Chill

DG: Yvon Bergeron Morale : 82 Moyenne d'Équipe : 47
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tom WilsonX100.00776653687562775245525267454939087590
2Radek FaksaXX100.00583586667354435382505670483532072560
3Austin WatsonXX100.00654381667251464850484864483532058540
4Michael ChaputXX100.00564380687155374978485065484136079540
5Joel Vermin (R)XX100.00463595756350354345513558483532087510
6Tobias LindbergXX100.00493579647558353735383570483532084500
7Samuel Kurker (R)X100.00454545457045454545454545453230067460
8Justin Auger (R)X100.00404040408340404040404040403230039430
9T.J. Tynan (R)X100.00434343434643434343434343433230049430
10Yan Pavel Laplante (R)X100.00434343435443434343434343433230032430
11Christopher Wagner (R)XX100.00373737376937373737373737373230049400
12Andreas Johnson (R)X100.00373737375637373737373737373230025390
13Brian Pinho (R)X100.00373737375237373737373737373230023390
14Grant Besse (R)X100.00373737375237373737373737373230028390
15Henri Ikonen (R)X100.00373737375737373737373737373230021390
16Pavel Jenys (R)X100.00373737376637373737373737373230023390
17Victor Crus Rydberg (R)X100.00373737376137373737373737373230030390
18Blaine Byron (R)X100.00373737374637373737373737373230023380
19Cody GoloubefX100.00584383666665554635494367484440081580
20Mark BarberioX100.00573588696865444735494568484139083580
21Steven KampferX100.00645082646167504150414174484438083580
22Tom Nilsson (R)X100.00404040405340404040404040403230039410
23Matthew CorrenteX100.00619129376533413335333333473835028400
Rayé
MOYENNE D'ÉQUIPE100.0048435550634642424342415043353205246
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jacob Markstrom100.0057458875626065665597834642054630
2Kent Simpson100.0042454474424141424141403532053450
Rayé
MOYENNE D'ÉQUIPE100.005045667552515354486962413705454
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ted Dent58847752716468CAN462500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael ChaputChill (Nas)C/LW79317110233355511642610011.88%9127416.14123143862741011311165.80%135100011.6001100854
2Tom WilsonChill (Nas)RW613150813314620203972160014.35%17119519.60919285823502261783150.71%28000001.3557103724
3Cody GoloubefChill (Nas)D7123497218460103841610014.29%73155121.851418321022730115236310.00%000000.9301000842
4Steven KampferChill (Nas)D63133952301081016379160008.13%84145623.1261420902501011211100.00%000000.7100011334
5Austin WatsonChill (Nas)C/RW651930491713955133551620011.73%8109716.886915402170112261148.28%26100010.8913227503
6Mark BarberioChill (Nas)D6643539134756165110003.64%65143221.7021214532130111162100.00%000100.5400001005
7Radek FaksaChill (Nas)C/LW321623392210020701020015.69%757918.103710211081013513063.07%67700001.3523000221
8Joel VerminChill (Nas)LW/RW798715-200952780010.26%65176.550002430000271057.89%3800000.5800000110
9Tobias LindbergChill (Nas)LW/RW752810080153138005.26%103074.100334550000210050.00%5800000.6500000002
10Samuel KurkerChill (Nas)RW29347-2951316280010.71%11254.3400004000040040.00%1500001.1100001100
11Justin AugerChill (Nas)RW9066-11001549000.00%913615.180000000000000.00%200000.8800000000
12Yan Pavel LaplanteChill (Nas)C9325-44089130023.08%110812.1100000000001149.50%10100000.9200000000
13Grant BesseChill (Nas)RW38134-19180181514007.14%53499.20000112000070031.25%1600000.2300000000
14T.J. TynanChill (Nas)C14314080811140021.43%51148.1400000000000049.57%11700000.7000000000
15Andreas JohnsonChill (Nas)LW9022-440612000.00%210912.1400000000000075.00%800000.3700000000
16Christopher WagnerChill (Nas)C/RW9022160632000.00%0566.2800005000050042.86%1400000.7100000000
17Matthew CorrenteChill (Nas)D22000342106721000.00%829613.48000116000029000.00%000000.0001110000
18Henri IkonenChill (Nas)LW9000-200301000.00%0616.800000000000000.00%300000.0000000000
19Pavel JenysChill (Nas)C9000-100131000.00%1333.69000010001200062.50%1600000.0000000000
20Tom NilssonChill (Nas)D90000601111000.00%217719.73000020000028000.00%000000.0000000000
21Victor Crus RydbergChill (Nas)C13000020000000.00%0352.7200001000010037.50%2400000.0000000000
Stats d'équipe Total ou en Moyenne77015733248913564811091476213740011.43%3131101614.3152113165458173535820104515559.88%298100120.898165413351725
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jacob MarkstromChill (Nas)61441140.8873.0535864618216160900.60923610420
2Kent SimpsonChill (Nas)40210.9023.44157009920000.3333046000
Stats d'équipe Total ou en Moyenne65441350.8883.0637444619117080900.577266146420


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Andreas JohnsonChill (Nas)LW201994-11-21Yes183 Lbs5 ft10NoNo4Contrat d'EntréePro & Farm667,000$667,000$667,000$667,000$Lien
Austin WatsonChill (Nas)C/RW231992-01-13No204 Lbs6 ft4NoNo1Avec RestrictionPro & Farm900,000$Lien
Blaine ByronChill (Nas)C201995-02-21Yes163 Lbs5 ft11NoNo4Contrat d'EntréePro & Farm525,000$525,000$525,000$525,000$Lien
Brian PinhoChill (Nas)C201995-05-11Yes173 Lbs6 ft0NoNo4Contrat d'EntréePro & Farm525,000$525,000$525,000$525,000$Lien
Christopher WagnerChill (Nas)C/RW241991-05-27Yes200 Lbs6 ft0NoNo4Avec RestrictionPro & Farm525,000$525,000$525,000$525,000$Lien
Cody GoloubefChill (Nas)D251989-11-30No201 Lbs6 ft1NoNo3Avec RestrictionPro & Farm900,000$900,000$900,000$Lien
Grant BesseChill (Nas)RW211994-07-14Yes177 Lbs5 ft9NoNo4Contrat d'EntréePro & Farm525,000$525,000$525,000$525,000$Lien
Henri IkonenChill (Nas)LW211994-04-17Yes184 Lbs5 ft11NoNo4Contrat d'EntréePro & Farm625,000$625,000$625,000$625,000$Lien
Jacob MarkstromChill (Nas)G251990-01-31No196 Lbs6 ft6NoNo3Avec RestrictionPro & Farm980,000$980,000$980,000$Lien
Joel VerminChill (Nas)LW/RW231992-02-05Yes192 Lbs5 ft11NoNo4Avec RestrictionPro & Farm635,000$635,000$635,000$635,000$Lien
Justin AugerChill (Nas)RW211994-05-14Yes229 Lbs6 ft7NoNo4Contrat d'EntréePro & Farm625,000$625,000$625,000$625,000$Lien
Kent SimpsonChill (Nas)G231992-03-26No198 Lbs6 ft2NoNo2Avec RestrictionPro & Farm615,000$615,000$Lien
Mark BarberioChill (Nas)D251990-03-23No207 Lbs6 ft1NoNo1Avec RestrictionPro & Farm600,000$Lien
Matthew CorrenteChill (Nas)D271988-03-17No200 Lbs6 ft0NoNo2Avec RestrictionPro & Farm500,000$500,000$Lien
Michael ChaputChill (Nas)C/LW231992-04-09No204 Lbs6 ft2NoNo2Avec RestrictionPro & Farm690,000$690,000$Lien
Pavel JenysChill (Nas)C191996-04-22Yes192 Lbs6 ft2NoNo4Contrat d'EntréePro & Farm655,000$655,000$655,000$655,000$Lien
Radek FaksaChill (Nas)C/LW211994-01-09No210 Lbs6 ft3NoNo4Contrat d'EntréePro & Farm833,000$833,000$833,000$833,000$Lien
Samuel KurkerChill (Nas)RW211994-04-08Yes201 Lbs6 ft2NoNo4Contrat d'EntréePro & Farm825,000$825,000$825,000$825,000$Lien
Steven KampferChill (Nas)D271988-09-24No192 Lbs5 ft11NoNo1Avec RestrictionPro & Farm1,000,000$Lien
T.J. TynanChill (Nas)C231992-02-25Yes165 Lbs5 ft8NoNo4Avec RestrictionPro & Farm700,000$700,000$700,000$700,000$Lien
Tobias LindbergChill (Nas)LW/RW201995-07-22No217 Lbs6 ft3NoNo4Contrat d'EntréePro & Farm660,000$660,000$660,000$660,000$Lien
Tom NilssonChill (Nas)D221993-08-19Yes176 Lbs6 ft0NoNo4Avec RestrictionPro & Farm825,000$825,000$825,000$825,000$Lien
Tom WilsonChill (Nas)RW211994-03-29No215 Lbs6 ft4NoNo2Contrat d'EntréePro & Farm925,000$925,000$Lien
Victor Crus RydbergChill (Nas)C201995-03-21Yes190 Lbs5 ft11NoNo4Contrat d'EntréePro & Farm525,000$525,000$525,000$525,000$Lien
Yan Pavel LaplanteChill (Nas)C201995-04-23Yes178 Lbs6 ft0NoNo4Contrat d'EntréePro & Farm700,000$700,000$700,000$700,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2522.20194 Lbs6 ft13.24699,400$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Michael ChaputRadek FaksaTom Wilson40122
2Joel VerminAustin WatsonTobias Lindberg30122
3Andreas JohnsonYan Pavel LaplanteSamuel Kurker20122
4Henri IkonenT.J. TynanJustin Auger10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Steven Kampfer40122
2Cody GoloubefTom Nilsson30122
3Justin Auger20122
4Steven Kampfer10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Michael ChaputRadek FaksaTom Wilson60122
2Joel VerminAustin WatsonTobias Lindberg40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Steven Kampfer60122
2Cody GoloubefTom Nilsson40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Tom WilsonRadek Faksa60122
2Austin WatsonMichael Chaput40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Steven Kampfer60122
2Cody GoloubefTom Nilsson40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Tom Wilson60122Steven Kampfer60122
2Radek Faksa40122Cody GoloubefTom Nilsson40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Tom WilsonRadek Faksa60122
2Austin WatsonMichael Chaput40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Steven Kampfer60122
2Cody GoloubefTom Nilsson40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Michael ChaputRadek FaksaTom WilsonSteven Kampfer
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Michael ChaputRadek FaksaTom WilsonSteven Kampfer
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Christopher Wagner, Victor Crus Rydberg, Pavel JenysChristopher Wagner, Victor Crus RydbergPavel Jenys
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Cody Goloubef, Tom NilssonCody Goloubef, Tom Nilsson
Tirs de Pénalité
Tom Wilson, Radek Faksa, Austin Watson, Michael Chaput, Joel Vermin
Gardien
#1 : Jacob Markstrom, #2 : Kent Simpson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Admirals412000011319-620100001811-32110000058-330.37513243700144107123131028809419767215148768820315.00%28871.43%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Falcons211000007611010000023-11100000053220.50071219001441071231361880941976725011326112325.00%9277.78%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Bruins22000000963110000004311100000053241.00091726001441071231371880941976724810284112216.67%14285.71%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Crunch21000010954110000004131000001054141.00091423001441071231396880941976726616163915213.33%70100.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Heat550000002915142200000010733300000019811101.000295079011441071231315788094197672126446210525728.00%30873.33%11511278454.27%1320254951.79%787144754.39%2092144518186141068553
Phantoms220000001468110000007341100000073441.000142640001441071231388880941976726014264015640.00%13376.92%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Baby Hawks30300000813-51010000056-12020000037-400.000814220014410712313848809419767210228445314321.43%16662.50%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Monsters3210000013112211000008801100000053240.667132336011441071231384880941976729727455717635.29%19384.21%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Jayhawks320000011183110000003212100000186250.83311172800144107123138788094197672742324778112.50%100100.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Cougars220000001064110000005411100000052341.00010172700144107123136488094197672641330399333.33%14378.57%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Oil Kings55000000278192200000013493300000014410101.00027487502144107123131858809419767211836679631722.58%25484.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Sound Tigers20100001810-21010000056-11000000134-110.25081321001441071231368880941976726820283715320.00%13469.23%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Monarchs5310001024177220000001156311000101312180.80024416500144107123131308809419767215141649923730.43%27774.07%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Minnesota31100001121201000000156-12110000076130.5001223350114410712313114880941976729125366113323.08%13376.92%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Spiders2110000047-3110000004311010000004-420.50045900144107123136588094197672501041531300.00%8362.50%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Senators220000001165110000005321100000063341.00011203100144107123131008809419767263820528225.00%9188.89%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Manchots220000001257110000006241100000063341.00012243600144107123136588094197672399334013323.08%100100.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Wolf Pack220000001266110000007341100000053241.0001221330014410712313103880941976724821185013538.46%9188.89%11511278454.27%1320254951.79%787144754.39%2092144518186141068553
Sharks5400010025151033000000158721000100107390.90025446900144107123131628809419767210233489621419.05%22577.27%21511278454.27%1320254951.79%787144754.39%2092144518186141068553
Chiefs3210000012102220000009541010000035-240.667121931001441071231369880941976729221206212325.00%50100.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Thunder2010000179-21000000156-11010000023-110.25071219001441071231382880941976726722143912325.00%70100.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Marlies22000000835110000004221100000041341.000815230014410712313668809419767231812411417.14%6183.33%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Comets512000111820-2310000111110120200000710-350.50018294700144107123131788809419767215239608828725.00%24579.17%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Cabaret Lady Mary Ann22000000936110000006151100000032141.0009182700144107123139788094197672812331404250.00%12191.67%21511278454.27%1320254951.79%787144754.39%2092144518186141068553
IceCaps3100002013942100001010731000001032161.000131932001441071231398880941976729018374512216.67%16381.25%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Rocket220000001239110000005321100000070741.00012213301144107123136788094197672301064513538.46%2150.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Bears211000001082110000006331010000045-120.50010182800144107123135988094197672621226518337.50%130100.00%11511278454.27%1320254951.79%787144754.39%2092144518186141068553
Caroline220000001073110000006421100000043141.000101828001441071231393880941976725916143513430.77%7271.43%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Las Vegas321000002212102110000014951100000083540.66722386000144107123131378809419767290223260281450.00%16475.00%01511278454.27%1320254951.79%787144754.39%2092144518186141068553
Vs Division16101001307541348700001038231583100120371819270.84475134209011441071231364388094197672450110157336872022.99%71987.32%21511278454.27%1320254951.79%787144754.39%2092144518186141068553
Vs Conference3722800133169129401913300012956629189500121746311540.730169296465001441071231312548809419767210492774917921974623.35%1983980.30%41511278454.27%1320254951.79%787144754.39%2092144518186141068553
Since Last GM Reset8253170015637926511441296000242031386541241100132176127491230.750379660103906144107123132832880941976722322628990169044111425.85%4048080.20%71511278454.27%1320254951.79%787144754.39%2092144518186141068553
Total8253170015637926511441296000242031386541241100132176127491230.750379660103906144107123132832880941976722322628990169044111425.85%4048080.20%71511278454.27%1320254951.79%787144754.39%2092144518186141068553

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82123SOL1379660103928322322628990169006
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8253170156379265
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412960024203138
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4124110132176127
Derniers 10 Matchs
WLOTWOTL SOWSOL
340012
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
44111425.85%4048080.20%7
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
8809419767214410712313
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1511278454.27%1320254951.79%787144754.39%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2092144518186141068553


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
4 - 2016-10-1529Phantoms3Chill7WSommaire du Match
7 - 2016-10-1842Chill6Senators3WSommaire du Match
9 - 2016-10-2054Chill7Rocket0WSommaire du Match
10 - 2016-10-2162Chill3Sound Tigers4LXXSommaire du Match
12 - 2016-10-2377Chill5Wolf Pack3WSommaire du Match
14 - 2016-10-2584Chill0Spiders4LSommaire du Match
16 - 2016-10-2799Chill7Phantoms3WSommaire du Match
18 - 2016-10-29118Monsters0Chill5WSommaire du Match
21 - 2016-11-01137Sharks3Chill4WSommaire du Match
23 - 2016-11-03147Las Vegas6Chill5LSommaire du Match
24 - 2016-11-04158Chill1Admirals5LSommaire du Match
28 - 2016-11-08192Chill5Monsters3WSommaire du Match
30 - 2016-11-10202IceCaps4Chill6WSommaire du Match
32 - 2016-11-12214Bruins3Chill4WSommaire du Match
36 - 2016-11-16244Chill6Heat0WSommaire du Match
37 - 2016-11-17250Chill3Comets5LSommaire du Match
39 - 2016-11-19263Sharks1Chill5WSommaire du Match
43 - 2016-11-23297Comets3Chill2LXXSommaire du Match
45 - 2016-11-25308Oil Kings0Chill7WSommaire du Match
47 - 2016-11-27326Chill8Oil Kings0WSommaire du Match
49 - 2016-11-29341Chill8Sharks4WSommaire du Match
51 - 2016-12-01355Monarchs1Chill4WSommaire du Match
53 - 2016-12-03363Falcons3Chill2LSommaire du Match
55 - 2016-12-05381Chill5Falcons3WSommaire du Match
56 - 2016-12-06387Chill2Baby Hawks3LSommaire du Match
58 - 2016-12-08403Heat4Chill6WSommaire du Match
60 - 2016-12-10414Las Vegas3Chill9WSommaire du Match
62 - 2016-12-12429Chill6Manchots3WSommaire du Match
63 - 2016-12-13432Chill5Cougars2WSommaire du Match
65 - 2016-12-15447Chill4Marlies1WSommaire du Match
67 - 2016-12-17461Chill5Minnesota0WSommaire du Match
69 - 2016-12-19480Heat3Chill4WSommaire du Match
71 - 2016-12-21494Oil Kings4Chill6WSommaire du Match
73 - 2016-12-23507Marlies2Chill4WSommaire du Match
77 - 2016-12-27525Jayhawks2Chill3WSommaire du Match
79 - 2016-12-29543Wolf Pack3Chill7WSommaire du Match
81 - 2016-12-31549Chill6Heat2WSommaire du Match
85 - 2017-01-04573Chill4Comets5LSommaire du Match
87 - 2017-01-06590Chill4Admirals3WSommaire du Match
88 - 2017-01-07597Sound Tigers6Chill5LSommaire du Match
94 - 2017-01-13639IceCaps3Chill4WXXSommaire du Match
95 - 2017-01-14647Admirals4Chill2LSommaire du Match
97 - 2017-01-16662Chill2Oil Kings1WSommaire du Match
99 - 2017-01-18673Chill3IceCaps2WXXSommaire du Match
100 - 2017-01-19681Chill2Minnesota6LSommaire du Match
102 - 2017-01-21697Thunder6Chill5LXXSommaire du Match
104 - 2017-01-23710Cabaret Lady Mary Ann1Chill6WSommaire du Match
107 - 2017-01-26736Comets3Chill4WSommaire du Match
112 - 2017-01-31743Monarchs4Chill7WSommaire du Match
114 - 2017-02-02764Baby Hawks6Chill5LSommaire du Match
116 - 2017-02-04783Chill2Sharks3LXSommaire du Match
121 - 2017-02-09805Rocket3Chill5WSommaire du Match
123 - 2017-02-11826Manchots2Chill6WSommaire du Match
125 - 2017-02-13835Chill7Heat6WSommaire du Match
126 - 2017-02-14842Chill4Oil Kings3WSommaire du Match
128 - 2017-02-16853Chill4Monarchs3WXXSommaire du Match
130 - 2017-02-18866Sharks4Chill6WSommaire du Match
132 - 2017-02-20881Admirals7Chill6LXXSommaire du Match
135 - 2017-02-23898Chill1Baby Hawks4LSommaire du Match
136 - 2017-02-24903Chill4Jayhawks1WSommaire du Match
138 - 2017-02-26918Crunch1Chill4WSommaire du Match
140 - 2017-02-28925Chill5Bruins3WSommaire du Match
142 - 2017-03-02937Chill5Crunch4WXXSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
143 - 2017-03-03949Chill4Caroline3WSommaire du Match
145 - 2017-03-05968Caroline4Chill6WSommaire du Match
149 - 2017-03-09987Senators3Chill5WSommaire du Match
151 - 2017-03-111010Spiders3Chill4WSommaire du Match
153 - 2017-03-131022Monsters8Chill3LSommaire du Match
154 - 2017-03-141027Chill5Monarchs4WSommaire du Match
156 - 2017-03-161048Cougars4Chill5WSommaire du Match
158 - 2017-03-181060Chiefs3Chill4WSommaire du Match
160 - 2017-03-201072Chill8Las Vegas3WSommaire du Match
161 - 2017-03-211080Chill2Thunder3LSommaire du Match
163 - 2017-03-231094Chill3Cabaret Lady Mary Ann2WSommaire du Match
165 - 2017-03-251111Chill4Bears5LSommaire du Match
167 - 2017-03-271122Chill3Chiefs5LSommaire du Match
169 - 2017-03-291140Chiefs2Chill5WSommaire du Match
171 - 2017-03-311156Bears3Chill6WSommaire du Match
173 - 2017-04-021175Chill4Monarchs5LSommaire du Match
175 - 2017-04-041182Chill4Jayhawks5LXXSommaire du Match
177 - 2017-04-061205Comets4Chill5WXXSommaire du Match
179 - 2017-04-081217Minnesota6Chill5LXXSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance6369931684
Assistance PCT77.68%77.28%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2326 - 77.55% 65,969$2,704,725$3000100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,748,500$ 1,748,500$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jour
3,646,441$ 9,660$ 3,143,672$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 12,423$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
2016825317001563792651144129600024203138654124110013217612749106379660103906144107123132832880941976722322628990169044111425.85%4048080.20%71511278454.27%1320254951.79%787144754.39%2092144518186141068553
Total Saison Régulière825317001563792651144129600024203138654124110013217612749106379660103906144107123132832880941976722322628990169044111425.85%4048080.20%71511278454.27%1320254951.79%787144754.39%2092144518186141068553