Sharks

GM : Marc-Andre Bois Morale : 63 Team Overall : 48
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Cody HodgsonXXX100.00544390716363625583525862535042080580
2Dave DziurzynskiX100.00643580667953365245545058483532080540
3Nick PaulXX100.00523588698254375053485260483532081540
4Tyler RandellX100.00645658706847384435355257483532078510
5Alex Tuch (R)XX100.00505050507450505050505050503230081500
6Patrice CormierXX100.00603595687546353550353557484642081490
7Justin Bailey (R)X100.00483588667353353535353568483532081490
8Casey BaileyX100.00463585636846333735334058473532081470
9Michael KostkaX100.00553588646958363635393270484539080550
10Brandon GormleyX100.00603586626460454135384367484136081550
11Andrew MacWilliamX100.00553572597048343935443376473532079540
12Dylan DeMeloX100.00593587656350434035364368483532080540
13Scott Harrington (R)X100.00593587606656363535373273483532081540
14Mat ClarkX100.00553574597646333735413369473734063530
15David MusilX100.00493582596953333535363377473532081530
16Joel HanleyX100.00483595716253353635393269483532081530
17David WarsofskyX100.00503592704961374035374363484036081530
18Trevor Carrick (R)X100.00543595676054353135303274483532080530
19Conor AllenX100.00583576666950333335333359473734070510
20Ian McCoshen (R)X100.00454545456845454545454545453230027460
21Matt Finn (R)X100.00454545456445454545454545453230070460
Scratches
1Anton Rodin (R)XX100.00454545455545454545454545453230020450
2Nicholas Baptiste (R)XX100.00434343436143434343434343433230020440
3Justin Kirkland (R)XX100.00434343435443434343434343433230020430
4Darren ArchibaldX100.00328436497333443335333350473532020410
5Kevin Roy (R)X100.00404040404140404040404040403230020400
6Clark Bishop (R)X100.00373737375637373737373737373230020390
7Vincent Dunn (R)X100.00373737375137373737373737373230020390
8Mark CundariX100.00328535536233533335333355473734020450
9Andrew Welinski (R)X100.00434343436043434343434343433230020440
10Kyle Wood (R)X100.00434343436443434343434343433230020440
11Ludwig Bystrom (R)X100.00454545455045454545454545453230020440
12Alexis Vanier (R)X100.00404040407240404040404040403230020420
13Ryan Graves (R)X100.00404040407440404040404040403230020420
14Aaron Haydon (R)X100.00373737376437373737373737373230020400
15Patrick WeyX100.00398535396633493335333335473532020400
TEAM AVERAGE100.0048436354654740404140405446353205348
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Reto Berra100.0046457280484847494889604136019530
2Garret Sparks100.0045459278464747474665913532026510
3Matt Hackett100.0044457262454445464362604238063490
Scratches
1Brandon Whitney (R)100.0037373773373737373737373230020400
2Patrik Bartosak100.0037373771373737373737373230020400
TEAM AVERAGE100.004242627343434343425857363303047
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ron Rolston46506448716157USA502500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cody HodgsonSharks (San)C/LW/RW795848106134420632503790015.30%15182923.16132134953312131226010361.63%94600041.16780041744
2Nick PaulSharks (San)C/LW79254065-8140351962330010.73%10156719.84818265728310141664354.55%162800010.8313000161
3Dave DziurzynskiSharks (San)LW7924386284951191212040011.76%11161620.46911205328411241884238.67%18100000.7736010344
4Brandon GormleySharks (San)D791942612780114991550012.26%112168121.291312251013380112223200.00%000100.7300000055
5Dylan DeMeloSharks (San)D75143044-5340100701090012.84%65136018.14111425652680003183000.00%000000.6500000342
6Michael KostkaSharks (San)D79123244-251573801140010.53%87144218.2681725822930113202210.00%000000.6100000221
7Tyler RandellSharks (San)RW79181533-1011315174871660010.84%3116614.770111055000121437.08%8900000.5700021222
8Justin BaileySharks (San)RW79131932-144022941080012.04%17120015.20101723000002039.63%42900000.5300000104
9Alex TuchSharks (San)C/RW79161430-7812516339940017.02%5142718.076814292770000533248.23%14100000.4212014121
10Andrew MacWilliamSharks (San)D7972330-56759678310022.58%4790311.440111500005000.00%000000.6600010113
11Scott HarringtonSharks (San)D79101727-22806066810012.35%65109713.89661247204000018550100.00%100000.4900000012
12Patrice CormierSharks (San)C/LW7962026-202204310374008.11%7128416.261781111900001030057.41%74900000.4001000003
13Joel HanleySharks (San)D79218204100254235005.71%246418.13112122600019010.00%200000.6200000000
14Trevor CarrickSharks (San)D7921618-2215423725008.00%435857.410000000000100.00%000000.6100010010
15Casey BaileySharks (San)RW796915-13401723490012.24%56217.87156570000000044.12%6800000.4800000010
16David WarsofskySharks (San)D793811-21603346220013.64%325867.420000000000000.00%000000.3800000002
17David MusilSharks (San)D79268-111002622140014.29%203684.66213112400005100.00%000000.4300000000
18Mat ClarkSharks (San)D50134-1202420050.00%6801.61022111000059000.00%000101.0000000000
Team Total or Average1389238398636-75648801207145718950012.56%5741946014.01801252055872618448301648351653.68%423400250.651220069313334
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Garret SparksSharks (San)77462340.8753.1842506422518000320.63027770623
2Matt HackettSharks (San)80200.9182.13225008980000.0000050000
Team Total or Average85462540.8773.1244766423318980320.630277750623


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Force Waivers Contract StatusType Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Aaron HaydonSharks (San)D191996-01-06Yes197 Lbs6 ft2NoNo4ELCPro & Farm525,000$525,000$525,000$525,000$Link
Alex TuchSharks (San)C/RW191996-05-10Yes213 Lbs6 ft3NoNo4ELCPro & Farm895,000$895,000$895,000$895,000$Link
Alexis VanierSharks (San)D191995-12-21Yes215 Lbs6 ft4NoNo4ELCPro & Farm650,000$650,000$650,000$650,000$Link
Andrew MacWilliamSharks (San)D251990-03-25No214 Lbs6 ft2NoNo3RFAPro & Farm2,000,000$1,000,000$750,000$Link
Andrew WelinskiSharks (San)D221993-04-27Yes188 Lbs6 ft1NoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Anton RodinSharks (San)LW/RW241990-11-21Yes181 Lbs5 ft11NoNo4RFAPro & Farm825,000$825,000$825,000$825,000$Link
Brandon GormleySharks (San)D231992-02-18No196 Lbs6 ft2NoNo2RFAPro & Farm810,000$810,000$Link
Brandon WhitneySharks (San)G211994-05-11Yes193 Lbs6 ft5NoNo4ELCPro & Farm525,000$525,000$525,000$525,000$Link
Casey BaileySharks (San)RW231991-10-27No195 Lbs6 ft3NoNo3RFAPro & Farm900,000$900,000$900,000$Link
Clark BishopSharks (San)C191996-05-29Yes182 Lbs5 ft11NoNo4ELCPro & Farm525,000$525,000$525,000$525,000$Link
Cody HodgsonSharks (San)C/LW/RW251990-02-18No191 Lbs6 ft0NoNo1RFAPro & Farm1,500,000$Link
Conor AllenSharks (San)D251990-01-31No210 Lbs6 ft1NoNo2RFAPro & Farm1,000,000$875,000$Link
Darren ArchibaldSharks (San)LW251990-02-09No210 Lbs6 ft3NoNo2RFAPro & Farm660,000$660,000$Link
Dave DziurzynskiSharks (San)LW251989-10-06No224 Lbs6 ft3NoNo1RFAPro & Farm666,666$Link
David MusilSharks (San)D221993-04-09No207 Lbs6 ft4NoNo3RFAPro & Farm925,000$925,000$925,000$Link
David WarsofskySharks (San)D251990-05-30No170 Lbs5 ft9NoNo2RFAPro & Farm688,000$688,000$Link
Dylan DeMeloSharks (San)D221993-05-01No195 Lbs6 ft1NoNo4RFAPro & Farm625,000$625,000$625,000$625,000$Link
Garret SparksSharks (San)G221993-06-28No207 Lbs6 ft2NoNo4RFAPro & Farm670,000$670,000$670,000$670,000$Link
Ian McCoshenSharks (San)D201995-08-05Yes205 Lbs6 ft2NoNo4ELCPro & Farm825,000$825,000$825,000$825,000$Link
Joel HanleySharks (San)D241991-06-08No193 Lbs6 ft0YesNo5RFAPro & Farm2,500,000$2,000,000$1,750,000$1,250,000$1,000,000$Link
Justin BaileySharks (San)RW201995-07-01Yes210 Lbs6 ft3NoNo4ELCPro & Farm642,000$642,000$642,000$642,000$Link
Justin KirklandSharks (San)LW/RW191996-08-02Yes175 Lbs6 ft2NoNo4ELCPro & Farm700,000$700,000$700,000$700,000$Link
Kevin RoySharks (San)LW221993-05-20Yes156 Lbs5 ft8NoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Kyle WoodSharks (San)D191996-05-04Yes195 Lbs6 ft3NoNo4ELCPro & Farm700,000$700,000$700,000$700,000$Link
Ludwig BystromSharks (San)D211994-07-20Yes169 Lbs6 ft0NoNo4ELCPro & Farm700,000$700,000$700,000$700,000$Link
Mark CundariSharks (San)D251990-04-23No195 Lbs5 ft9YesNo1RFAPro & Farm750,000$Link
Mat ClarkSharks (San)D241990-10-17No225 Lbs6 ft3NoNo2RFAPro & Farm650,000$650,000$Link
Matt FinnSharks (San)D211994-02-24Yes199 Lbs6 ft0NoNo4ELCPro & Farm825,000$825,000$825,000$825,000$Link
Matt HackettSharks (San)G251990-03-07No171 Lbs6 ft2NoNo2RFAPro & Farm775,000$775,000$Link
Michael KostkaSharks (San)D291985-11-28No210 Lbs6 ft1YesNo1RFAPro & Farm950,000$Link
Nicholas BaptisteSharks (San)C/RW201995-08-04Yes189 Lbs6 ft0NoNo4ELCPro & Farm640,000$640,000$640,000$640,000$Link
Nick PaulSharks (San)C/LW201995-03-20No230 Lbs6 ft4NoNo4ELCPro & Farm667,000$667,000$667,000$667,000$Link
Patrice CormierSharks (San)C/LW251990-06-14No215 Lbs6 ft2NoNo3RFAPro & Farm725,000$725,000$725,000$Link
Patrick WeySharks (San)D241991-03-21No200 Lbs6 ft2NoNo2RFAPro & Farm640,000$640,000$Link
Patrik BartosakSharks (San)G221993-03-29No194 Lbs6 ft1NoNo3RFAPro & Farm525,000$525,000$525,000$Link
Reto BerraSharks (San)G281987-01-03No210 Lbs6 ft4NoNo2RFAPro & Farm850,000$850,000$Link
Ryan GravesSharks (San)D201995-05-21Yes220 Lbs6 ft4NoNo4ELCPro & Farm660,000$660,000$660,000$660,000$Link
Scott HarringtonSharks (San)D221993-03-10Yes201 Lbs6 ft2NoNo3RFAPro & Farm550,000$550,000$550,000$Link
Trevor CarrickSharks (San)D211994-07-04Yes186 Lbs6 ft2NoNo4ELCPro & Farm700,000$700,000$700,000$700,000$Link
Tyler RandellSharks (San)RW241991-06-15No198 Lbs6 ft1YesNo4RFAPro & Farm3,000,000$2,250,000$1,750,000$1,250,000$Link
Vincent DunnSharks (San)C201995-09-14Yes172 Lbs5 ft11NoNo4ELCPro & Farm603,000$603,000$603,000$603,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
4122.44198 Lbs6 ft13.20861,382$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Cody Hodgson40122
2Dave DziurzynskiNick PaulAlex Tuch30122
3Justin BaileyPatrice CormierTyler Randell20122
4Cody HodgsonJustin Bailey10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brandon GormleyScott Harrington40122
2Michael Kostka30122
3Andrew MacWilliamJoel Hanley20122
4David WarsofskyTrevor Carrick10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Cody Hodgson60122
2Dave DziurzynskiNick PaulAlex Tuch40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Brandon GormleyScott Harrington60122
2Michael Kostka40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Cody Hodgson60122
2Dave DziurzynskiNick Paul40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Brandon GormleyScott Harrington60122
2Michael Kostka40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Brandon GormleyScott Harrington60122
2Cody Hodgson40122Michael Kostka40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cody Hodgson60122
2Dave DziurzynskiNick Paul40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brandon GormleyScott Harrington60122
2Michael Kostka40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Cody HodgsonBrandon GormleyScott Harrington
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Cody HodgsonBrandon GormleyScott Harrington
Extra Forwards
Normal PowerPlayPenalty Kill
Casey Bailey, Tyler Randell, Patrice CormierCasey Bailey, Tyler RandellPatrice Cormier
Extra Defensemen
Normal PowerPlayPenalty Kill
David Musil, Mat Clark, David MusilMat Clark,
Penalty Shots
, Cody Hodgson, Dave Dziurzynski, Nick Paul,
Goalie
#1 : Garret Sparks, #2 : Matt Hackett


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Admirals514000001324-1131200000913-420200000411-720.200132134101019488201356858467665315747557840512.50%25676.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Falcons20100010912-3100000105411010000048-420.50091423001019488206768584676653652426409222.22%8362.50%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Bruins2110000068-21010000026-41100000042220.5006915001019488204768584676653471716307114.29%8187.50%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Crunch21100000981110000006331010000035-220.50091726001019488206968584676653741917289222.22%6183.33%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Heat53200000201733120000089-122000000128460.6002038580010194882013168584676653145433811622627.27%17570.59%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Phantoms21001000743110000005321000100021141.000712190010194882058685846766534315232613323.08%8187.50%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Baby Hawks321000001091211000005501100000054140.6671020300010194882070685846766537129545313323.08%16568.75%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Monsters20100010880100000103211010000056-120.50081321001019488206568584676653551220309222.22%9188.89%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Jayhawks3300000013103110000004312200000097261.0001317300010194882059685846766537528265012433.33%12191.67%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Cougars2110000069-3110000004311010000026-420.500611170010194882060685846766534818263913430.77%12283.33%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Oil Kings53100001191273210000010462100000198170.70019345302101948820158685846766539545308134926.47%14192.86%11323250152.90%1280237553.89%742141552.44%2018135918406511117567
Sound Tigers2020000037-41010000023-11010000014-300.0003470010194882048685846766536314383510110.00%120100.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Monarchs521001011920-120000101911-232100000109160.600193453001019488201376858467665313737369123313.04%16568.75%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Minnesota33000000154111100000041322000000113861.00015274200101948820118685846766535612225122627.27%60100.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Spiders21100000862110000004131010000045-120.500815230010194882053685846766537211243410440.00%12191.67%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Senators22000000844110000004221100000042241.000814220010194882053685846766535510163512433.33%7271.43%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Manchots20000020752100000103211000001043141.0007815001019488205768584676653541423349111.11%9188.89%11323250152.90%1280237553.89%742141552.44%2018135918406511117567
Wolf Pack2110000012102110000008531010000045-120.5001223350010194882010268584676653821727617228.57%11463.64%11323250152.90%1280237553.89%742141552.44%2018135918406511117567
Chiefs3110100012111211000007701000100054140.6671222340010194882070685846766537516224710330.00%11281.82%11323250152.90%1280237553.89%742141552.44%2018135918406511117567
Thunder21000010853100000104311100000042241.000812200010194882051685846766535314184011327.27%8187.50%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Marlies22000000826110000004131100000041341.00081321001019488204668584676653471725437228.57%100100.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Comets531000012118321000001972321000001211170.700213859001019488201486858467665314439548623521.74%21385.71%11323250152.90%1280237553.89%742141552.44%2018135918406511117567
Cabaret Lady Mary Ann2020000048-41010000035-21010000013-200.0004812001019488206668584676653501931521516.67%8450.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
IceCaps32000100963110000004222100010054150.833916250110194882082685846766535920326812325.00%16193.75%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Chill504010001525-1020101000710-330300000815-720.200152540101019488201026858467665316248598922522.73%21480.95%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Rocket2010100068-21010000025-31000100043120.50061218001019488205668584676653542020538112.50%10370.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Bears22000000532110000004311100000010141.00058130110194882043685846766533561037500.00%4175.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Caroline21001000633110000003121000100032141.00061117001019488206368584676653462215391915.26%50100.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Las Vegas30201000810-22010100067-11010000023-120.3338152300101948820110685846766537914224817317.65%8450.00%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Vs Division1656012015552381201101292818440010026242150.46955961510010194882044868584676653428134169320821821.95%691479.71%01323250152.90%1280237553.89%742141552.44%2018135918406511117567
Vs Conference38141502241129139-101875011317068220710011105971-12430.5661292153442210194882010356858467665310842944036981903719.47%1653181.21%21323250152.90%1280237553.89%742141552.44%2018135918406511117567
Since Last GM Reset823729062532942761841191302142148131174118160411114614511010.61629451180524101948820232468584676653219864782515144238921.04%3306380.91%51323250152.90%1280237553.89%742141552.44%2018135918406511117567
Total823729062532942761841191302142148131174118160411114614511010.61629451180524101948820232468584676653219864782515144238921.04%3306380.91%51323250152.90%1280237553.89%742141552.44%2018135918406511117567

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82101W129451180523242198647825151424
All Games
GPWLOTWOTL SOWSOLGFGA
8237296253294276
Home Games
GPWLOTWOTL SOWSOLGFGA
4119132142148131
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4118164111146145
Last 10 Games
WLOTWOTL SOWSOL
720001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
4238921.04%3306380.91%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
68584676653101948820
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1323250152.90%1280237553.89%742141552.44%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2018135918406511117567


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2016-10-124Monarchs7Sharks6LXBoxScore
4 - 2016-10-1524Sharks4Falcons8LBoxScore
6 - 2016-10-1733Sharks4Wolf Pack5LBoxScore
7 - 2016-10-1839Sharks1Sound Tigers4LBoxScore
9 - 2016-10-2053Sharks4Manchots3WXXBoxScore
11 - 2016-10-2276Sharks2Cougars6LBoxScore
14 - 2016-10-2593Admirals1Sharks3WBoxScore
16 - 2016-10-27106Falcons4Sharks5WXXBoxScore
18 - 2016-10-29120Las Vegas3Sharks1LBoxScore
21 - 2016-11-01137Sharks3Chill4LBoxScore
23 - 2016-11-03155Heat4Sharks2LBoxScore
25 - 2016-11-05173Manchots2Sharks3WXXBoxScore
28 - 2016-11-08187Sharks1Bears0WBoxScore
30 - 2016-11-10199Sharks1Cabaret Lady Mary Ann3LBoxScore
32 - 2016-11-12217Sharks4Thunder2WBoxScore
35 - 2016-11-15235Sharks3Caroline2WXBoxScore
37 - 2016-11-17247Sharks5Chiefs4WXBoxScore
39 - 2016-11-19263Sharks1Chill5LBoxScore
41 - 2016-11-21282Spiders1Sharks4WBoxScore
43 - 2016-11-23299Baby Hawks3Sharks0LBoxScore
45 - 2016-11-25312Sound Tigers3Sharks2LBoxScore
46 - 2016-11-26321Admirals8Sharks4LBoxScore
49 - 2016-11-29341Chill8Sharks4LBoxScore
50 - 2016-11-30342Sharks6Monarchs3WBoxScore
52 - 2016-12-02358Rocket5Sharks2LBoxScore
57 - 2016-12-07394Senators2Sharks4WBoxScore
59 - 2016-12-09410Sharks1Admirals5LBoxScore
60 - 2016-12-10416Caroline1Sharks3WBoxScore
63 - 2016-12-13431Sharks4Marlies1WBoxScore
64 - 2016-12-14441Sharks4Senators2WBoxScore
66 - 2016-12-16454Sharks4Rocket3WXBoxScore
68 - 2016-12-18471Sharks5Baby Hawks4WBoxScore
70 - 2016-12-20492Heat4Sharks3LBoxScore
73 - 2016-12-23508Oil Kings0Sharks4WBoxScore
77 - 2016-12-27526Sharks3Admirals6LBoxScore
80 - 2016-12-30545Phantoms3Sharks5WBoxScore
81 - 2016-12-31551Sharks0Monarchs4LBoxScore
84 - 2017-01-03571Monarchs4Sharks3LXXBoxScore
86 - 2017-01-05584Minnesota1Sharks4WBoxScore
88 - 2017-01-07599Cougars3Sharks4WBoxScore
91 - 2017-01-10617Sharks5Oil Kings3WBoxScore
92 - 2017-01-11623Sharks6Heat4WBoxScore
95 - 2017-01-14651Chiefs4Sharks3LBoxScore
97 - 2017-01-16660IceCaps2Sharks4WBoxScore
99 - 2017-01-18676Sharks4Monarchs2WBoxScore
100 - 2017-01-19684Thunder3Sharks4WXXBoxScore
102 - 2017-01-21700Monsters2Sharks3WXXBoxScore
104 - 2017-01-23709Sharks5Monsters6LBoxScore
105 - 2017-01-24721Sharks2IceCaps0WBoxScore
107 - 2017-01-26737Oil Kings0Sharks3WBoxScore
112 - 2017-01-31745Baby Hawks2Sharks5WBoxScore
114 - 2017-02-02765Sharks5Comets3WBoxScore
116 - 2017-02-04783Chill2Sharks3WXBoxScore
119 - 2017-02-07790Sharks3Crunch5LBoxScore
121 - 2017-02-09806Sharks4Bruins2WBoxScore
123 - 2017-02-11817Sharks2Phantoms1WXBoxScore
124 - 2017-02-12828Sharks4Spiders5LBoxScore
127 - 2017-02-15846Cabaret Lady Mary Ann5Sharks3LBoxScore
130 - 2017-02-18866Sharks4Chill6LBoxScore
131 - 2017-02-19874Bruins6Sharks2LBoxScore
137 - 2017-02-25904Sharks3Comets5LBoxScore
140 - 2017-02-28924Marlies1Sharks4WBoxScore
142 - 2017-03-02945Comets4Sharks3LXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2017-03-05965Sharks7Minnesota2WBoxScore
146 - 2017-03-06972Sharks3IceCaps4LXBoxScore
149 - 2017-03-09990Bears3Sharks4WBoxScore
151 - 2017-03-111003Las Vegas4Sharks5WXBoxScore
152 - 2017-03-121015Jayhawks3Sharks4WBoxScore
154 - 2017-03-141028Crunch3Sharks6WBoxScore
156 - 2017-03-161038Chiefs3Sharks4WBoxScore
158 - 2017-03-181062Admirals4Sharks2LBoxScore
160 - 2017-03-201073Sharks4Jayhawks3WBoxScore
161 - 2017-03-211082Sharks4Minnesota1WBoxScore
164 - 2017-03-241103Sharks5Jayhawks4WBoxScore
165 - 2017-03-251113Sharks2Las Vegas3LBoxScore
168 - 2017-03-281136Wolf Pack5Sharks8WBoxScore
170 - 2017-03-301145Sharks4Oil Kings5LXXBoxScore
171 - 2017-03-311154Sharks6Heat4WBoxScore
173 - 2017-04-021172Sharks4Comets3WBoxScore
175 - 2017-04-041186Comets3Sharks6WBoxScore
177 - 2017-04-061196Oil Kings4Sharks3LBoxScore
179 - 2017-04-081219Heat1Sharks3WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity17501250
Ticket Price5020
Attendance5462737848
Attendance PCT76.14%73.85%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2255 - 75.18% 85,081$3,488,310$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
3,531,667$ 3,386,042$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
4,489,474$ 19,512$ 3,986,763$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 22,274$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2016823729062532942761841191302142148131174118160411114614517429451180524101948820232468584676653219864782515144238921.04%3306380.91%51323250152.90%1280237553.89%742141552.44%2018135918406511117567
Total Regular Season823729062532942761841191302142148131174118160411114614517429451180524101948820232468584676653219864782515144238921.04%3306380.91%51323250152.90%1280237553.89%742141552.44%2018135918406511117567