Montreal

DG: Simon Deschamps Morale : 82 Moyenne d'Équipe : 67
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jamie Benn (A)X100.00665677837381948383828472475445088750
2Alexander Ovechkin (C)XX100.00783579808681948048689261556857079740
3Jason Spezza (A)XX100.00533587817775937788787561557262079720
4Jussi JokinenXX100.00543583816776947286786673556857089710
5Brayden SchennXXX100.00715685816775957380737363505246090700
6Tyler JohnsonXX100.00563587825675887582777365534743089690
7Tyler BozakX100.00594385766777787387757164465445062680
8Ales HemskyX100.00513588835869936835706660536959075670
9Daniel WinnikXXX100.00554384687172936383636380486353074670
10Edward PurcellXX100.00533589766775937035716863535447055670
11Vernon FiddlerXX100.00545085727064955884526375536859089650
12Matt CalvertXX100.00625680736372806135566675504943086640
13T.J. BrodieX100.00575087775784886535735786484742088700
14Kevin KleinX100.00705687726676805835575882486759060690
15Kevin ShattenkirkX100.00645078796680846735726275445647087690
16Alec MartinezX100.00673584726975905735565781485754080680
17Jake GardinerX100.00654385736477945745615367484841080650
18Jonas BrodinX100.00614388666380864935504781564841073640
Rayé
1Dominic MooreXX100.00523585716467955589525873537161025630
2Marcus FolignoXX100.00776572678067885844556171454640070630
3Justin FontaineX100.00483587745162645835595671454738035590
4Deryk EngellandX100.00685677647065654535434775485447020610
MOYENNE D'ÉQUIPE100.0061458475677487655765647250574907267
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pekka Rinne100.0085999784818282778174886255088790
2Mike Condon (R)100.0063459273625859605665873532089590
Rayé
MOYENNE D'ÉQUIPE100.007472957972707169697088494408969
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ken Hitchcock93958893999995CAN642500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jamie BennMontrealLW775463117207230931383140017.20%4150719.58222648893580000117247.41%13500021.55333031196
2Tyler JohnsonMontrealC/RW823246782480341302250014.22%10151918.5311122373329000005249.45%146000001.0312000635
3T.J. BrodieMontrealD822057771353577991570012.74%124196423.951423371103851343342610.00%000000.7800010555
4Alexander OvechkinMontrealLW/RW79423375231120249732380017.65%6161620.46141226773720001646335.61%13200100.9309000484
5Kevin ShattenkirkMontrealD80136275131135160841110011.71%83198524.8262329743731122302500.00%000000.7600001540
6Jason SpezzaMontrealC/RW75224567660291221880011.70%3126616.8982937503430000113256.84%145500001.0647000136
7Brayden SchennMontrealC/LW/RW82253661-499351481002050012.20%10136116.61111425683281013755053.61%72000010.9000223432
8Edward PurcellMontrealLW/RW80253661-1710036952020012.38%9146618.33111223663340002801128.17%14200000.8303000252
9Tyler BozakMontrealC78173148-20421080163199008.54%5135617.39418225834600071071151.83%155500000.7113101302
10Jussi JokinenMontrealLW/RW82123345128074111161007.45%16143817.542111334236415144061159.67%18100000.6306000124
11Ales HemskyMontrealRW82142034-58026961110012.61%5109613.37279141270000101129.17%7200000.6224000023
12Alec MartinezMontrealD8342933-25601225086004.65%102172020.7331417523340003281100.00%000000.3800000010
13Kevin KleinMontrealD7752833-15140301056089005.62%84159220.6831114412370002247000.00%000000.4100213111
14Daniel WinnikMontrealC/LW/RW81121830-514033161142008.45%20137416.973473819401153740152.49%166900000.4400000041
15Jonas BrodinMontrealD82616225540856069008.70%100174521.29022201721344332110.00%000000.2513000121
16Vernon FiddlerMontrealC/LW82111021315550142690015.94%16104112.710000002243622154.84%126000000.4011001124
17Matt CalvertMontrealLW/RW82109191196304556650015.38%1890811.0800011211221841030.17%17900000.4200213100
18Jake GardinerMontrealD8051318106007539370013.51%55132516.57033101070110123000.00%000000.2700000020
19Dominic MooreMontrealC/LW583131638098062004.84%1670212.110000011262380155.23%78400000.4612000010
20Marcus FolignoMontrealLW/RW6834717020802954005.56%46088.940000301111642046.51%4300000.2300013001
21Justin FontaineMontrealRW46145-42002135002.86%33066.6600000000000025.64%3900100.3300000000
22Deryk EngellandMontrealD29033-1331543134000.00%2146616.1000008011090000.00%000000.1300012000
Stats d'équipe Total ou en Moyenne16473366099456010991851653192228230011.90%7142837217.231142213358754608101626593813481851.95%982600230.67144310720465747
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pekka RinneMontreal65451550.9032.5139408216516930200.667186516553
2Mike CondonMontreal179710.8693.43103300594490010.727111765002
Stats d'équipe Total ou en Moyenne82542260.8952.7049738222421420210.690298281555


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Alec MartinezMontrealD281987-07-26No210 Lbs6 ft1NoNo2Avec RestrictionPro & Farm1,650,000$1,650,000$Lien
Ales HemskyMontrealRW321983-08-13No185 Lbs6 ft0NoNo2Sans RestrictionPro & Farm3,000,000$2,500,000$Lien
Alexander OvechkinMontrealLW/RW301985-09-17No239 Lbs6 ft3NoNo1Sans RestrictionPro & Farm8,000,000$Lien
Brayden SchennMontrealC/LW/RW241991-08-22No195 Lbs6 ft1NoNo2Avec RestrictionPro & Farm1,750,000$2,000,000$Lien
Daniel WinnikMontrealC/LW/RW301985-03-06No203 Lbs6 ft2NoNo2Sans RestrictionPro & Farm2,700,000$2,800,000$Lien
Deryk EngellandMontrealD331982-04-03No214 Lbs6 ft2NoNo3Sans RestrictionPro & Farm700,000$700,000$700,000$Lien
Dominic MooreMontrealC/LW351980-08-03No192 Lbs6 ft0NoNo1Sans RestrictionPro & Farm750,000$Lien
Edward PurcellMontrealLW/RW301985-09-08No195 Lbs6 ft2NoNo4Sans RestrictionPro & Farm3,125,000$3,250,000$3,125,000$3,000,000$Lien
Jake GardinerMontrealD251990-07-04No197 Lbs6 ft2NoNo5Avec RestrictionPro & Farm3,500,000$3,500,000$3,500,000$3,500,000$3,500,000$Lien
Jamie BennMontrealLW261989-07-18No210 Lbs6 ft2NoNo2Avec RestrictionPro & Farm4,400,000$4,400,000$Lien
Jason SpezzaMontrealC/RW321983-06-13No220 Lbs6 ft3NoNo4Sans RestrictionPro & Farm6,000,000$5,500,000$4,000,000$3,000,000$Lien
Jonas BrodinMontrealD221993-07-12No195 Lbs6 ft1NoNo1Avec RestrictionPro & Farm925,000$Lien
Jussi JokinenMontrealLW/RW321983-04-01No198 Lbs5 ft11NoNo4Sans RestrictionPro & Farm3,500,000$3,500,000$3,500,000$3,500,000$Lien
Justin FontaineMontrealRW271987-11-06No174 Lbs5 ft10NoNo2Avec RestrictionPro & Farm600,000$600,000$Lien
Kevin KleinMontrealD301984-12-13No202 Lbs6 ft1NoNo1Sans RestrictionPro & Farm1,500,000$Lien
Kevin ShattenkirkMontrealD261989-01-29No202 Lbs6 ft0NoNo2Avec RestrictionPro & Farm3,500,000$3,500,000$Lien
Marcus FolignoMontrealLW/RW241991-08-10No226 Lbs6 ft3NoNo4Avec RestrictionPro & Farm1,200,000$1,450,000$1,500,000$1,750,000$Lien
Matt CalvertMontrealLW/RW251989-12-24No192 Lbs5 ft11NoNo3Avec RestrictionPro & Farm1,400,000$1,600,000$1,800,000$Lien
Mike CondonMontrealG251990-04-27Yes197 Lbs6 ft2NoNo4Avec RestrictionPro & Farm575,000$575,000$575,000$575,000$Lien
Pekka RinneMontrealG321982-11-03No217 Lbs6 ft5NoNo2Sans RestrictionPro & Farm4,600,000$4,600,000$Lien
T.J. BrodieMontrealD251990-06-07No182 Lbs6 ft1NoNo3Avec RestrictionPro & Farm2,600,000$2,600,000$2,600,000$Lien
Tyler BozakMontrealC291986-03-19No196 Lbs6 ft1NoNo2Avec RestrictionPro & Farm2,300,000$2,750,000$Lien
Tyler JohnsonMontrealC/RW251990-07-29No185 Lbs5 ft8NoNo1Avec RestrictionPro & Farm740,000$Lien
Vernon FiddlerMontrealC/LW351980-05-09No205 Lbs5 ft11NoNo3Sans RestrictionPro & Farm2,400,001$2,400,001$2,400,001$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2428.42201 Lbs6 ft12.502,558,958$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
61,415,001$49,875,001$23,700,001$15,325,000$3,500,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jamie BennTyler JohnsonAlexander Ovechkin35113
2Edward PurcellTyler BozakJason Spezza30113
3Brayden SchennDaniel WinnikJussi Jokinen25122
4Matt CalvertVernon FiddlerAles Hemsky10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Kevin ShattenkirkJake Gardiner33122
2T.J. BrodieAlec Martinez33122
3Kevin KleinJonas Brodin33122
4T.J. BrodieKevin Shattenkirk1122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jamie BennJason SpezzaAlexander Ovechkin60104
2Brayden SchennTyler BozakTyler Johnson40104
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1T.J. BrodieKevin Shattenkirk60113
2Jake GardinerAlec Martinez40113
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Daniel WinnikMatt Calvert60131
2Vernon FiddlerJussi Jokinen40131
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1T.J. BrodieKevin Klein60131
2Jonas BrodinAlec Martinez40131
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Daniel Winnik60131T.J. BrodieKevin Klein60131
2Jussi Jokinen40131Jonas BrodinAlec Martinez40131
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Jason SpezzaJamie Benn60113
2Brayden SchennAlexander Ovechkin40113
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1T.J. BrodieKevin Shattenkirk60122
2Kevin KleinAlec Martinez40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jamie BennJason SpezzaAlexander OvechkinT.J. BrodieKevin Shattenkirk
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jamie BennDaniel WinnikJussi JokinenT.J. BrodieKevin Klein
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Tyler Bozak, Daniel Winnik, Ales HemskyTyler Bozak, Daniel WinnikAles Hemsky
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jake Gardiner, Jonas Brodin, Kevin ShattenkirkKevin KleinKevin Shattenkirk, Jake Gardiner
Tirs de Pénalité
Jussi Jokinen, Alexander Ovechkin, Jason Spezza, Jamie Benn, Brayden Schenn
Gardien
#1 : Pekka Rinne, #2 : Mike Condon


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Anaheim22000000633110000003121100000032141.00061016001320389131604912263311327.27%10190.00%01496293450.99%1449268553.97%650128950.43%463047162613
Atlanta31002000963110000003212000200064261.000915240051121023926352832022652129.52%10190.00%01496293450.99%1449268553.97%650128950.43%775466223819
Boston412000011418-420100001611-52110000087130.375142741004550126413946311537487024729.17%24675.00%01496293450.99%1449268553.97%650128950.43%1027191295026
Buffalo43100000151322200000010732110000056-160.75015284300672010837353608222459015320.00%17382.35%01496293450.99%1449268553.97%650128950.43%1057381285226
Calgary220000001055110000006331100000042241.0001016260033405515231706314244010330.00%11190.91%11496293450.99%1449268553.97%650128950.43%473347132513
Philadelphie30300000512-72020000059-41010000003-300.000510150021207328212407622365418211.11%15473.33%01496293450.99%1449268553.97%650128950.43%684671233919
Chicago2020000048-41010000023-11010000025-300.000471100022048711300501827329222.22%11463.64%01496293450.99%1449268553.97%650128950.43%463247152511
Colorado200011006601000010023-11000100043130.750612180012216818162956015143311436.36%7271.43%01496293450.99%1449268553.97%650128950.43%503447142613
Kansas City20100010440100000103211010000012-120.500461000012247181315862193454800.00%12375.00%01496293450.99%1449268553.97%650128950.43%523746152512
Detroit5210002015114200000207523210000086280.8001522370035531594953511313955718433824.24%27388.89%01496293450.99%1449268553.97%650128950.43%11982126396431
Edmonton210010001037100010003211100000071641.000102030005131612421151436123412216.67%6183.33%01496293450.99%1449268553.97%650128950.43%513542152714
Islanders30200001913-41000000145-12020000058-310.167916250051309828412839431436213323.08%18383.33%01496293450.99%1449268553.97%650128950.43%755171223819
LA Kings22000000835110000006331100000020241.00081523012330521918150721327429111.11%110100.00%11496293450.99%1449268553.97%650128950.43%442851142412
Minnesota2010000158-31000000123-11010000035-210.2505101500212046142096511932315120.00%16287.50%01496293450.99%1449268553.97%650128950.43%462952162512
Hartford3210000014104110000005412110000096340.6671426400183307536152408629386518422.22%19384.21%11496293450.99%1449268553.97%650128950.43%674474233819
Ottawa530020001991033000000124820002000752101.000193453003682142504149212737739227622.22%28292.86%21496293450.99%1449268553.97%650128950.43%12788112376331
Pittsburgh320000101165220000007341000001043161.0001119300052327931202657026495816531.25%12191.67%01496293450.99%1449268553.97%650128950.43%745172233819
Rangers320010001367110000006152100100075261.00013233600633111741383717830536322418.18%16287.50%11496293450.99%1449268553.97%650128950.43%795563223820
San Jose211000007611010000013-21100000063320.500714210042105522171606216353411218.18%150100.00%01496293450.99%1449268553.97%650128950.43%463147142512
St-Louis21000001981110000004221000000156-130.75091726005311462015865323294013215.38%12191.67%01496293450.99%1449268553.97%650128950.43%452953172612
Tampa Bay413000001114-3211000007702020000047-320.25011223300236010234323601063949822229.09%21576.19%11496293450.99%1449268553.97%650128950.43%1006889314925
Toronto440000001248220000007252200000052381.00012233500345010629374007817607025312.00%24195.83%11496293450.99%1449268553.97%650128950.43%1087580305127
Vancouver2200000012210110000007161100000051441.0001223350065107226341203511123517741.18%60100.00%01496293450.99%1449268553.97%650128950.43%543939142513
Quebec430001002115621000100131032200000085370.875213758007113011940394009329868423730.43%27677.78%01496293450.99%1449268553.97%650128950.43%1017189284925
Winnipeg220000001129110000003121100000081741.0001118290043406516222705917184111436.36%9188.89%01496293450.99%1449268553.97%650128950.43%513544142312
Nashville2020000037-41010000024-21010000013-200.0003690003005418191706017343712216.67%11190.91%01496293450.99%1449268553.97%650128950.43%493346142412
Washington33000000161152200000011831100000053261.0001631470054709633372607927295423626.09%12283.33%01496293450.99%1449268553.97%650128950.43%795563223720
Caroline3120000068-2211000004401010000024-220.333612181042008923333306423285020210.00%14285.71%01496293450.99%1449268553.97%650128950.43%775263233921
Las Vegas210000101183110000005321000001065141.000111930003522771831256545254012541.67%10280.00%01496293450.99%1449268553.97%650128950.43%594139132614
Vs Division3017702121107842315920012162461615850200045387440.733107193300002841345862280276298187402364325721693621.30%1682684.52%41496293450.99%1449268553.97%650128950.43%765530672225380193
Vs Conference5428150513219015634271750012210782252711100501083749750.6941903455351168585610159153950753129137044473010433206420.00%2844484.51%61496293450.99%1449268553.97%650128950.43%13659411217410688354
Since Last GM Reset824222072542962296741248012331561164041181406021140113271140.6952965388341210495851723757837807826121436491079156947110221.66%4316385.38%81496293450.99%1449268553.97%650128950.43%2059141518716221048537
Total824222072542962296741248012331561164041181406021140113271140.6952965388341210495851723757837807826121436491079156947110221.66%4316385.38%81496293450.99%1449268553.97%650128950.43%2059141518716221048537

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82114W1296538834237521436491079156912
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8242227254296229
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412481233156116
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4118146021140113
Derniers 10 Matchs
WLOTWOTL SOWSOL
340120
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
47110221.66%4316385.38%8
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
78378078261104958517
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1496293450.99%1449268553.97%650128950.43%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2059141518716221048537


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2016-10-1310Montreal4Buffalo3WSommaire du Match
4 - 2016-10-1519Montreal5Ottawa4WXSommaire du Match
7 - 2016-10-1841Pittsburgh1Montreal4WSommaire du Match
9 - 2016-10-2054Nashville4Montreal2LSommaire du Match
11 - 2016-10-2274Montreal1Boston2LSommaire du Match
13 - 2016-10-2481Philadelphie6Montreal3LSommaire du Match
15 - 2016-10-2697Montreal4Islanders5LSommaire du Match
16 - 2016-10-27102Tampa Bay4Montreal5WSommaire du Match
18 - 2016-10-29122Toronto1Montreal2WSommaire du Match
22 - 2016-11-02143Vancouver1Montreal7WSommaire du Match
24 - 2016-11-04159Montreal4Atlanta3WXSommaire du Match
25 - 2016-11-05164Philadelphie3Montreal2LSommaire du Match
28 - 2016-11-08189Boston6Montreal2LSommaire du Match
30 - 2016-11-10196LA Kings3Montreal6WSommaire du Match
32 - 2016-11-12216Detroit1Montreal2WXXSommaire du Match
33 - 2016-11-13226Montreal2Chicago5LSommaire du Match
35 - 2016-11-15241Quebec3Montreal7WSommaire du Match
38 - 2016-11-18258Montreal2Caroline4LSommaire du Match
39 - 2016-11-19269Toronto1Montreal5WSommaire du Match
42 - 2016-11-22287Ottawa1Montreal4WSommaire du Match
44 - 2016-11-24300Caroline1Montreal3WSommaire du Match
46 - 2016-11-26315Montreal2Detroit3LSommaire du Match
49 - 2016-11-29340Montreal3Anaheim2WSommaire du Match
52 - 2016-12-02358Montreal6San Jose3WSommaire du Match
54 - 2016-12-04377Montreal2LA Kings0WSommaire du Match
56 - 2016-12-06384Montreal5St-Louis6LXXSommaire du Match
58 - 2016-12-08398Hartford4Montreal5WSommaire du Match
60 - 2016-12-10420Colorado3Montreal2LXSommaire du Match
62 - 2016-12-12430Boston5Montreal4LXXSommaire du Match
66 - 2016-12-16454San Jose3Montreal1LSommaire du Match
67 - 2016-12-17465Montreal5Washington3WSommaire du Match
70 - 2016-12-20485Anaheim1Montreal3WSommaire du Match
72 - 2016-12-22498Minnesota3Montreal2LXXSommaire du Match
73 - 2016-12-23513Montreal2Atlanta1WXSommaire du Match
78 - 2016-12-28529Montreal1Tampa Bay3LSommaire du Match
79 - 2016-12-29536Montreal3Quebec2WSommaire du Match
81 - 2016-12-31556Montreal4Pittsburgh3WXXSommaire du Match
84 - 2017-01-03570Montreal6Las Vegas5WXXSommaire du Match
85 - 2017-01-04577Montreal1Kansas City2LSommaire du Match
88 - 2017-01-07591Montreal3Toronto1WSommaire du Match
90 - 2017-01-09610Washington3Montreal4WSommaire du Match
92 - 2017-01-11621Montreal8Winnipeg1WSommaire du Match
93 - 2017-01-12628Montreal3Minnesota5LSommaire du Match
95 - 2017-01-14642Rangers1Montreal6WSommaire du Match
97 - 2017-01-16658Montreal3Detroit1WSommaire du Match
99 - 2017-01-18672Pittsburgh2Montreal3WSommaire du Match
101 - 2017-01-20688Montreal4Hartford6LSommaire du Match
102 - 2017-01-21693Buffalo3Montreal4WSommaire du Match
105 - 2017-01-24718Calgary3Montreal6WSommaire du Match
107 - 2017-01-26740Montreal1Islanders3LSommaire du Match
112 - 2017-01-31750Buffalo4Montreal6WSommaire du Match
114 - 2017-02-02759Montreal0Philadelphie3LSommaire du Match
116 - 2017-02-04771Washington5Montreal7WSommaire du Match
117 - 2017-02-05785Edmonton2Montreal3WXSommaire du Match
119 - 2017-02-07800Montreal4Colorado3WXSommaire du Match
121 - 2017-02-09805Montreal1Nashville3LSommaire du Match
123 - 2017-02-11822St-Louis2Montreal4WSommaire du Match
124 - 2017-02-12832Montreal7Boston5WSommaire du Match
130 - 2017-02-18858Winnipeg1Montreal3WSommaire du Match
133 - 2017-02-21883Montreal5Rangers4WXSommaire du Match
135 - 2017-02-23895Islanders5Montreal4LXXSommaire du Match
137 - 2017-02-25908Montreal2Toronto1WSommaire du Match
139 - 2017-02-27919Montreal5Hartford0WSommaire du Match
140 - 2017-02-28929Atlanta2Montreal3WSommaire du Match
142 - 2017-03-02941Las Vegas3Montreal5WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
144 - 2017-03-04956Montreal2Rangers1WSommaire du Match
147 - 2017-03-07980Montreal5Vancouver1WSommaire du Match
149 - 2017-03-09986Montreal4Calgary2WSommaire du Match
152 - 2017-03-121013Montreal7Edmonton1WSommaire du Match
154 - 2017-03-141032Chicago3Montreal2LSommaire du Match
158 - 2017-03-181056Montreal2Ottawa1WXSommaire du Match
159 - 2017-03-191064Ottawa1Montreal4WSommaire du Match
161 - 2017-03-211079Detroit4Montreal5WXXSommaire du Match
163 - 2017-03-231092Caroline3Montreal1LSommaire du Match
165 - 2017-03-251107Ottawa2Montreal4WSommaire du Match
168 - 2017-03-281132Kansas City2Montreal3WXXSommaire du Match
170 - 2017-03-301149Quebec7Montreal6LXSommaire du Match
172 - 2017-04-011160Montreal3Tampa Bay4LSommaire du Match
174 - 2017-04-031178Montreal5Quebec3WSommaire du Match
176 - 2017-04-051192Montreal1Buffalo3LSommaire du Match
178 - 2017-04-071206Tampa Bay3Montreal2LSommaire du Match
179 - 2017-04-081212Montreal3Detroit2WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna60005000200040001000
Prix des Billets150867241385
Assistance1932131526416386112859531558
Attendance PCT78.54%74.46%77.88%78.41%76.97%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 13899 - 77.22% 1,571,844$64,445,584$18000100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
61,415,001$ 58,015,001$ 0$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jourTaxe de Luxe Totale
57,438,298$ 339,309$ 56,935,564$ 0$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 342,072$ 0$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
0$ 59,982,688$ 120,510,704$ 120,510,704$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
Jamie BennAGE:26PO:0OV:75
Alexander OvechkinAGE:30PO:0OV:74
Jussi JokinenAGE:32PO:0OV:71
Brayden SchennAGE:24PO:0OV:70
Daniel WinnikAGE:30PO:0OV:67
Edward PurcellAGE:30PO:0OV:67
Vernon FiddlerAGE:35PO:0OV:65
Matt CalvertAGE:25PO:0OV:64
Dominic MooreAGE:35PO:0OV:63
Marcus FolignoAGE:24PO:0OV:63
Michael SantorelliAGE:29PO:0OV:61
*Brian HartAGE:21PO:0OV:46
*Ludvig RensfeldtAGE:23PO:0OV:45
*Mattias LindstromAGE:24PO:0OV:44
*Alexander DelnovAGE:21PO:0OV:42
*Andrew YoganAGE:23PO:0OV:42
*Rob FlickAGE:24PO:0OV:42
*Julien PelletierAGE:19PO:0OV:41
*Christopher ClappertonAGE:21PO:0OV:39
Jason SpezzaAGE:32PO:0OV:72
Brayden SchennAGE:24PO:0OV:70
Tyler JohnsonAGE:25PO:0OV:69
Tyler BozakAGE:29PO:0OV:68
Daniel WinnikAGE:30PO:0OV:67
Vernon FiddlerAGE:35PO:0OV:65
Dominic MooreAGE:35PO:0OV:63
Michael SantorelliAGE:29PO:0OV:61
*Mike WintherAGE:21PO:0OV:45
*Dominic TurgeonAGE:19PO:0OV:44
*Louis-Marc AubryAGE:23PO:0OV:44
*Andrew YoganAGE:23PO:0OV:42
*Joseph LabateAGE:22PO:0OV:42
*Rob FlickAGE:24PO:0OV:42
*Joachim NermarkAGE:22PO:0OV:41
Bill ArnoldAGE:23PO:0OV:39
Alexander OvechkinAGE:30PO:0OV:74
Jason SpezzaAGE:32PO:0OV:72
Jussi JokinenAGE:32PO:0OV:71
Brayden SchennAGE:24PO:0OV:70
Tyler JohnsonAGE:25PO:0OV:69
Ales HemskyAGE:32PO:0OV:67
Daniel WinnikAGE:30PO:0OV:67
Edward PurcellAGE:30PO:0OV:67
Matt CalvertAGE:25PO:0OV:64
Marcus FolignoAGE:24PO:0OV:63
David JonesAGE:31PO:0OV:61
Michael SantorelliAGE:29PO:0OV:61
Justin FontaineAGE:27PO:0OV:59
Mike SisloAGE:27PO:0OV:55
*Brian HartAGE:21PO:0OV:46
*Zach O'BrienAGE:23PO:0OV:45
*Max GaedeAGE:23PO:0OV:44
*Markus SobergAGE:20PO:0OV:39

Défense #1Défense #2Gardien
T.J. BrodieAGE:25PO:0OV:70
Kevin KleinAGE:30PO:0OV:69
Kevin ShattenkirkAGE:26PO:0OV:69
Alec MartinezAGE:28PO:0OV:68
Jake GardinerAGE:25PO:0OV:65
Jonas BrodinAGE:22PO:0OV:64
Deryk EngellandAGE:33PO:0OV:61
James WisniewskiAGE:31PO:0OV:60
Brian LashoffAGE:25PO:0OV:56
*Julian MelchioriAGE:23PO:0OV:52
*Taylor DohertyAGE:24PO:0OV:47
*Keegan KanzigAGE:20PO:0OV:46
*Dalton ThrowerAGE:21PO:0OV:45
*Guillaume GelinasAGE:22PO:0OV:45
*Alexander PetersAGE:19PO:0OV:44
*Alex TheriauAGE:23PO:0OV:42
*Andrew O'BrienAGE:22PO:0OV:42
*Michael DowningAGE:20PO:0OV:42
*Rhett HollandAGE:22PO:0OV:42
*Timothy BoyleAGE:22PO:0OV:41
*Eric RoyAGE:20PO:0OV:39
Pekka RinneAGE:32PO:0OV:79
*Mike CondonAGE:25PO:0OV:59
Joni OrtioAGE:24PO:0OV:51
Tyler BunzAGE:23PO:0OV:47
*Olivier RoyAGE:24PO:0OV:40
*Fredrik Pettersson-WentzelAGE:24PO:0OV:39

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Auguste ImposeMontreal2015157
Brandon DuhaimeMontreal2016167
Fredrik KarlstromMontreal2016170
Luke GreenMontreal2016112
Nolan StevensMontreal2016180

Choix au Repêchage

Année R1R2R3R4R5R6R7
2018Mon Was Tor Ana Mon Det [CON: Har]
2019Mon Mon Mon Mon Mon Mon Atl
2020Mon Mon Mon Mon Mon Mon Mon
2021Mon Mon Mon Mon Mon Mon Mon



[2016-09-11 15:34:27] - Mike Condon was added to Montreal.
[2016-09-16 21:12:20] - David Jones was added to Montreal.
[2016-09-20 19:49:36] - Justin Fontaine was added to Montreal.
[2016-09-20 19:49:37] - TRADE : From Montreal to Seattle : Viktor Stalberg (60).
[2016-09-20 19:49:37] - TRADE : From Seattle to Montreal : Justin Fontaine (59).
[2016-10-26 20:00:16] - Unknown Player is no longer as assistant for Montreal.
[2016-10-26 20:00:16] - Jason Spezza has been selected as assistant for Montreal.
[2016-11-22 06:22:31] - TRADE : From Montreal to Kansas City : 1 $ (Money).
[2016-11-26 08:15:07] - James Wisniewski was added to Montreal.
[2016-11-26 08:15:09] - TRADE : From Kansas City to Montreal : James Wisniewski (61).
[2016-11-26 08:15:09] - TRADE : From Montreal to Kansas City : 1 $ (Money).
[2017-01-12 22:24:32] - Montreal show interest in Tomas Fleischmann from waiver.
[2017-01-13 20:00:22] - Montreal claimed Tomas Fleischmann from waivers by Kansas City for 0 $.
[2017-01-13 20:00:22] - Tomas Fleischmann was added to Montreal.
[2017-01-14 00:27:01] - Montreal paid 2 688 482 $ to release Tomas Fleischmann.
[2017-01-14 00:27:01] - Tomas Fleischmann was released.
[2017-01-17 21:50:42] - Jori Lehtera was added to Montreal.
[2017-01-17 21:50:42] - TRADE : From Montreal to Nashville : Christopher Wagner (39).
[2017-01-17 21:50:42] - TRADE : From Nashville to Montreal : Jori Lehtera (64).
[2017-01-17 21:51:35] - Matt Read was added to Montreal.
[2017-01-17 21:51:36] - TRADE : From Montreal to Washington : Sean Day (P), Y:2017-RND:7-LA .
[2017-01-17 21:51:36] - TRADE : From Washington to Montreal : Matt Read (64), Y:2018-RND:5-Stl.
[2017-01-20 22:56:06] - Dominic Moore was added to Montreal.
[2017-01-20 22:56:07] - TRADE : From Montreal to Hartford : Jori Lehtera (64), Conditional Draft Pick - Y:2018-RND:7-Det.
[2017-01-20 22:56:07] - TRADE : From Hartford to Montreal : Dominic Moore (63).
[2017-02-02 20:55:14] - Kevin Klein was added to Montreal.
[2017-02-02 20:55:15] - TRADE : From Kansas City to Montreal : Kevin Klein (68).
[2017-02-02 20:55:15] - TRADE : From Montreal to Kansas City : Ben Lovejoy (66), Linus Nassen (P), Ross Colton (P).
[2017-02-04 10:35:16] - John-Michael Liles was added to Montreal.
[2017-02-04 10:35:17] - TRADE : From Montreal to San Jose : Y:2018-RND:5-Stl.
[2017-02-04 10:35:17] - TRADE : From San Jose to Montreal : John-Michael Liles (65).
[2017-02-04 14:29:46] - Ales Hemsky was added to Montreal.
[2017-02-04 14:29:46] - Deryk Engelland was added to Montreal.
[2017-02-04 14:29:46] - Jonas Brodin was added to Montreal.
[2017-02-04 14:29:46] - TRADE : From Montreal to Hartford : Jannik Hansen (66), Jared Spurgeon (68), Y:2018-RND:4-Mon.
[2017-02-04 14:29:46] - TRADE : From Hartford to Montreal : Ales Hemsky (66), Deryk Engelland (61), Jonas Brodin (64).
[2017-02-07 20:13:26] - Tyler Bozak was added to Montreal.
[2017-02-07 20:13:27] - TRADE : From Montreal to Toronto : John Mitchell (64), Connor Ingram (P), Taylor Raddysh (P).
[2017-02-07 20:13:27] - TRADE : From Toronto to Montreal : Tyler Bozak (68), Y:2017-RND:4-Stl.
[2017-02-08 20:00:17] - Maxim Lapierre is no longer captain for Rocket.
[2017-02-08 20:00:17] - Michael Santorelli has been selected as captain for Rocket.
[2017-02-08 20:00:17] - Simon Moser is no longer as assistant for Rocket.
[2017-02-08 20:00:17] - Dominic Turgeon has been selected as assistant for Rocket.
[2017-02-08 20:00:17] - Unknown Player is no longer as assistant for Rocket.
[2017-02-08 20:00:17] - Brian Hart has been selected as assistant for Rocket.
[2017-02-08 23:57:59] - Calvin de Haan was added to Montreal.
[2017-02-08 23:57:59] - Thomas Hickey was added to Montreal.
[2017-02-08 23:58:00] - TRADE : From Montreal to Kansas City : Alec Martinez (68), Jake Gardiner (65), Sami Niku (P).
[2017-02-08 23:58:00] - TRADE : From Kansas City to Montreal : Calvin de Haan (63), Thomas Hickey (65).
[2017-02-25 09:08:33] - Alec Martinez was added to Montreal.
[2017-02-25 09:08:33] - Jake Gardiner was added to Montreal.
[2017-02-25 09:08:35] - TRADE : From Montreal to Kansas City : Calvin de Haan (63), Thomas Hickey (65).
[2017-02-25 09:08:35] - TRADE : From Kansas City to Montreal : Alec Martinez (68), Jake Gardiner (64), Sami Niku (P).
[2017-02-27 21:58:45] - TRADE : From Montreal to Kansas City : Sami Niku (P).
[2017-02-27 21:58:45] - TRADE : From Kansas City to Montreal : 1 $ (Money).
[2017-03-02 00:03:30] - TRADE : From Montreal to Anaheim : John-Michael Liles (65).
[2017-03-02 00:03:30] - TRADE : From Anaheim to Montreal : Y:2018-RND:6-Ana.
[2017-03-02 00:04:34] - Daniel Winnik was added to Montreal.
[2017-03-02 00:04:36] - TRADE : From Montreal to Rangers : Matt Read (64), Simon Bourque (P), Y:2017-RND:4-Stl.
[2017-03-02 00:04:36] - TRADE : From Rangers to Montreal : Daniel Winnik (66).
[2017-03-02 00:05:48] - Edward Purcell was added to Montreal.
[2017-03-02 00:05:49] - TRADE : From Montreal to San Jose : Cam Dineen (P).
[2017-03-02 00:05:49] - TRADE : From San Jose to Montreal : Edward Purcell (66).



Pas de Blessure ou de Suspension.


LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
201682422207254296229674124801233156116404118140602114011327842965388341210495851723757837807826121436491079156947110221.66%4316385.38%81496293450.99%1449268553.97%650128950.43%2059141518716221048537
Total Saison Régulière82422207254296229674124801233156116404118140602114011327842965388341210495851723757837807826121436491079156947110221.66%4316385.38%81496293450.99%1449268553.97%650128950.43%2059141518716221048537