Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Connexion

Chill
GP: 82 | W: 37 | L: 37 | OTL: 8 | P: 82
GF: 178 | GA: 187 | PP%: 18.39% | PK%: 85.50%
DG: Maxime Pigeon-Gosselin | Morale : 50 | Moyenne d’équipe : 57
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Monsters
50-27-5, 105pts
1
FINAL
0 Chill
37-37-8, 82pts
Team Stats
W9SéquenceSOL1
24-15-2Fiche domicile20-18-3
26-12-3Fiche domicile17-19-5
9-1-0Derniers 10 matchs3-6-1
2.24Buts par match 2.17
1.79Buts contre par match 2.28
17.36%Pourcentage en avantage numérique18.39%
85.45%Pourcentage en désavantage numérique85.50%
Chill
37-37-8, 82pts
2
FINAL
3 Manchots
44-30-8, 96pts
Team Stats
SOL1SéquenceW3
20-18-3Fiche domicile22-16-3
17-19-5Fiche domicile22-14-5
3-6-1Derniers 10 matchs5-4-1
2.17Buts par match 2.18
2.28Buts contre par match 1.74
18.39%Pourcentage en avantage numérique13.98%
85.50%Pourcentage en désavantage numérique84.03%
Meneurs d'équipe
Buts
Raphael Lavoie
18
Passes
Tobias Bjornfot
30
Points
Cole McWard
45
Plus/Moins
Cole McWard
3
Victoires
Keith Petruzzelli
35
Pourcentage d’arrêts
Frederik Nissen Dichow
0.914

Statistiques d’équipe
Buts pour
178
2.17 GFG
Tirs pour
1591
19.40 Avg
Pourcentage en avantage numérique
18.4%
41 GF
Début de zone offensive
39.8%
Buts contre
187
2.28 GAA
Tirs contre
1597
19.48 Avg
Pourcentage en désavantage numérique
85.5%%
29 GA
Début de la zone défensive
37.8%
Informations de l'équipe

Directeur généralMaxime Pigeon-Gosselin
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,856
Billets de saison300


Informations de la formation

Équipe Pro27
Équipe Mineure21
Limite contact 48 / 50
Espoirs33


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Taro HiroseX100.00534374715369686644665957655550050620262850,000$
2Raphael Lavoie (R)XX100.00664967696662626542616162655050050620221870,000$
3Scott ReedyX100.00604774657269646449595958625250050610232800,000$
4Gage Goncalves (R)X100.00604568716264646461645861645050050610213820,000$
5James HamblinXX100.005745717058646363536057596352500506002311,000,000$
6Lauri Pajuniemi (R)X100.00634567696563626342605959645150050600232883,750$
7Luke Toporowski (R)X100.00614466686261616241595960635050050600213560,000$
8Bobby BrinkX100.00564772725965586341615754645050050590213925,000$
9Xavier Simoneau (R)X100.00565259685761626153645555615050050590213855,000$
10Yaroslav Likhachyok (R)X100.00413797706266845556475144565454050560213560,000$
11Tyson Kozak (R)X100.0058476566595757595154545459505005056N0194900,000$
12Josh Lopina (R)X100.00604567616561605650515151565050050550213878,333$
13Tobias BjornfotX100.00654379707168676440585767635350050640211925,000$
14Cole McWard (R)X100.0057407171777860654060626266515005064N0214900,000$
15Philip KempX100.0066566669666565614058556861525005063N0233800,000$
16John Ludvig (R)X100.00674159666761616140595667615050050620221853,333$
17Jacob Bernard-Docker (R)X100.00624866706461605840525266605150050600222925,000$
Rayé
1Evan BarrattX100.00535552585458545348535251535150050530231870,000$
2Vladislav Firstov (R)X100.00534752585453525140505052525050050520213925,000$
3Jay O'Brien (R)X100.00454582666744484653364446515454050500222895,000$
4Patrick Moynihan (R)X100.00444297646853723952353541385454050480213560,000$
5Samuel Sjolund (R)X100.00423997646460873725362942335454050510213560,000$
MOYENNE D’ÉQUIPE100.0057467167636263584655535658525105058
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Keith Petruzzelli100.0069626365666668666666565150050600231700,000$
2Frederik Nissen Dichow100.0060686283586058575657575450050570213560,000$
Rayé
1Hunter Jones100.0058545467595655525757505050050530221825,833$
2Rasmus Korhonen100.0042394885434244464242424440050450193650,000$
3Lukas Parik (R)100.0042394878434244464242424440050440213700,000$
MOYENNE D’ÉQUIPE100.005452557654535453535349494605052
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cole McWardChill (Nas)D8017284535201069290266718.89%56182122.778816471860000156310%100010.4900000323
2Scott ReedyChill (Nas)C801427412281093147118388211.86%11148418.55311141718202211795152.63%167000000.5501002234
3Raphael LavoieChill (Nas)C/RW80182240-33951511331805212710.00%12134016.761346260001672042.47%14600000.6035010633
4Bobby BrinkChill (Nas)RW80152338-31406775107258214.02%7152319.0457122018110161812243.93%10700000.50213000132
5Tobias BjornfotChill (Nas)D80730373360124948728618.05%67180122.5131114461781011159110%000000.4100000153
6Luke ToporowskiChill (Nas)LW80172037-1032011292132389112.88%12150018.754610271680000374142.47%7300010.4900000413
7Gage GoncalvesChill (Nas)LW80102535028011712616839905.95%13175821.9846102816501111171056.12%9800000.40313000103
8Jacob Bernard-DockerChill (Nas)D8082331-75601977245233417.78%64141617.71112525000060010%000000.4400000432
9John LudvigChill (Nas)D8082230-146401437557163914.04%55157619.71268321620110128100%000000.3800000014
10Xavier SimoneauChill (Nas)C8072330-102810901519821707.14%10150318.791910121661011881154.35%135600000.4000011221
11James HamblinChill (Nas)C/RW80121628-141405997132431089.09%8143617.96257231690000281050.55%9100000.39410000304
12Philip KempChill (Nas)D80121426-1256101008874235316.22%53160420.067310421630220144510%000000.3200101221
13Tyson KozakChill (Nas)C80101222-4605911296296910.42%7121115.1400006000081152.26%97200000.3600000115
14Yaroslav LikhachyokChill (Nas)LW8041317-4002424811398.33%4128016.000003300000121053.06%4900000.2700000020
15Lauri PajuniemiChill (Nas)RW806612-14036597119508.45%25857.32011313000001138.89%3600000.4100000021
16Josh LopinaChill (Nas)C80235-1181028543311206.06%35727.1500000000100055.92%49000000.1700020200
17Samuel SjolundChill (Nas)D19000-500212010%331916.810001400009000%00000000000000
Statistiques d’équipe totales ou en moyenne1299167307474-8047545148615101538442108310.86%3872273517.5041771183121835369121380291152.64%508900020.421242144323039
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Keith PetruzzelliChill (Nas)73353260.8872.1043062715113410000.737387317254
2Hunter JonesChill (Nas)72320.8802.5242800181500000.6676712001
3Frederik Nissen DichowChill (Nas)60000.9141.421270033500000051000
Statistiques d’équipe totales ou en moyenne86373580.8872.124862271721526000448080255


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Recrue Poids Taille Non-échange Disponible pour échange Ballotage forcé Waiver Possible Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Lien
Bobby BrinkChill (Nas)RW212001-07-08No165 Lbs5 ft8NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Cole McWard (contrat à 1 volet)Chill (Nas)D212001-06-09Yes192 Lbs6 ft1YesNoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Evan BarrattChill (Nas)C231999-02-18No188 Lbs6 ft0NoNoNoNo1Pro & Farm870,000$0$0$NoLien
Frederik Nissen DichowChill (Nas)G212001-03-01No192 Lbs6 ft5NoNoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Gage GoncalvesChill (Nas)LW212001-01-16Yes181 Lbs6 ft0NoNoNoNo3Pro & Farm820,000$0$0$No820,000$820,000$Lien
Hunter JonesChill (Nas)G222000-09-21No194 Lbs6 ft4NoNoNoNo1Pro & Farm825,833$0$0$NoLien
Jacob Bernard-DockerChill (Nas)D222000-06-30Yes190 Lbs6 ft0NoNoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
James HamblinChill (Nas)C/RW231999-04-27No174 Lbs5 ft9NoNoNoNo1Pro & Farm1,000,000$0$0$NoLien
Jay O'BrienChill (Nas)C221999-11-04Yes185 Lbs6 ft0NoNoNoNo2Pro & Farm895,000$0$0$No895,000$Lien
John LudvigChill (Nas)D222000-08-02Yes214 Lbs6 ft1NoNoNoNo1Pro & Farm853,333$0$0$NoLien
Josh LopinaChill (Nas)C212001-02-16Yes194 Lbs6 ft2NoNoNoNo3Pro & Farm878,333$0$0$No878,333$878,333$Lien
Keith PetruzzelliChill (Nas)G231999-02-09No181 Lbs6 ft6NoNoNoNo1Pro & Farm700,000$0$0$NoLien
Lauri PajuniemiChill (Nas)RW231999-09-12Yes196 Lbs6 ft0NoNoNoNo2Pro & Farm883,750$0$0$No883,750$Lien
Lukas ParikChill (Nas)G212001-03-15Yes185 Lbs6 ft4NoNoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Lien
Luke ToporowskiChill (Nas)LW212001-04-12Yes181 Lbs5 ft11NoNoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Patrick MoynihanChill (Nas)C212001-01-23Yes190 Lbs5 ft11NoNoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Philip Kemp (contrat à 1 volet)Chill (Nas)D231999-02-12No203 Lbs6 ft3YesNoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$Lien
Raphael LavoieChill (Nas)C/RW222000-09-25Yes196 Lbs6 ft4NoNoNoNo1Pro & Farm870,000$0$0$NoLien
Rasmus KorhonenChill (Nas)G192002-10-22No201 Lbs6 ft5NoNoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Lien
Samuel SjolundChill (Nas)D212001-05-19Yes174 Lbs6 ft1NoNoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Scott ReedyChill (Nas)C231999-04-04No205 Lbs6 ft2NoNoNoNo2Pro & Farm800,000$0$0$No800,000$Lien
Taro Hirose (contrat à 1 volet)Chill (Nas)LW261996-06-30No161 Lbs5 ft10NoNoYesYes2Pro & Farm850,000$0$0$No850,000$Lien
Tobias BjornfotChill (Nas)D212001-04-06No203 Lbs6 ft0NoNoNoNo1Pro & Farm925,000$0$0$NoLien
Tyson Kozak (contrat à 1 volet)Chill (Nas)C192002-12-29Yes172 Lbs5 ft11YesNoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Vladislav FirstovChill (Nas)LW212001-06-19Yes181 Lbs6 ft1NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Xavier SimoneauChill (Nas)C212001-05-19Yes174 Lbs5 ft6NoNoNoNo3Pro & Farm855,000$0$0$No855,000$855,000$
Yaroslav LikhachyokChill (Nas)LW212001-09-02Yes178 Lbs5 ft10NoNoNoNo3Pro & Farm560,000$0$0$No560,000$560,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2721.67187 Lbs6 ft12.37798,194$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Gage GoncalvesScott ReedyBobby Brink40122
2Luke ToporowskiXavier SimoneauJames Hamblin30122
3Yaroslav LikhachyokTyson KozakRaphael Lavoie20122
4Gage GoncalvesJosh LopinaLauri Pajuniemi10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cole McWardTobias Bjornfot40122
2Philip KempJohn Ludvig30122
3Jacob Bernard-Docker20122
4Cole McWardTobias Bjornfot10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Gage GoncalvesScott ReedyBobby Brink60122
2Luke ToporowskiXavier SimoneauJames Hamblin40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cole McWardTobias Bjornfot60122
2Philip KempJohn Ludvig40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Scott ReedyBobby Brink60122
2Xavier SimoneauGage Goncalves40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cole McWardTobias Bjornfot60122
2Philip KempJohn Ludvig40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Scott Reedy60122Cole McWardTobias Bjornfot60122
2Xavier Simoneau40122Philip KempJohn Ludvig40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Scott ReedyBobby Brink60122
2Xavier SimoneauGage Goncalves40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Cole McWardTobias Bjornfot60122
2Philip KempJohn Ludvig40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Gage GoncalvesScott ReedyBobby BrinkCole McWardTobias Bjornfot
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Gage GoncalvesScott ReedyBobby BrinkCole McWardTobias Bjornfot
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Bobby Brink, Gage Goncalves, Raphael LavoieBobby Brink, Gage GoncalvesBobby Brink
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Cole McWard, Tobias Bjornfot, Philip KempCole McWardCole McWard, Tobias Bjornfot
Tirs de pénalité
Bobby Brink, Gage Goncalves, James Hamblin, Raphael Lavoie, Scott Reedy
Gardien
#1 : Keith Petruzzelli, #2 : Frederik Nissen Dichow


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals32000001954210000014311100000052350.8339172601694259136450952254161681114656116.67%7185.71%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
2Baby Hawks40300010710-32010001045-12020000035-220.25071118006942591368509522541617419217415213.33%8362.50%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
3Bears22000000532110000003211100000021141.00059140069425913295095225416143812363133.33%60100.00%11110207653.47%1012197351.29%599116651.37%1999140619505801038524
4Bruins2010001045-1100000103211010000013-220.50046100069425913315095225416127516374250.00%6183.33%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
5Cabaret Lady Mary Ann20000011660100000103211000000134-130.7506101600694259133350952254161471216345120.00%20100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
6Caroline2020000026-41010000013-21010000013-200.000246006942591335509522541613081334900.00%40100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
7Chiefs3030000049-51010000012-12020000037-400.000471100694259135150952254161661822447114.29%10190.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
8Comets3010000249-52010000137-41000000112-120.333481200694259135850952254161601018419111.11%9188.89%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
9Cougars2110000047-3110000004221010000005-520.50048120069425913365095225416138825375120.00%9277.78%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
10Crunch210000101055100000104311100000062441.000101727006942591352509522541613966335120.00%3233.33%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
11Heat330000001037220000006241100000041361.0001019290069425913815095225416146533667342.86%70100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
12Jayhawks44000000226162200000091822000000135881.000223961016942591312650952254161711729926350.00%12191.67%11110207653.47%1012197351.29%599116651.37%1999140619505801038524
13Las Vegas32000010835110000003122100001052361.0008142201694259137050952254161461016547114.29%8187.50%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
14Manchots2000010124-21000010001-11000000123-120.50023500694259133350952254161391714384125.00%70100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
15Marlies201000103301010000001-11000001032120.5003470069425913285095225416147171228300.00%60100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
16Minnesota422000001091211000005412110000055040.500101727016942591390509522541618621268212325.00%12191.67%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
17Monarchs30300000510-51010000013-22020000047-300.000591400694259136850952254161551985512216.67%3166.67%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
18Monsters2020000002-21010000001-11010000001-100.000000006942591323509522541613110938500.00%10100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
19Monsters30200010712-520200000410-61000001032120.33371118006942591365509522541617316106714321.43%5340.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
20Oceanics4130000057-22020000026-42110000031220.2505101501694259134750952254161752626731218.33%13192.31%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
21Oil Kings31101000752100010004312110000032140.6677142100694259135550952254161522218627114.29%6183.33%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
22Phantoms21000001550110000003211000000123-130.75059140069425913405095225416132101248700.00%50100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
23Rocket22000000725110000003211100000040441.00071320016942591354509522541612958417228.57%3166.67%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
24Sags3110010056-1211000005501000010001-130.50059140069425913395095225416150822586116.67%10370.00%11110207653.47%1012197351.29%599116651.37%1999140619505801038524
25Seattle30300000213-111010000014-32020000019-800.00024600694259135050952254161682515406116.67%50100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
26Senators2020000015-41010000003-31010000012-100.000112006942591330509522541613312632600.00%30100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
27Sound Tigers21100000660110000005321010000013-220.500691500694259132850952254161481012314125.00%5260.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
28Spiders2020000013-21010000012-11010000001-100.000123006942591339509522541613471651700.00%6183.33%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
29Stars431000009722110000045-12200000052360.75091726006942591369509522541618019246117529.41%11281.82%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
30Thunder2110000067-1110000004221010000025-320.50061117006942591365509522541616523656000%30100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
31Wolf Pack2110000024-21010000004-41100000020220.50023501694259133450952254161451410346233.33%50100.00%01110207653.47%1012197351.29%599116651.37%1999140619505801038524
Total82293701276178187-9411518011429096-6411419001348891-3820.5001783154930769425913159150952254161159741849515422234118.39%2002985.50%31110207653.47%1012197351.29%599116651.37%1999140619505801038524
_Since Last GM Reset82293701276178187-9411518011429096-6411419001348891-3820.5001783154930769425913159150952254161159741849515422234118.39%2002985.50%31110207653.47%1012197351.29%599116651.37%1999140619505801038524
_Vs Conference351018002235975-161869001113140-91749001122835-7290.41459102161036942591359850952254161692197195680851214.12%861088.37%21110207653.47%1012197351.29%599116651.37%1999140619505801038524
_Vs Division162900120414018150001021174814001102023-390.2814170111016942591332950952254161325889529835720.00%35682.86%01110207653.47%1012197351.29%599116651.37%1999140619505801038524

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8282SOL117831549315911597418495154207
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8229371276178187
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
41151811429096
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
41141901348891
Derniers 10 matchs
WLOTWOTL SOWSOL
360001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2234118.39%2002985.50%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
5095225416169425913
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1110207653.47%1012197351.29%599116651.37%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1999140619505801038524


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2023-10-101Chill2Thunder5ALSommaire du match
3 - 2023-10-1215Seattle4Chill1BLSommaire du match
5 - 2023-10-1421Chill1Bruins3ALSommaire du match
8 - 2023-10-1744Oil Kings3Chill4BWXSommaire du match
10 - 2023-10-1953Chill2Wolf Pack0AWSommaire du match
12 - 2023-10-2174Sags3Chill2BLSommaire du match
15 - 2023-10-2495Comets4Chill3BLXXSommaire du match
19 - 2023-10-28119Marlies1Chill0BLSommaire du match
22 - 2023-10-31140Chill1Comets2ALXXSommaire du match
24 - 2023-11-02154Chill1Seattle4ALSommaire du match
26 - 2023-11-04159Chill3Oil Kings1AWSommaire du match
29 - 2023-11-07186Chill4Heat1AWSommaire du match
31 - 2023-11-09200Chill3Oceanics0AWSommaire du match
33 - 2023-11-11218Jayhawks0Chill5BWSommaire du match
36 - 2023-11-14234Admirals3Chill2BLXXSommaire du match
40 - 2023-11-18256Baby Hawks3Chill4BWXXSommaire du match
42 - 2023-11-20275Monsters5Chill4BLSommaire du match
44 - 2023-11-22288Heat1Chill3BWSommaire du match
46 - 2023-11-24296Chill2Chiefs3ALSommaire du match
48 - 2023-11-26319Oceanics3Chill1BLSommaire du match
50 - 2023-11-28331Manchots1Chill0BLXSommaire du match
52 - 2023-11-30347Minnesota0Chill5BWSommaire du match
54 - 2023-12-02358Wolf Pack4Chill0BLSommaire du match
55 - 2023-12-03372Chill6Crunch2AWSommaire du match
57 - 2023-12-05384Chill2Baby Hawks3ALSommaire du match
59 - 2023-12-07398Thunder2Chill4BWSommaire du match
61 - 2023-12-09413Chill3Marlies2AWXXSommaire du match
62 - 2023-12-10423Chill4Rocket0AWSommaire du match
64 - 2023-12-12435Phantoms2Chill3BWSommaire du match
67 - 2023-12-15455Chill1Caroline3ALSommaire du match
68 - 2023-12-16468Bears2Chill3BWSommaire du match
71 - 2023-12-19491Comets3Chill0BLSommaire du match
73 - 2023-12-21502Chill2Phantoms3ALXXSommaire du match
75 - 2023-12-23514Stars1Chill3BWSommaire du match
79 - 2023-12-27535Caroline3Chill1BLSommaire du match
81 - 2023-12-29547Chill0Cougars5ALSommaire du match
82 - 2023-12-30562Chill2Bears1AWSommaire du match
85 - 2024-01-02579Baby Hawks2Chill0BLSommaire du match
87 - 2024-01-04595Heat1Chill3BWSommaire du match
89 - 2024-01-06614Chill3Stars1AWSommaire du match
92 - 2024-01-09629Admirals0Chill2BWSommaire du match
95 - 2024-01-12651Chill2Stars1AWSommaire du match
96 - 2024-01-13666Sound Tigers3Chill5BWSommaire du match
98 - 2024-01-15680Chill1Las Vegas0AWXXSommaire du match
101 - 2024-01-18699Chill2Monarchs3ALSommaire du match
103 - 2024-01-20708Chill7Jayhawks1AWSommaire du match
105 - 2024-01-22726Cabaret Lady Mary Ann2Chill3BWXXSommaire du match
108 - 2024-01-25752Chill2Minnesota1AWSommaire du match
110 - 2024-01-27762Chill0Oil Kings1ALSommaire du match
112 - 2024-01-29775Chill1Senators2ALSommaire du match
114 - 2024-01-31779Monarchs3Chill1BLSommaire du match
124 - 2024-02-10815Jayhawks1Chill4BWSommaire du match
127 - 2024-02-13831Spiders2Chill1BLSommaire du match
129 - 2024-02-15847Stars4Chill1BLSommaire du match
131 - 2024-02-17854Chill1Chiefs4ALSommaire du match
134 - 2024-02-20882Chill4Las Vegas2AWSommaire du match
136 - 2024-02-22899Chill2Monarchs4ALSommaire du match
138 - 2024-02-24913Chill0Sags1ALXSommaire du match
139 - 2024-02-25922Chill5Admirals2AWSommaire du match
141 - 2024-02-27933Senators3Chill0BLSommaire du match
143 - 2024-02-29948Minnesota4Chill0BLSommaire du match
145 - 2024-03-02959Monsters5Chill0BLSommaire du match
148 - 2024-03-05985Rocket2Chill3BWSommaire du match
150 - 2024-03-071000Crunch3Chill4BWXXSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
152 - 2024-03-091010Chill0Monsters1ALSommaire du match
153 - 2024-03-101023Chill3Minnesota4ALSommaire du match
156 - 2024-03-131042Chill0Oceanics1ALSommaire du match
159 - 2024-03-161070Chill0Seattle5ALSommaire du match
162 - 2024-03-191088Sags2Chill3BWSommaire du match
164 - 2024-03-211101Chill3Cabaret Lady Mary Ann4ALXXSommaire du match
166 - 2024-03-231116Cougars2Chill4BWSommaire du match
169 - 2024-03-261141Las Vegas1Chill3BWSommaire du match
171 - 2024-03-281161Chill6Jayhawks4AWSommaire du match
173 - 2024-03-301169Chill3Monsters2AWXXSommaire du match
176 - 2024-04-021194Bruins2Chill3BWXXSommaire du match
178 - 2024-04-041208Chiefs2Chill1BLSommaire du match
180 - 2024-04-061225Chill1Sound Tigers3ALSommaire du match
181 - 2024-04-071233Chill0Spiders1ALSommaire du match
183 - 2024-04-091247Oceanics3Chill1BLSommaire du match
186 - 2024-04-121266Chill1Baby Hawks2ALSommaire du match
187 - 2024-04-131278Monsters1Chill0BLSommaire du match
189 - 2024-04-151289Chill2Manchots3ALXXSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance78,28938,819
Assistance PCT95.47%94.68%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2856 - 95.21% 97,241$3,986,880$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,810,176$ 1,810,124$ 1,810,124$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,428$ 1,810,176$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 9,428$ 0$




Chill Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chill Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chill Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chill Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chill Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA