Buffalo

DG: Joel Pelletier Morale : 34 Moyenne d'Équipe : 62
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Patrick Kane (A)X100.00503586925381938845868963527066050760
2David LegwandXX100.00523588717266935983605873568070050650
3Cal ClutterbuckX100.00783585727566935835516471505850054640
4Casey CizikasX100.00654385736965935883575876484742058640
5Trevor LewisXXX100.00633588706971925777536171456057054630
6Devante Smith-PellyXX100.00703584747465825835536362454843046610
7Boyd GordonX100.00504389666965804890455077456860054600
8Joakim NordstromXX100.00653590716266635545545677454439054600
9Joonas Donskoi (R)XX100.00503588765556536045615864583735054580
10Jacob De La RoseXX100.00593587647262434662444866483634044530
11Michael Dal Colle (R)X100.00555555555755555555555555553230046530
12Devin Shore (R)XX100.00503595667153353535353565483532075480
13Ryan Suter (C)X100.00695084746891956435755386487059062730
14Andrei Markov (A)X100.00554383766285956635745778457869035710
15Justin BraunX100.00644383676877935235574788485447046670
16Jonathan EricssonX100.00745076647474904835514578486356025660
17Mattias EkholmX100.00603581717271915435565180484441054650
18Anthony Deangelo (R)X100.00505050505250505050505050503230045490
Rayé
1Brett SutterXX100.00524380696949344349424461474844019510
2Eric GrybaX88.31886565607870754635484380484539023630
3Chad RuhwedelX100.00544375686161374335473971484238037560
4Seth Helgeson (R)X100.00684375607256373535383270483532019540
MOYENNE D'ÉQUIPE99.4561428169676671544954537149514604661
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Sergei Bobrovsky100.0080729674798378778784805043026750
2Jhonas Enroth100.0067459160666765656865634945030620
Rayé
MOYENNE D'ÉQUIPE100.007459946773757271787572504402869
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Joel Quenneville76958883999990CAN582500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Patrick KaneBuffaloRW7133397218260471372740012.04%3130018.329918682721343646231.53%20300041.1116000952
2Ryan SuterBuffaloD81103949212020147125140007.14%119198824.55913221033990111297100.00%000000.4901202014
3Andrei MarkovBuffaloD6811364773004896860012.79%70162123.85101222642870000258300.00%000000.5800000232
4Mattias EkholmBuffaloD82133346-246050781200010.83%72164220.0391120802850220207000.00%000000.5611000212
5Cal ClutterbuckBuffaloRW82172643070016479192008.85%7143717.53310136034210171284131.61%19300000.6003000332
6Casey CizikasBuffaloC82142640-15010481551380010.14%12135216.491562019010121983350.63%143600000.5912101214
7Trevor LewisBuffaloC/LW/RW82162036-112807884173009.25%11122214.914812443030000211048.34%60200000.5911000221
8Justin BraunBuffaloD74102535-568109175900011.11%91155721.046814552651013237010.00%000000.4500011030
9Joonas DonskoiBuffaloLW/RW82151934212036531370010.95%6117214.3035828323000053020.39%10300000.5802000314
10David LegwandBuffaloC/LW72141731132605094880015.91%15123017.092461512611221783155.49%80200000.5006000025
11Devante Smith-PellyBuffaloLW/RW80141630-1320108571120012.50%3131416.431782030000011150032.43%7400000.4611000122
12Joakim NordstromBuffaloLW/RW82131124-1236070901070012.15%18100912.3102213100052101129.73%7400000.4800000301
13Boyd GordonBuffaloC8281018-98023187700011.43%14112713.7512323710173435157.23%143100000.3200000122
14Jonathan EricssonBuffaloD7141216-198610904347008.51%70116716.4510113108000088000.00%000000.2700020010
15Eric GrybaBuffaloD7021315-8179351875138005.26%61119817.1212314860220189000.00%000000.2500133001
16Devin ShoreBuffaloC/LW43077-156082310000.00%252912.310440970000180030.79%41900000.2601000000
17Jacob De La RoseBuffaloC/LW68246-7200523936005.56%66639.75000120000140043.68%19000000.1800000100
18Anthony DeangeloBuffaloD39123-1028037760016.67%349412.670110140000540043.75%1600000.1200000001
19Chad RuhwedelBuffaloD39123-16180292216006.25%1145111.58000080000230027.78%1800000.1300000010
20Michael Dal ColleBuffaloLW13202-110010580025.00%014110.8700009000000033.33%1200000.2800000000
21Brett SutterBuffaloC/LW53101-9100181411009.09%04498.49000040000470030.32%15500000.0400000000
22Seth HelgesonBuffaloD10011-101602253000.00%1114214.250110000001000.00%000000.1400000000
Stats d'équipe Total ou en Moyenne1426201358559-104915851413151919020010.57%6052321616.286010416458835016915312705301047.99%572800040.48524467292833
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Sergei BobrovskyBuffalo69292970.8972.6239172417116580220.679286517422
2Jhonas EnrothBuffalo2351110.8643.681044170644690100.00001764120
Stats d'équipe Total ou en Moyenne92344080.8902.84496219423521270320.679288281542


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Andrei Markov (Contrat à 1 Volet)BuffaloD361978-12-20No194 Lbs6 ft0NoNo3Sans RestrictionPro & Farm8,000,000$8,000,000$8,000,000$Lien
Anthony DeangeloBuffaloD191995-10-24Yes175 Lbs5 ft10NoNo4Contrat d'EntréePro & Farm925,000$925,000$925,000$925,000$Lien
Boyd GordonBuffaloC311983-10-19No200 Lbs6 ft0YesNo5Sans RestrictionPro & Farm2,000,000$2,000,000$2,000,000$1,750,000$1,500,000$Lien
Brett SutterBuffaloC/LW281987-06-02No200 Lbs6 ft0NoNo1Avec RestrictionPro & Farm600,000$Lien
Cal ClutterbuckBuffaloRW271987-11-18No218 Lbs5 ft11NoNo6Avec RestrictionPro & Farm1,250,000$1,250,000$1,250,000$1,250,000$1,250,000$1,250,000$Lien
Casey CizikasBuffaloC241991-02-27No201 Lbs5 ft11NoNo2Avec RestrictionPro & Farm1,250,000$1,250,000$Lien
Chad RuhwedelBuffaloD251990-05-07No191 Lbs5 ft11NoNo1Avec RestrictionPro & Farm925,000$Lien
David Legwand (Contrat à 1 Volet)BuffaloC/LW351980-08-17No207 Lbs6 ft2YesNo2Sans RestrictionPro & Farm1,800,000$1,800,000$Lien
Devante Smith-PellyBuffaloLW/RW231992-06-14No214 Lbs6 ft0NoNo6Avec RestrictionPro & Farm1,200,000$1,200,000$1,200,000$1,200,000$1,200,000$1,200,000$Lien
Devin ShoreBuffaloC/LW211994-07-19Yes205 Lbs6 ft1NoNo4Contrat d'EntréePro & Farm818,000$818,000$818,000$818,000$Lien
Eric GrybaBuffaloD271988-04-14No228 Lbs6 ft4NoNo1Avec RestrictionPro & Farm525,000$Lien
Jacob De La RoseBuffaloC/LW201995-05-20No207 Lbs6 ft3NoNo3Contrat d'EntréePro & Farm925,000$925,000$925,000$Lien
Jhonas EnrothBuffaloG271988-06-25No171 Lbs5 ft10NoNo2Avec RestrictionPro & Farm1,500,000$1,500,000$Lien
Joakim NordstromBuffaloLW/RW231992-02-25No189 Lbs6 ft1NoNo2Avec RestrictionPro & Farm600,000$600,000$Lien
Jonathan EricssonBuffaloD311984-03-02No220 Lbs6 ft4YesNo5Sans RestrictionPro & Farm3,312,890$3,312,890$3,312,890$3,312,890$3,312,890$Lien
Joonas DonskoiBuffaloLW/RW231992-04-13Yes180 Lbs6 ft0NoNo4Avec RestrictionPro & Farm925,000$925,000$925,000$925,000$Lien
Justin BraunBuffaloD281987-02-10No205 Lbs6 ft2NoNo1Avec RestrictionPro & Farm1,400,000$Lien
Mattias EkholmBuffaloD251990-05-24No215 Lbs6 ft4NoNo3Avec RestrictionPro & Farm1,800,000$1,800,000$1,800,000$Lien
Michael Dal ColleBuffaloLW191996-06-20Yes182 Lbs6 ft1NoNo4Contrat d'EntréePro & Farm925,000$925,000$925,000$925,000$Lien
Patrick KaneBuffaloRW261988-11-19No177 Lbs5 ft11NoNo6Avec RestrictionPro & Farm8,000,000$8,000,000$8,000,000$8,000,000$8,000,000$8,000,000$Lien
Ryan SuterBuffaloD301985-01-21No206 Lbs6 ft2NoNo1Sans RestrictionPro & Farm6,000,000$Lien
Sergei BobrovskyBuffaloG271988-09-20No199 Lbs6 ft2NoNo1Avec RestrictionPro & Farm3,000,000$Lien
Seth HelgesonBuffaloD241990-10-08Yes215 Lbs6 ft4NoNo3Avec RestrictionPro & Farm595,000$595,000$595,000$Lien
Trevor LewisBuffaloC/LW/RW281987-01-08No199 Lbs6 ft1NoNo1Avec RestrictionPro & Farm900,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2426.13200 Lbs6 ft12.962,048,995$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
49,175,890$35,825,890$30,675,890$19,105,890$15,262,890$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Joonas DonskoiDavid LegwandPatrick Kane25122
2Michael Dal ColleCasey CizikasCal Clutterbuck25122
3Trevor LewisBoyd GordonJoakim Nordstrom25122
4Jacob De La RoseDevin ShoreDevante Smith-Pelly25122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SuterAndrei Markov30122
2Mattias EkholmJustin Braun30122
3Jonathan EricssonAnthony Deangelo30122
4Ryan SuterAndrei Markov10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Joonas DonskoiDavid LegwandPatrick Kane60122
2Michael Dal ColleCasey CizikasCal Clutterbuck40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SuterAndrei Markov60122
2Mattias EkholmJustin Braun40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Boyd GordonJoakim Nordstrom60122
2Casey CizikasCal Clutterbuck40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SuterAndrei Markov60122
2Mattias EkholmJustin Braun40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Boyd Gordon60122Ryan SuterAndrei Markov60122
2Casey Cizikas40122Mattias EkholmJustin Braun40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1David LegwandPatrick Kane60122
2Casey CizikasCal Clutterbuck40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SuterAndrei Markov60122
2Mattias EkholmJustin Braun40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Joonas DonskoiDavid LegwandPatrick KaneRyan SuterAndrei Markov
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
David LegwandCasey CizikasJoakim NordstromRyan SuterAndrei Markov
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Patrick Kane, Devin Shore, Jacob De La RoseDevante Smith-Pelly, Joakim NordstromDavid Legwand
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jonathan Ericsson, Anthony Deangelo, Ryan SuterAnthony DeangeloJonathan Ericsson, Anthony Deangelo
Tirs de Pénalité
Devin Shore, Devante Smith-Pelly, Cal Clutterbuck, Casey Cizikas, Trevor Lewis
Gardien
#1 : Jhonas Enroth, #2 : Sergei Bobrovsky


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Anaheim2010010036-31010000013-21000010023-110.250347001110371412101531614419111.11%7185.71%01266263448.06%1302262249.66%632125550.36%513646152613
Atlanta312000009721010000012-12110000085320.333918270015305813252008021457015320.00%14192.86%01266263448.06%1302262249.66%632125550.36%623980233717
Boston40200011714-72010001047-32010000137-430.37571017003124963316461210621446629310.34%20385.00%01266263448.06%1302262249.66%632125550.36%1087488325226
Calgary2020000046-21010000023-11010000023-100.00048120030104717191106114322316212.50%11190.91%01266263448.06%1302262249.66%632125550.36%493245162512
Philadelphie3120000068-22020000026-41100000042220.33361016003120812337210801624581715.88%11281.82%01266263448.06%1302262249.66%632125550.36%704770223818
Chicago2020000039-61010000034-11010000005-500.000369001020371112140551828378112.50%14471.43%01266263448.06%1302262249.66%632125550.36%402554152412
Colorado21100000541110000004131010000013-220.500510151030204519521056132426800.00%11190.91%01266263448.06%1302262249.66%632125550.36%463048162512
Kansas City2020000058-31010000024-21010000034-100.000591400131047102215061171847400.00%9277.78%01266263448.06%1302262249.66%632125550.36%452949132512
Detroit440000001257220000005322200000072581.0001220320131809517334509730667519421.05%31390.32%11266263448.06%1302262249.66%632125550.36%905999315024
Edmonton22000000734110000003121100000042241.000712190023206018241804714144015213.33%60100.00%01266263448.06%1302262249.66%632125550.36%503445142312
Islanders311010006602110000034-11000100032140.66761218012211651816292832835601715.88%14378.57%01266263448.06%1302262249.66%632125550.36%694575233719
LA Kings210001006601000010012-11100000054130.7506915002220541718181501937391300.00%16381.25%01266263448.06%1302262249.66%632125550.36%473151152512
Minnesota211000003301010000023-11100000010120.500369012010602014260551322261516.67%10370.00%01266263448.06%1302262249.66%632125550.36%523640152714
Hartford32100000752110000003122110000044040.66771017003220682426180802641631700.00%12191.67%01266263448.06%1302262249.66%632125550.36%714872223618
Ottawa523000001920-122000000127530300000713-640.400193554007840162575847013130459329517.24%201050.00%11266263448.06%1302262249.66%632125550.36%13493101356434
Pittsburgh30201000911-22010100067-11010000034-120.333916251014317819322527619306019210.53%15286.67%01266263448.06%1302262249.66%632125550.36%704673244020
Rangers30200001611-52020000048-41000000123-110.167610160041109538223358415336318316.67%13192.31%01266263448.06%1302262249.66%632125550.36%805667223718
San Jose220000001156110000006421100000051441.0001119300043404414191105615353312541.67%12375.00%11266263448.06%1302262249.66%632125550.36%483146142413
St-Louis2010000159-41010000025-31000000134-110.250591400221139171555622022418225.00%11190.91%11266263448.06%1302262249.66%632125550.36%412657162611
Tampa Bay40200110814-6201000106602010010028-630.3758122000331275312419610243426825312.00%20385.00%01266263448.06%1302262249.66%632125550.36%996999314924
Toronto5500000020101033000000125722000000853101.000203555008840156624846010033469524520.83%22386.36%01266263448.06%1302262249.66%632125550.36%13394102356434
Vancouver211000006601010000034-11100000032120.500611170023104415161304520213412216.67%8275.00%01266263448.06%1302262249.66%632125550.36%463048152513
Quebec41200100911-2211000006512010010036-330.37591524001530902130390802550721500.00%18288.89%11266263448.06%1302262249.66%632125550.36%1057182285227
Winnipeg2020000027-51010000025-31010000002-200.0002350010103112514052204426800.00%21480.95%01266263448.06%1302262249.66%632125550.36%453050162411
Nashville20200000410-61010000005-51010000045-100.00048120012105315201807616263510110.00%13284.62%01266263448.06%1302262249.66%632125550.36%402552162712
Montreal413000001315-22110000065120200000710-320.25013243700814082322624010837515917317.65%15380.00%11266263448.06%1302262249.66%632125550.36%8153105325225
Washington310000117521000000123-12100001052350.8337101701321172242916106216346313430.77%160100.00%01266263448.06%1302262249.66%632125550.36%795568234221
Caroline32100000651110000003212110000033040.667612180021306121192107625305621523.81%15193.33%01266263448.06%1302262249.66%632125550.36%765164233820
Las Vegas20200000712-51010000035-21010000047-300.00071219002320471015220551935408450.00%15473.33%01266263448.06%1302262249.66%632125550.36%483145152613
Vs Division301312002218889-11594000205138131548002013751-14330.55088151239013327266756253235266187242193445281582314.56%1462781.51%41266263448.06%1302262249.66%632125550.36%753515679227386198
Vs Conference54212302233144147-3271211010217571427912012126976-7570.528144249393135245429133443344144937134538561610212954214.24%2563885.16%41266263448.06%1302262249.66%632125550.36%13349071252412694352
Since Last GM Reset82294002434215241-2641152101121109120-1141141901313106121-15760.4632153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533
Total82294002434215241-2641152101121109120-1141141901313106121-15760.4632153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8276OTL121537559019792129619988150924
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8229402434215241
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4115211121109120
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4114191313106121
Derniers 10 Matchs
WLOTWOTL SOWSOL
630100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
4416314.29%4206983.57%6
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
6426576654479676410
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1266263448.06%1302262249.66%632125550.36%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1988134019336291052533


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2016-10-1310Montreal4Buffalo3LSommaire du Match
5 - 2016-10-1631Buffalo4Edmonton2WSommaire du Match
7 - 2016-10-1847Buffalo2Calgary3LSommaire du Match
9 - 2016-10-2061Buffalo3Vancouver2WSommaire du Match
14 - 2016-10-2585Buffalo4Philadelphie2WSommaire du Match
16 - 2016-10-2798Minnesota3Buffalo2LSommaire du Match
18 - 2016-10-29121Quebec3Buffalo2LSommaire du Match
19 - 2016-10-30123Buffalo0Winnipeg2LSommaire du Match
21 - 2016-11-01133Buffalo1Minnesota0WSommaire du Match
23 - 2016-11-03149Toronto2Buffalo4WSommaire du Match
25 - 2016-11-05165Buffalo2Ottawa3LSommaire du Match
27 - 2016-11-07180Buffalo3Boston4LXXSommaire du Match
29 - 2016-11-09194Ottawa2Buffalo5WSommaire du Match
31 - 2016-11-11206Hartford1Buffalo3WSommaire du Match
32 - 2016-11-12219Buffalo2Hartford3LSommaire du Match
35 - 2016-11-15231Buffalo3St-Louis4LXXSommaire du Match
37 - 2016-11-17253Tampa Bay2Buffalo1LSommaire du Match
39 - 2016-11-19268Pittsburgh4Buffalo5WXSommaire du Match
41 - 2016-11-21276Calgary3Buffalo2LSommaire du Match
43 - 2016-11-23288Detroit2Buffalo3WSommaire du Match
45 - 2016-11-25302Buffalo3Washington2WXXSommaire du Match
49 - 2016-11-29333Buffalo3Ottawa4LSommaire du Match
51 - 2016-12-01346Rangers4Buffalo2LSommaire du Match
53 - 2016-12-03366Boston1Buffalo2WXXSommaire du Match
55 - 2016-12-05380Buffalo2Washington0WSommaire du Match
56 - 2016-12-06389Edmonton1Buffalo3WSommaire du Match
59 - 2016-12-09405Washington3Buffalo2LXXSommaire du Match
63 - 2016-12-13437LA Kings2Buffalo1LXSommaire du Match
66 - 2016-12-16459Islanders4Buffalo1LSommaire du Match
67 - 2016-12-17466Buffalo2Caroline1WSommaire du Match
70 - 2016-12-20487Buffalo1Quebec2LXSommaire du Match
72 - 2016-12-22495Caroline2Buffalo3WSommaire du Match
73 - 2016-12-23509Buffalo3Islanders2WXSommaire du Match
77 - 2016-12-27521Buffalo4Detroit0WSommaire du Match
79 - 2016-12-29532Boston6Buffalo2LSommaire du Match
81 - 2016-12-31552Buffalo0Boston3LSommaire du Match
84 - 2017-01-03565Buffalo2Rangers3LXXSommaire du Match
86 - 2017-01-05582Buffalo0Chicago5LSommaire du Match
88 - 2017-01-07600Winnipeg5Buffalo2LSommaire du Match
91 - 2017-01-10619Philadelphie2Buffalo1LSommaire du Match
93 - 2017-01-12626Buffalo1Tampa Bay6LSommaire du Match
94 - 2017-01-13637Buffalo1Caroline2LSommaire du Match
97 - 2017-01-16657Kansas City4Buffalo2LSommaire du Match
98 - 2017-01-17665Buffalo4Toronto2WSommaire du Match
101 - 2017-01-20686Detroit1Buffalo2WSommaire du Match
102 - 2017-01-21693Buffalo3Montreal4LSommaire du Match
105 - 2017-01-24720Buffalo4Las Vegas7LSommaire du Match
107 - 2017-01-26735Buffalo3Kansas City4LSommaire du Match
112 - 2017-01-31750Buffalo4Montreal6LSommaire du Match
114 - 2017-02-02758Rangers4Buffalo2LSommaire du Match
116 - 2017-02-04775Ottawa5Buffalo7WSommaire du Match
118 - 2017-02-06788Buffalo2Hartford1WSommaire du Match
119 - 2017-02-07790San Jose4Buffalo6WSommaire du Match
121 - 2017-02-09807Anaheim3Buffalo1LSommaire du Match
123 - 2017-02-11821Buffalo4Toronto3WSommaire du Match
124 - 2017-02-12833Vancouver4Buffalo3LSommaire du Match
126 - 2017-02-14839Buffalo2Ottawa6LSommaire du Match
128 - 2017-02-16854Colorado1Buffalo4WSommaire du Match
130 - 2017-02-18862St-Louis5Buffalo2LSommaire du Match
131 - 2017-02-19869Chicago4Buffalo3LSommaire du Match
137 - 2017-02-25911Buffalo1Colorado3LSommaire du Match
138 - 2017-02-26918Buffalo4Nashville5LSommaire du Match
140 - 2017-02-28926Las Vegas5Buffalo3LSommaire du Match
142 - 2017-03-02937Nashville5Buffalo0LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
144 - 2017-03-04953Tampa Bay4Buffalo5WXXSommaire du Match
145 - 2017-03-05964Buffalo3Pittsburgh4LSommaire du Match
147 - 2017-03-07973Philadelphie4Buffalo1LSommaire du Match
150 - 2017-03-10995Buffalo6Atlanta2WSommaire du Match
151 - 2017-03-111004Atlanta2Buffalo1LSommaire du Match
154 - 2017-03-141028Buffalo5San Jose1WSommaire du Match
156 - 2017-03-161037Buffalo5LA Kings4WSommaire du Match
157 - 2017-03-171052Buffalo2Anaheim3LXSommaire du Match
160 - 2017-03-201071Buffalo3Detroit2WSommaire du Match
161 - 2017-03-211076Pittsburgh3Buffalo1LSommaire du Match
165 - 2017-03-251106Toronto1Buffalo4WSommaire du Match
167 - 2017-03-271124Quebec2Buffalo4WSommaire du Match
168 - 2017-03-281130Buffalo2Atlanta3LSommaire du Match
173 - 2017-04-021166Islanders0Buffalo2WSommaire du Match
174 - 2017-04-031176Toronto2Buffalo4WSommaire du Match
176 - 2017-04-051192Montreal1Buffalo3WSommaire du Match
179 - 2017-04-081213Buffalo2Quebec4LSommaire du Match
180 - 2017-04-091230Buffalo1Tampa Bay2LXSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna75006000250040002000
Prix des Billets125755030200
Assistance2513762045889825216181053369
Attendance PCT81.75%83.17%95.86%98.66%65.08%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 18766 - 85.30% 1,639,190$67,206,800$22000100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
50,775,890$ 50,625,890$ 0$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jourTaxe de Luxe Totale
50,499,844$ 280,530$ 49,997,114$ 0$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 283,292$ 0$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
0$ 51,976,680$ 77,711,756$ 77,711,756$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
David LegwandAGE:35PO:0OV:65
Trevor LewisAGE:28PO:0OV:63
Devante Smith-PellyAGE:23PO:0OV:61
Joakim NordstromAGE:23PO:0OV:60
*Joonas DonskoiAGE:23PO:0OV:58
Ilya KovalchukAGE:32PO:0OV:56
Jacob De La RoseAGE:20PO:0OV:53
*Michael Dal ColleAGE:19PO:0OV:53
Brett SutterAGE:28PO:0OV:51
Eric BoultonAGE:39PO:0OV:51
*Devin ShoreAGE:21PO:0OV:48
Roman HorakAGE:24PO:0OV:44
*Mackenzie MacEachernAGE:21PO:0OV:44
Eric WellwoodAGE:25PO:0OV:42
Harri PesonenAGE:27PO:0OV:38
David LegwandAGE:35PO:0OV:65
Casey CizikasAGE:24PO:0OV:64
Trevor LewisAGE:28PO:0OV:63
Boyd GordonAGE:31PO:0OV:60
Jacob De La RoseAGE:20PO:0OV:53
Brett SutterAGE:28PO:0OV:51
Joey HishonAGE:23PO:0OV:50
*Devin ShoreAGE:21PO:0OV:48
Roman HorakAGE:24PO:0OV:44
Louis LeblancAGE:24PO:0OV:38
Olli JokinenAGE:36PO:0OV:24
Patrick KaneAGE:26PO:0OV:76
Cal ClutterbuckAGE:27PO:0OV:64
Trevor LewisAGE:28PO:0OV:63
Devante Smith-PellyAGE:23PO:0OV:61
Joakim NordstromAGE:23PO:0OV:60
*Joonas DonskoiAGE:23PO:0OV:58
Ilya KovalchukAGE:32PO:0OV:56
Akim AliuAGE:26PO:0OV:44
*Austin WuthrichAGE:22PO:0OV:42
Louis LeblancAGE:24PO:0OV:38

Défense #1Défense #2Gardien
Ryan SuterAGE:30PO:0OV:73
Andrei MarkovAGE:36PO:0OV:71
Justin BraunAGE:28PO:0OV:67
Jonathan EricssonAGE:31PO:0OV:66
Mattias EkholmAGE:25PO:0OV:65
Eric GrybaAGE:27PO:0OV:63
Chris ButlerAGE:28PO:0OV:57
Chad RuhwedelAGE:25PO:0OV:56
Jarred TinordiAGE:23PO:0OV:54
*Seth HelgesonAGE:24PO:0OV:54
*Ryan JohnstonAGE:23PO:0OV:50
*Anthony DeangeloAGE:19PO:0OV:49
Jesse BlackerAGE:24PO:0OV:49
*Patrick McNallyAGE:23PO:0OV:41
Matthew KonanAGE:24PO:0OV:38
Sergei BobrovskyAGE:27PO:0OV:75
Jhonas EnrothAGE:27PO:0OV:62
Jussi RynnasAGE:28PO:0OV:48
*Adam MorrisonAGE:24PO:0OV:45
Connor KnappAGE:25PO:0OV:45
*Mike LeeAGE:24PO:0OV:42
Tomas PopperleAGE:30PO:0OV:40

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Anatoli GolyshevBuffalo2016125
Andrew PeekeBuffalo201667
Arvid HenriksonBuffalo2016208
Callum BoothBuffalo201592
Clayton KellerBuffalo20166
Eetu TuulolaBuffalo2016172
Henrik BorgstromBuffalo201635
Matthew TkachukBuffalo20165
Mikhail MaltsevBuffalo2016138
Patrick HarperBuffalo2016139
William BittenBuffalo201649

Choix au Repêchage

Année R1R2R3R4R5R6R7
2017Buf Win Buf Buf Tor Buf Buf Buf Buf
2018Buf Buf Mon Buf Buf Buf Nas Buf Buf
2019Buf Buf Buf Buf Buf Buf Buf
2020Buf Buf Buf Buf Buf Buf Buf
2021Buf Buf Buf Buf Buf Buf Buf



[2016-09-11 15:33:01] - Buffalo drafts Arvid Henrikson as the #208 overall pick in the Entry Draft of year 2016.
[2016-09-14 06:53:53] - TRADE : From Buffalo to Toronto : Brandon Dubinsky (71), Evander Kane (66).
[2016-09-14 06:53:53] - TRADE : From Toronto to Buffalo : Matthew Tkachuk (P), Y:2017-RND:3-Tor.
[2016-09-14 06:54:47] - TRADE : From Buffalo to Quebec : Paul Martin (68).
[2016-09-14 06:55:56] - Unknown Player is no longer as assistant for Buffalo.
[2016-09-14 06:55:56] - Paul Martin has been selected as assistant for Buffalo.
[2016-09-16 21:10:51] - David Legwand was added to Buffalo.
[2016-09-16 21:10:59] - Ryan Johnston was added to Buffalo.
[2016-09-21 21:47:23] - Eric Wellwood was added to Buffalo.
[2016-10-30 20:00:16] - Paul Martin is no longer as assistant for Buffalo.
[2016-10-30 20:00:16] - Andrei Markov has been selected as assistant for Buffalo.
[2016-12-20 22:25:17] - Devin Shore was added to Buffalo.
[2016-12-20 22:25:17] - Michael Dal Colle was added to Buffalo.
[2016-12-20 22:25:19] - TRADE : From Buffalo to Nashville : Martin Hanzal (68).
[2016-12-20 22:25:19] - TRADE : From Nashville to Buffalo : Devin Shore (48), Michael Dal Colle (53), Y:2018-RND:5-Nas.
[2017-02-04 08:30:37] - Buffalo paid 682 320 $ to release Bryce Van Brabant.
[2017-02-04 08:30:37] - Bryce Van Brabant was released.
[2017-02-04 08:30:43] - Buffalo paid 682 320 $ to release David Broll.
[2017-02-04 08:30:43] - David Broll was released.



Pas de Blessure ou de Suspension.


LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
201682294002434215241-2641152101121109120-1141141901313106121-15582153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533
Total Saison Régulière82294002434215241-2641152101121109120-1141141901313106121-15582153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533