185 Lbs6 ft0NoNoYesYes1Pro & Farm1,250,000$350,000$0$NoLink
Curtis HallMonsters (Col)C222000-04-26Yes196 Lbs6 ft3NoNoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Daniel TorgerssonMonsters (Col)LW/RW202002-01-26Yes198 Lbs6 ft3NoNoNoNo3Pro & Farm867,500$0$0$No867,500$867,500$
Daniil ZhuravlyovMonsters (Col)D222000-04-08Yes163 Lbs6 ft0NoNoNoNo3Pro & Farm600,000$0$0$No600,000$600,000$Link
Filip LarssonMonsters (Col)G241998-08-17Yes181 Lbs6 ft2NoNoYesYes1Pro & Farm750,000$0$0$NoLink
Grant MismashMonsters (Col)LW231999-02-19No185 Lbs6 ft0NoNoNoNo1Pro & Farm825,000$0$0$NoLink
Hardy Haman Aktell (1 Way Contract)Monsters (Col)D241998-07-04Yes198 Lbs6 ft3YesNoYesYes3Pro & Farm900,000$0$0$No900,000$900,000$Link
Jon Gillies (1 Way Contract)Monsters (Col)G281994-01-22No223 Lbs6 ft6NoNoYesYes2Pro & Farm700,000$0$0$No700,000$Link
Justin SourdifMonsters (Col)C202002-03-24Yes172 Lbs5 ft11NoNoNoNo3Pro & Farm847,500$0$0$No847,500$847,500$
Lucas CarlssonMonsters (Col)D251997-07-05No190 Lbs6 ft0NoNoYesYes1Pro & Farm800,000$0$0$NoLink
Marian StudenicMonsters (Col)LW/RW231998-10-28No181 Lbs6 ft1NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Mark Borowiecki (1 Way Contract)Monsters (Col)D331989-07-12No207 Lbs6 ft1NoNoYesYes2Pro & Farm1,411,111$511,111$0$No1,411,111$Link
Matthew RobertsonMonsters (Col)D212001-03-09Yes201 Lbs6 ft4NoNoNoNo3Pro & Farm797,500$0$0$No797,500$797,500$Link
Olle LycksellMonsters (Col)RW231999-08-24Yes163 Lbs5 ft10NoNoNoNo2Pro & Farm837,000$0$0$No837,000$Link
Oskar SteenMonsters (Col)C/RW241998-03-09No187 Lbs5 ft9NoNoYesYes1Pro & Farm809,168$0$0$NoLink
Otto KoivulaMonsters (Col)C/LW/RW241998-09-01No225 Lbs6 ft5NoNoYesYes1Pro & Farm700,000$0$0$NoLink
Paul CotterMonsters (Col)C/LW221999-11-16No212 Lbs6 ft2NoNoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Link
Steven Kampfer (1 Way Contract)Monsters (Col)D341988-09-24No198 Lbs5 ft11NoNoYesYes1Pro & Farm750,000$0$0$NoLink
Ty RonningMonsters (Col)RW241997-10-20No163 Lbs5 ft9NoNoYesYes2Pro & Farm750,833$0$0$No750,833$Link
Tyler ParsonsMonsters (Col)G251997-09-17No185 Lbs6 ft1NoNoYesYes1Pro & Farm620,000$0$0$NoLink
Vasily PodkolzinMonsters (Col)LW/RW212001-06-24No190 Lbs6 ft1NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Link
Vladislav KolyachonokMonsters (Col)D212001-05-26Yes194 Lbs6 ft1NoNoNoNo2Pro & Farm795,000$0$0$No795,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2723.85189 Lbs6 ft12.04841,473$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Vasily PodkolzinPaul CotterMarian Studenic40122
2Carl HagelinBen JonesOskar Steen30122
3Daniel TorgerssonOtto KoivulaOlle Lycksell20122
4Alexander PashinJustin SourdifAleksandr Kisakov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander AlexeyevMark Borowiecki40122
2Lucas CarlssonVladislav Kolyachonok30122
3Matthew RobertsonBrayden Pachal20122
4Alexander AlexeyevMark Borowiecki10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Vasily PodkolzinPaul CotterMarian Studenic60122
2Carl HagelinBen JonesOskar Steen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander AlexeyevMark Borowiecki60122
2Lucas CarlssonVladislav Kolyachonok40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Vasily PodkolzinPaul Cotter60122
2Marian StudenicBen Jones40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander AlexeyevMark Borowiecki60122
2Lucas CarlssonVladislav Kolyachonok40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Vasily Podkolzin60122Alexander AlexeyevMark Borowiecki60122
2Paul Cotter40122Lucas CarlssonVladislav Kolyachonok40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Vasily PodkolzinPaul Cotter60122
2Marian StudenicBen Jones40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander AlexeyevMark Borowiecki60122
2Lucas CarlssonVladislav Kolyachonok40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Vasily PodkolzinPaul CotterMarian StudenicAlexander AlexeyevMark Borowiecki
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Vasily PodkolzinPaul CotterMarian StudenicAlexander AlexeyevMark Borowiecki
Extra Forwards
Normal PowerPlayPenalty Kill
Olle Lycksell, Otto Koivula, Daniel TorgerssonOlle Lycksell, Otto KoivulaDaniel Torgersson
Extra Defensemen
Normal PowerPlayPenalty Kill
Matthew Robertson, Brayden Pachal, Lucas CarlssonMatthew RobertsonBrayden Pachal, Lucas Carlsson
Penalty Shots
Vasily Podkolzin, Paul Cotter, Marian Studenic, Ben Jones, Carl Hagelin
Goalie
#1 : Jon Gillies, #2 : Filip Larsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals32000010734210000106331100000010161.00071219017852678465754855474659203654400.00%16287.50%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
2Baby Hawks402010011013-32010000146-22010100067-130.3751020300078526786557548554746791551841218.33%20575.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
3Bears21000010853110000004221000001043141.00081321007852678335754855474638818388112.50%9277.78%11212220055.09%1141210454.23%611113653.79%2111149518305741028527
4Bruins21100000541110000003121010000023-120.500581300785267833575485547462571037900.00%50100.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
5Cabaret Lady Mary Ann2110000034-1110000002111010000013-220.5003690078526784257548554746381616339111.11%7185.71%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
6Caroline2010010024-21010000001-11000010023-110.25024600785267833575485547463392433900.00%10190.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
7Chiefs40200011710-32010000135-22010001045-130.375710170178526787157548554746782842831715.88%19478.95%11212220055.09%1141210454.23%611113653.79%2111149518305741028527
8Chill3200000112751000000123-122000000104650.8331223350178526787357548554746651328515360.00%14378.57%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
9Comets32100000532211000002201100000031240.667510150078526786657548554746371321691218.33%8187.50%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
10Cougars22000000413110000002111100000020241.00047110178526782757548554746501216474125.00%7185.71%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
11Crunch22000000624110000002021100000042241.000612180178526785757548554746331214364125.00%70100.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
12Heat33000000945220000007341100000021161.00091524007852678775754855474663152467400.00%12191.67%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
13Jayhawks43100000177102110000063322000000114760.7501732490078526781385754855474669172410611436.36%12191.67%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
14Las Vegas3110000157-2110000004312010000114-330.5005914007852678665754855474649132862500.00%13376.92%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
15Manchots2110000045-11010000013-21100000032120.5004812007852678335754855474643123047100.00%14471.43%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
16Marlies2020000004-41010000001-11010000003-300.000000007852678335754855474635101641200.00%70100.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
17Minnesota440000001239220000007162200000052381.00012233501785267889575485547467018286913215.38%14192.86%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
18Monarchs33000000725110000003032200000042261.000714210178526785757548554746561534721000.00%17194.12%11212220055.09%1141210454.23%611113653.79%2111149518305741028527
19Monsters21100000431110000003121010000012-120.5004812007852678345754855474629124942700.00%10190.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
20Oceanics3120000056-12020000024-21100000032120.333510150078526785157548554746611924697228.57%12191.67%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
21Oil Kings31200000510-51010000024-22110000036-320.33357120078526785057548554746471226686116.67%12191.67%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
22Phantoms22000000624110000004131100000021141.000610160078526783257548554746431314427228.57%7185.71%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
23Rocket2000000246-21000000123-11000000123-120.5004711007852678365754855474647142436600.00%11190.91%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
24Sags32100000844211000004401100000040440.667815230178526786557548554746461022474250.00%11463.64%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
25Seattle31101000642110000003122010100033040.667612180178526784857548554746451326509222.22%13284.62%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
26Senators2110000034-1110000002111010000013-220.5003580078526782957548554746331114495120.00%7357.14%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
27Sound Tigers22000000734110000004131100000032141.000713200078526783457548554746441226443133.33%10190.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
28Spiders21100000541110000004221010000012-120.5005914007852678315754855474628158346116.67%40100.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
29Stars4310000011562110000045-12200000070760.75011193002785267874575485547466923207015426.67%10190.00%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
30Thunder22000000835110000006331100000020241.000813210178526785657548554746401319574125.00%7185.71%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
31Wolf Pack22000000734110000004221100000031241.000711180078526784557548554746491424486116.67%12191.67%01212220055.09%1141210454.23%611113653.79%2111149518305741028527
Total82472302136202145574124120001410271314123110212210074261110.6772023655670127852678162457548554746150143475616852243415.18%3374985.46%31212220055.09%1141210454.23%611113653.79%2111149518305741028527
_Since Last GM Reset82472302136202145574124120001410271314123110212210074261110.6772023655670127852678162457548554746150143475616852243415.18%3374985.46%31212220055.09%1141210454.23%611113653.79%2111149518305741028527
_Vs Conference45231302115106832322127000035039112311602112564412580.644106193299077852678939575485547468072303849131361913.97%1752486.29%11212220055.09%1141210454.23%611113653.79%2111149518305741028527
_Vs Division26720000274512313320000128271134000001462422160.3087413721105785267856157548554746491133217532801721.25%1011684.16%11212220055.09%1141210454.23%611113653.79%2111149518305741028527

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82111L3202365567162415014347561685012
All Games
GPWLOTWOTL SOWSOLGFGA
8247232136202145
Home Games
GPWLOTWOTL SOWSOLGFGA
412412001410271
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412311212210074
Last 10 Games
WLOTWOTL SOWSOL
360001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2243415.18%3374985.46%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
575485547467852678
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1212220055.09%1141210454.23%611113653.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2111149518305741028527


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2023-10-117Monsters2Monarchs1AWBoxScore
5 - 2023-10-1429Monsters4Sags0AWBoxScore
8 - 2023-10-1746Monsters2Seattle3ALBoxScore
10 - 2023-10-1962Baby Hawks3Monsters2BLXXBoxScore
12 - 2023-10-2176Caroline1Monsters0BLBoxScore
15 - 2023-10-2490Monsters3Sound Tigers2AWBoxScore
17 - 2023-10-26105Monsters3Manchots2AWBoxScore
20 - 2023-10-29126Monsters4Crunch2AWBoxScore
23 - 2023-11-01143Chiefs3Monsters2BLBoxScore
26 - 2023-11-04173Monsters1Las Vegas2ALXXBoxScore
29 - 2023-11-07188Spiders2Monsters4BWBoxScore
31 - 2023-11-09201Seattle1Monsters3BWBoxScore
33 - 2023-11-11219Chiefs2Monsters1BLXXBoxScore
35 - 2023-11-13228Monsters1Seattle0AWXBoxScore
37 - 2023-11-15240Admirals1Monsters3BWBoxScore
40 - 2023-11-18264Monsters4Stars0AWBoxScore
42 - 2023-11-20275Monsters5Chill4AWBoxScore
44 - 2023-11-22292Comets1Monsters0BLBoxScore
46 - 2023-11-24306Monsters2Minnesota1AWBoxScore
47 - 2023-11-25315Heat2Monsters3BWBoxScore
49 - 2023-11-27324Thunder3Monsters6BWBoxScore
52 - 2023-11-30350Monsters6Jayhawks2AWBoxScore
54 - 2023-12-02366Monsters1Admirals0AWBoxScore
55 - 2023-12-03373Monsters2Monarchs1AWBoxScore
57 - 2023-12-05386Admirals2Monsters3BWXXBoxScore
59 - 2023-12-07402Oceanics1Monsters0BLBoxScore
61 - 2023-12-09417Phantoms1Monsters4BWBoxScore
63 - 2023-12-11431Heat1Monsters4BWBoxScore
65 - 2023-12-13445Crunch0Monsters2BWBoxScore
68 - 2023-12-16462Monsters3Oceanics2AWBoxScore
69 - 2023-12-17478Sags3Monsters1BLBoxScore
71 - 2023-12-19492Monsters5Baby Hawks4AWXBoxScore
73 - 2023-12-21507Senators1Monsters2BWBoxScore
75 - 2023-12-23525Jayhawks2Monsters1BLBoxScore
79 - 2023-12-27537Monsters5Jayhawks2AWBoxScore
81 - 2023-12-29552Monsters1Chiefs0AWXXBoxScore
83 - 2023-12-31571Sags1Monsters3BWBoxScore
85 - 2024-01-02582Sound Tigers1Monsters4BWBoxScore
87 - 2024-01-04593Monsters3Stars0AWBoxScore
89 - 2024-01-06606Cabaret Lady Mary Ann1Monsters2BWBoxScore
91 - 2024-01-08624Bruins1Monsters3BWBoxScore
93 - 2024-01-10637Las Vegas3Monsters4BWBoxScore
96 - 2024-01-13663Monsters0Marlies3ALBoxScore
98 - 2024-01-15678Monsters2Rocket3ALXXBoxScore
99 - 2024-01-16682Monsters1Senators3ALBoxScore
101 - 2024-01-18692Monsters2Bruins3ALBoxScore
103 - 2024-01-20707Monsters2Phantoms1AWBoxScore
107 - 2024-01-24742Bears2Monsters4BWBoxScore
109 - 2024-01-26757Monarchs0Monsters3BWBoxScore
119 - 2024-02-05781Monsters3Wolf Pack1AWBoxScore
120 - 2024-02-06787Monsters1Spiders2ALBoxScore
122 - 2024-02-08799Monsters2Caroline3ALXBoxScore
124 - 2024-02-10809Monsters1Cabaret Lady Mary Ann3ALBoxScore
127 - 2024-02-13828Monsters4Bears3AWXXBoxScore
129 - 2024-02-15842Monsters2Thunder0AWBoxScore
132 - 2024-02-18864Jayhawks1Monsters5BWBoxScore
134 - 2024-02-20881Comets1Monsters2BWBoxScore
136 - 2024-02-22890Monsters2Cougars0AWBoxScore
138 - 2024-02-24908Marlies1Monsters0BLBoxScore
141 - 2024-02-27936Stars2Monsters4BWBoxScore
143 - 2024-02-29949Monsters1Baby Hawks3ALBoxScore
145 - 2024-03-02959Monsters5Chill0AWBoxScore
147 - 2024-03-04979Baby Hawks3Monsters2BLBoxScore
149 - 2024-03-06991Cougars1Monsters2BWBoxScore
151 - 2024-03-081006Minnesota0Monsters5BWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2024-03-121039Monsters2Heat1AWBoxScore
156 - 2024-03-131044Monsters3Comets1AWBoxScore
159 - 2024-03-161072Monsters3Oil Kings1AWBoxScore
162 - 2024-03-191089Monsters3Chiefs5ALBoxScore
165 - 2024-03-221111Monsters1Monsters3BWBoxScore
167 - 2024-03-241125Manchots3Monsters1BLBoxScore
169 - 2024-03-261144Rocket3Monsters2BLXXBoxScore
171 - 2024-03-281159Wolf Pack2Monsters4BWBoxScore
173 - 2024-03-301169Chill3Monsters2BLXXBoxScore
175 - 2024-04-011181Monsters1Monsters2ALBoxScore
178 - 2024-04-041207Monsters3Minnesota1AWBoxScore
179 - 2024-04-051214Monsters0Oil Kings5ALBoxScore
181 - 2024-04-071236Stars3Monsters0BLBoxScore
183 - 2024-04-091248Minnesota1Monsters2BWBoxScore
187 - 2024-04-131272Oceanics3Monsters2BLBoxScore
188 - 2024-04-141284Monsters0Las Vegas2ALBoxScore
192 - 2024-04-181310Oil Kings4Monsters2BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,34339,044
Attendance PCT95.54%95.23%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2863 - 95.44% 97,395$3,993,198$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,825,878$ 1,770,867$ 1,770,867$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,223$ 1,825,878$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 9,223$ 0$




Monsters Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA