Buffalo

GM : Joel Pelletier Morale : 34 Team Overall : 62
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Patrick Kane (A)X100.00503586925381938845868963527066050760
2David LegwandXX100.00523588717266935983605873568070050650
3Cal ClutterbuckX100.00783585727566935835516471505850054640
4Casey CizikasX100.00654385736965935883575876484742058640
5Trevor LewisXXX100.00633588706971925777536171456057054630
6Devante Smith-PellyXX100.00703584747465825835536362454843046610
7Boyd GordonX100.00504389666965804890455077456860054600
8Joakim NordstromXX100.00653590716266635545545677454439054600
9Joonas Donskoi (R)XX100.00503588765556536045615864583735054580
10Jacob De La RoseXX100.00593587647262434662444866483634044530
11Michael Dal Colle (R)X100.00555555555755555555555555553230046530
12Devin Shore (R)XX100.00503595667153353535353565483532075480
13Ryan Suter (C)X100.00695084746891956435755386487059062730
14Andrei Markov (A)X100.00554383766285956635745778457869035710
15Justin BraunX100.00644383676877935235574788485447046670
16Jonathan EricssonX100.00745076647474904835514578486356025660
17Mattias EkholmX100.00603581717271915435565180484441054650
18Anthony Deangelo (R)X100.00505050505250505050505050503230045490
Scratches
1Brett SutterXX100.00524380696949344349424461474844019510
2Eric GrybaX88.31886565607870754635484380484539023630
3Chad RuhwedelX100.00544375686161374335473971484238037560
4Seth Helgeson (R)X100.00684375607256373535383270483532019540
TEAM AVERAGE99.4561428169676671544954537149514604661
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Sergei Bobrovsky100.0080729674798378778784805043026750
2Jhonas Enroth100.0067459160666765656865634945030620
Scratches
TEAM AVERAGE100.007459946773757271787572504402869
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Joel Quenneville76958883999990CAN582500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Patrick KaneBuffaloRW7133397218260471372740012.04%3130018.329918682721343646231.53%20300041.1116000952
2Ryan SuterBuffaloD81103949212020147125140007.14%119198824.55913221033990111297100.00%000000.4901202014
3Andrei MarkovBuffaloD6811364773004896860012.79%70162123.85101222642870000258300.00%000000.5800000232
4Mattias EkholmBuffaloD82133346-246050781200010.83%72164220.0391120802850220207000.00%000000.5611000212
5Cal ClutterbuckBuffaloRW82172643070016479192008.85%7143717.53310136034210171284131.61%19300000.6003000332
6Casey CizikasBuffaloC82142640-15010481551380010.14%12135216.491562019010121983350.63%143600000.5912101214
7Trevor LewisBuffaloC/LW/RW82162036-112807884173009.25%11122214.914812443030000211048.34%60200000.5911000221
8Justin BraunBuffaloD74102535-568109175900011.11%91155721.046814552651013237010.00%000000.4500011030
9Joonas DonskoiBuffaloLW/RW82151934212036531370010.95%6117214.3035828323000053020.39%10300000.5802000314
10David LegwandBuffaloC/LW72141731132605094880015.91%15123017.092461512611221783155.49%80200000.5006000025
11Devante Smith-PellyBuffaloLW/RW80141630-1320108571120012.50%3131416.431782030000011150032.43%7400000.4611000122
12Joakim NordstromBuffaloLW/RW82131124-1236070901070012.15%18100912.3102213100052101129.73%7400000.4800000301
13Boyd GordonBuffaloC8281018-98023187700011.43%14112713.7512323710173435157.23%143100000.3200000122
14Jonathan EricssonBuffaloD7141216-198610904347008.51%70116716.4510113108000088000.00%000000.2700020010
15Eric GrybaBuffaloD7021315-8179351875138005.26%61119817.1212314860220189000.00%000000.2500133001
16Devin ShoreBuffaloC/LW43077-156082310000.00%252912.310440970000180030.79%41900000.2601000000
17Jacob De La RoseBuffaloC/LW68246-7200523936005.56%66639.75000120000140043.68%19000000.1800000100
18Anthony DeangeloBuffaloD39123-1028037760016.67%349412.670110140000540043.75%1600000.1200000001
19Chad RuhwedelBuffaloD39123-16180292216006.25%1145111.58000080000230027.78%1800000.1300000010
20Michael Dal ColleBuffaloLW13202-110010580025.00%014110.8700009000000033.33%1200000.2800000000
21Brett SutterBuffaloC/LW53101-9100181411009.09%04498.49000040000470030.32%15500000.0400000000
22Seth HelgesonBuffaloD10011-101602253000.00%1114214.250110000001000.00%000000.1400000000
Team Total or Average1426201358559-104915851413151919020010.57%6052321616.286010416458835016915312705301047.99%572800040.48524467292833
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Sergei BobrovskyBuffalo69292970.8972.6239172417116580220.679286517422
2Jhonas EnrothBuffalo2351110.8643.681044170644690100.00001764120
Team Total or Average92344080.8902.84496219423521270320.679288281542


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Force Waivers Contract StatusType Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Andrei Markov (1 Way Contract)BuffaloD361978-12-20No194 Lbs6 ft0NoNo3UFAPro & Farm8,000,000$8,000,000$8,000,000$Link
Anthony DeangeloBuffaloD191995-10-24Yes175 Lbs5 ft10NoNo4ELCPro & Farm925,000$925,000$925,000$925,000$Link
Boyd GordonBuffaloC311983-10-19No200 Lbs6 ft0YesNo5UFAPro & Farm2,000,000$2,000,000$2,000,000$1,750,000$1,500,000$Link
Brett SutterBuffaloC/LW281987-06-02No200 Lbs6 ft0NoNo1RFAPro & Farm600,000$Link
Cal ClutterbuckBuffaloRW271987-11-18No218 Lbs5 ft11NoNo6RFAPro & Farm1,250,000$1,250,000$1,250,000$1,250,000$1,250,000$1,250,000$Link
Casey CizikasBuffaloC241991-02-27No201 Lbs5 ft11NoNo2RFAPro & Farm1,250,000$1,250,000$Link
Chad RuhwedelBuffaloD251990-05-07No191 Lbs5 ft11NoNo1RFAPro & Farm925,000$Link
David Legwand (1 Way Contract)BuffaloC/LW351980-08-17No207 Lbs6 ft2YesNo2UFAPro & Farm1,800,000$1,800,000$Link
Devante Smith-PellyBuffaloLW/RW231992-06-14No214 Lbs6 ft0NoNo6RFAPro & Farm1,200,000$1,200,000$1,200,000$1,200,000$1,200,000$1,200,000$Link
Devin ShoreBuffaloC/LW211994-07-19Yes205 Lbs6 ft1NoNo4ELCPro & Farm818,000$818,000$818,000$818,000$Link
Eric GrybaBuffaloD271988-04-14No228 Lbs6 ft4NoNo1RFAPro & Farm525,000$Link
Jacob De La RoseBuffaloC/LW201995-05-20No207 Lbs6 ft3NoNo3ELCPro & Farm925,000$925,000$925,000$Link
Jhonas EnrothBuffaloG271988-06-25No171 Lbs5 ft10NoNo2RFAPro & Farm1,500,000$1,500,000$Link
Joakim NordstromBuffaloLW/RW231992-02-25No189 Lbs6 ft1NoNo2RFAPro & Farm600,000$600,000$Link
Jonathan EricssonBuffaloD311984-03-02No220 Lbs6 ft4YesNo5UFAPro & Farm3,312,890$3,312,890$3,312,890$3,312,890$3,312,890$Link
Joonas DonskoiBuffaloLW/RW231992-04-13Yes180 Lbs6 ft0NoNo4RFAPro & Farm925,000$925,000$925,000$925,000$Link
Justin BraunBuffaloD281987-02-10No205 Lbs6 ft2NoNo1RFAPro & Farm1,400,000$Link
Mattias EkholmBuffaloD251990-05-24No215 Lbs6 ft4NoNo3RFAPro & Farm1,800,000$1,800,000$1,800,000$Link
Michael Dal ColleBuffaloLW191996-06-20Yes182 Lbs6 ft1NoNo4ELCPro & Farm925,000$925,000$925,000$925,000$Link
Patrick KaneBuffaloRW261988-11-19No177 Lbs5 ft11NoNo6RFAPro & Farm8,000,000$8,000,000$8,000,000$8,000,000$8,000,000$8,000,000$Link
Ryan SuterBuffaloD301985-01-21No206 Lbs6 ft2NoNo1UFAPro & Farm6,000,000$Link
Sergei BobrovskyBuffaloG271988-09-20No199 Lbs6 ft2NoNo1RFAPro & Farm3,000,000$Link
Seth HelgesonBuffaloD241990-10-08Yes215 Lbs6 ft4NoNo3RFAPro & Farm595,000$595,000$595,000$Link
Trevor LewisBuffaloC/LW/RW281987-01-08No199 Lbs6 ft1NoNo1RFAPro & Farm900,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2426.13200 Lbs6 ft12.962,048,995$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
49,175,890$35,825,890$30,675,890$19,105,890$15,262,890$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joonas DonskoiDavid LegwandPatrick Kane25122
2Michael Dal ColleCasey CizikasCal Clutterbuck25122
3Trevor LewisBoyd GordonJoakim Nordstrom25122
4Jacob De La RoseDevin ShoreDevante Smith-Pelly25122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SuterAndrei Markov30122
2Mattias EkholmJustin Braun30122
3Jonathan EricssonAnthony Deangelo30122
4Ryan SuterAndrei Markov10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joonas DonskoiDavid LegwandPatrick Kane60122
2Michael Dal ColleCasey CizikasCal Clutterbuck40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SuterAndrei Markov60122
2Mattias EkholmJustin Braun40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Boyd GordonJoakim Nordstrom60122
2Casey CizikasCal Clutterbuck40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SuterAndrei Markov60122
2Mattias EkholmJustin Braun40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Boyd Gordon60122Ryan SuterAndrei Markov60122
2Casey Cizikas40122Mattias EkholmJustin Braun40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1David LegwandPatrick Kane60122
2Casey CizikasCal Clutterbuck40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SuterAndrei Markov60122
2Mattias EkholmJustin Braun40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joonas DonskoiDavid LegwandPatrick KaneRyan SuterAndrei Markov
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
David LegwandCasey CizikasJoakim NordstromRyan SuterAndrei Markov
Extra Forwards
Normal PowerPlayPenalty Kill
Patrick Kane, Devin Shore, Jacob De La RoseDevante Smith-Pelly, Joakim NordstromDavid Legwand
Extra Defensemen
Normal PowerPlayPenalty Kill
Jonathan Ericsson, Anthony Deangelo, Ryan SuterAnthony DeangeloJonathan Ericsson, Anthony Deangelo
Penalty Shots
Devin Shore, Devante Smith-Pelly, Cal Clutterbuck, Casey Cizikas, Trevor Lewis
Goalie
#1 : Jhonas Enroth, #2 : Sergei Bobrovsky


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Anaheim2010010036-31010000013-21000010023-110.250347001110371412101531614419111.11%7185.71%01266263448.06%1302262249.66%632125550.36%513646152613
Atlanta312000009721010000012-12110000085320.333918270015305813252008021457015320.00%14192.86%01266263448.06%1302262249.66%632125550.36%623980233717
Boston40200011714-72010001047-32010000137-430.37571017003124963316461210621446629310.34%20385.00%01266263448.06%1302262249.66%632125550.36%1087488325226
Calgary2020000046-21010000023-11010000023-100.00048120030104717191106114322316212.50%11190.91%01266263448.06%1302262249.66%632125550.36%493245162512
Philadelphie3120000068-22020000026-41100000042220.33361016003120812337210801624581715.88%11281.82%01266263448.06%1302262249.66%632125550.36%704770223818
Chicago2020000039-61010000034-11010000005-500.000369001020371112140551828378112.50%14471.43%01266263448.06%1302262249.66%632125550.36%402554152412
Colorado21100000541110000004131010000013-220.500510151030204519521056132426800.00%11190.91%01266263448.06%1302262249.66%632125550.36%463048162512
Kansas City2020000058-31010000024-21010000034-100.000591400131047102215061171847400.00%9277.78%01266263448.06%1302262249.66%632125550.36%452949132512
Detroit440000001257220000005322200000072581.0001220320131809517334509730667519421.05%31390.32%11266263448.06%1302262249.66%632125550.36%905999315024
Edmonton22000000734110000003121100000042241.000712190023206018241804714144015213.33%60100.00%01266263448.06%1302262249.66%632125550.36%503445142312
Islanders311010006602110000034-11000100032140.66761218012211651816292832835601715.88%14378.57%01266263448.06%1302262249.66%632125550.36%694575233719
LA Kings210001006601000010012-11100000054130.7506915002220541718181501937391300.00%16381.25%01266263448.06%1302262249.66%632125550.36%473151152512
Minnesota211000003301010000023-11100000010120.500369012010602014260551322261516.67%10370.00%01266263448.06%1302262249.66%632125550.36%523640152714
Hartford32100000752110000003122110000044040.66771017003220682426180802641631700.00%12191.67%01266263448.06%1302262249.66%632125550.36%714872223618
Ottawa523000001920-122000000127530300000713-640.400193554007840162575847013130459329517.24%201050.00%11266263448.06%1302262249.66%632125550.36%13493101356434
Pittsburgh30201000911-22010100067-11010000034-120.333916251014317819322527619306019210.53%15286.67%01266263448.06%1302262249.66%632125550.36%704673244020
Rangers30200001611-52020000048-41000000123-110.167610160041109538223358415336318316.67%13192.31%01266263448.06%1302262249.66%632125550.36%805667223718
San Jose220000001156110000006421100000051441.0001119300043404414191105615353312541.67%12375.00%11266263448.06%1302262249.66%632125550.36%483146142413
St-Louis2010000159-41010000025-31000000134-110.250591400221139171555622022418225.00%11190.91%11266263448.06%1302262249.66%632125550.36%412657162611
Tampa Bay40200110814-6201000106602010010028-630.3758122000331275312419610243426825312.00%20385.00%01266263448.06%1302262249.66%632125550.36%996999314924
Toronto5500000020101033000000125722000000853101.000203555008840156624846010033469524520.83%22386.36%01266263448.06%1302262249.66%632125550.36%13394102356434
Vancouver211000006601010000034-11100000032120.500611170023104415161304520213412216.67%8275.00%01266263448.06%1302262249.66%632125550.36%463048152513
Quebec41200100911-2211000006512010010036-330.37591524001530902130390802550721500.00%18288.89%11266263448.06%1302262249.66%632125550.36%1057182285227
Winnipeg2020000027-51010000025-31010000002-200.0002350010103112514052204426800.00%21480.95%01266263448.06%1302262249.66%632125550.36%453050162411
Nashville20200000410-61010000005-51010000045-100.00048120012105315201807616263510110.00%13284.62%01266263448.06%1302262249.66%632125550.36%402552162712
Montreal413000001315-22110000065120200000710-320.25013243700814082322624010837515917317.65%15380.00%11266263448.06%1302262249.66%632125550.36%8153105325225
Washington310000117521000000123-12100001052350.8337101701321172242916106216346313430.77%160100.00%01266263448.06%1302262249.66%632125550.36%795568234221
Caroline32100000651110000003212110000033040.667612180021306121192107625305621523.81%15193.33%01266263448.06%1302262249.66%632125550.36%765164233820
Las Vegas20200000712-51010000035-21010000047-300.00071219002320471015220551935408450.00%15473.33%01266263448.06%1302262249.66%632125550.36%483145152613
Vs Division301312002218889-11594000205138131548002013751-14330.55088151239013327266756253235266187242193445281582314.56%1462781.51%41266263448.06%1302262249.66%632125550.36%753515679227386198
Vs Conference54212302233144147-3271211010217571427912012126976-7570.528144249393135245429133443344144937134538561610212954214.24%2563885.16%41266263448.06%1302262249.66%632125550.36%13349071252412694352
Since Last GM Reset82294002434215241-2641152101121109120-1141141901313106121-15760.4632153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533
Total82294002434215241-2641152101121109120-1141141901313106121-15760.4632153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8276OTL121537559019792129619988150924
All Games
GPWLOTWOTL SOWSOLGFGA
8229402434215241
Home Games
GPWLOTWOTL SOWSOLGFGA
4115211121109120
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4114191313106121
Last 10 Games
WLOTWOTL SOWSOL
630100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
4416314.29%4206983.57%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
6426576654479676410
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1266263448.06%1302262249.66%632125550.36%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1988134019336291052533


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2016-10-1310Montreal4Buffalo3LBoxScore
5 - 2016-10-1631Buffalo4Edmonton2WBoxScore
7 - 2016-10-1847Buffalo2Calgary3LBoxScore
9 - 2016-10-2061Buffalo3Vancouver2WBoxScore
14 - 2016-10-2585Buffalo4Philadelphie2WBoxScore
16 - 2016-10-2798Minnesota3Buffalo2LBoxScore
18 - 2016-10-29121Quebec3Buffalo2LBoxScore
19 - 2016-10-30123Buffalo0Winnipeg2LBoxScore
21 - 2016-11-01133Buffalo1Minnesota0WBoxScore
23 - 2016-11-03149Toronto2Buffalo4WBoxScore
25 - 2016-11-05165Buffalo2Ottawa3LBoxScore
27 - 2016-11-07180Buffalo3Boston4LXXBoxScore
29 - 2016-11-09194Ottawa2Buffalo5WBoxScore
31 - 2016-11-11206Hartford1Buffalo3WBoxScore
32 - 2016-11-12219Buffalo2Hartford3LBoxScore
35 - 2016-11-15231Buffalo3St-Louis4LXXBoxScore
37 - 2016-11-17253Tampa Bay2Buffalo1LBoxScore
39 - 2016-11-19268Pittsburgh4Buffalo5WXBoxScore
41 - 2016-11-21276Calgary3Buffalo2LBoxScore
43 - 2016-11-23288Detroit2Buffalo3WBoxScore
45 - 2016-11-25302Buffalo3Washington2WXXBoxScore
49 - 2016-11-29333Buffalo3Ottawa4LBoxScore
51 - 2016-12-01346Rangers4Buffalo2LBoxScore
53 - 2016-12-03366Boston1Buffalo2WXXBoxScore
55 - 2016-12-05380Buffalo2Washington0WBoxScore
56 - 2016-12-06389Edmonton1Buffalo3WBoxScore
59 - 2016-12-09405Washington3Buffalo2LXXBoxScore
63 - 2016-12-13437LA Kings2Buffalo1LXBoxScore
66 - 2016-12-16459Islanders4Buffalo1LBoxScore
67 - 2016-12-17466Buffalo2Caroline1WBoxScore
70 - 2016-12-20487Buffalo1Quebec2LXBoxScore
72 - 2016-12-22495Caroline2Buffalo3WBoxScore
73 - 2016-12-23509Buffalo3Islanders2WXBoxScore
77 - 2016-12-27521Buffalo4Detroit0WBoxScore
79 - 2016-12-29532Boston6Buffalo2LBoxScore
81 - 2016-12-31552Buffalo0Boston3LBoxScore
84 - 2017-01-03565Buffalo2Rangers3LXXBoxScore
86 - 2017-01-05582Buffalo0Chicago5LBoxScore
88 - 2017-01-07600Winnipeg5Buffalo2LBoxScore
91 - 2017-01-10619Philadelphie2Buffalo1LBoxScore
93 - 2017-01-12626Buffalo1Tampa Bay6LBoxScore
94 - 2017-01-13637Buffalo1Caroline2LBoxScore
97 - 2017-01-16657Kansas City4Buffalo2LBoxScore
98 - 2017-01-17665Buffalo4Toronto2WBoxScore
101 - 2017-01-20686Detroit1Buffalo2WBoxScore
102 - 2017-01-21693Buffalo3Montreal4LBoxScore
105 - 2017-01-24720Buffalo4Las Vegas7LBoxScore
107 - 2017-01-26735Buffalo3Kansas City4LBoxScore
112 - 2017-01-31750Buffalo4Montreal6LBoxScore
114 - 2017-02-02758Rangers4Buffalo2LBoxScore
116 - 2017-02-04775Ottawa5Buffalo7WBoxScore
118 - 2017-02-06788Buffalo2Hartford1WBoxScore
119 - 2017-02-07790San Jose4Buffalo6WBoxScore
121 - 2017-02-09807Anaheim3Buffalo1LBoxScore
123 - 2017-02-11821Buffalo4Toronto3WBoxScore
124 - 2017-02-12833Vancouver4Buffalo3LBoxScore
126 - 2017-02-14839Buffalo2Ottawa6LBoxScore
128 - 2017-02-16854Colorado1Buffalo4WBoxScore
130 - 2017-02-18862St-Louis5Buffalo2LBoxScore
131 - 2017-02-19869Chicago4Buffalo3LBoxScore
137 - 2017-02-25911Buffalo1Colorado3LBoxScore
138 - 2017-02-26918Buffalo4Nashville5LBoxScore
140 - 2017-02-28926Las Vegas5Buffalo3LBoxScore
142 - 2017-03-02937Nashville5Buffalo0LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2017-03-04953Tampa Bay4Buffalo5WXXBoxScore
145 - 2017-03-05964Buffalo3Pittsburgh4LBoxScore
147 - 2017-03-07973Philadelphie4Buffalo1LBoxScore
150 - 2017-03-10995Buffalo6Atlanta2WBoxScore
151 - 2017-03-111004Atlanta2Buffalo1LBoxScore
154 - 2017-03-141028Buffalo5San Jose1WBoxScore
156 - 2017-03-161037Buffalo5LA Kings4WBoxScore
157 - 2017-03-171052Buffalo2Anaheim3LXBoxScore
160 - 2017-03-201071Buffalo3Detroit2WBoxScore
161 - 2017-03-211076Pittsburgh3Buffalo1LBoxScore
165 - 2017-03-251106Toronto1Buffalo4WBoxScore
167 - 2017-03-271124Quebec2Buffalo4WBoxScore
168 - 2017-03-281130Buffalo2Atlanta3LBoxScore
173 - 2017-04-021166Islanders0Buffalo2WBoxScore
174 - 2017-04-031176Toronto2Buffalo4WBoxScore
176 - 2017-04-051192Montreal1Buffalo3WBoxScore
179 - 2017-04-081213Buffalo2Quebec4LBoxScore
180 - 2017-04-091230Buffalo1Tampa Bay2LXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity75006000250040002000
Ticket Price125755030200
Attendance2513762045889825216181053369
Attendance PCT81.75%83.17%95.86%98.66%65.08%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 18766 - 85.30% 1,639,190$67,206,800$22000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
50,775,890$ 50,625,890$ 0$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To DateLuxury Taxe Total
50,499,844$ 280,530$ 49,997,114$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 283,292$ 0$

Team Total Estime
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
0$ 51,976,680$ 77,711,756$ 77,711,756$



Depth Chart

Left WingCenterRight Wing
David LegwandAGE:35PO:0OV:65
Trevor LewisAGE:28PO:0OV:63
Devante Smith-PellyAGE:23PO:0OV:61
Joakim NordstromAGE:23PO:0OV:60
*Joonas DonskoiAGE:23PO:0OV:58
Ilya KovalchukAGE:32PO:0OV:56
Jacob De La RoseAGE:20PO:0OV:53
*Michael Dal ColleAGE:19PO:0OV:53
Brett SutterAGE:28PO:0OV:51
Eric BoultonAGE:39PO:0OV:51
*Devin ShoreAGE:21PO:0OV:48
Roman HorakAGE:24PO:0OV:44
*Mackenzie MacEachernAGE:21PO:0OV:44
Eric WellwoodAGE:25PO:0OV:42
Harri PesonenAGE:27PO:0OV:38
David LegwandAGE:35PO:0OV:65
Casey CizikasAGE:24PO:0OV:64
Trevor LewisAGE:28PO:0OV:63
Boyd GordonAGE:31PO:0OV:60
Jacob De La RoseAGE:20PO:0OV:53
Brett SutterAGE:28PO:0OV:51
Joey HishonAGE:23PO:0OV:50
*Devin ShoreAGE:21PO:0OV:48
Roman HorakAGE:24PO:0OV:44
Louis LeblancAGE:24PO:0OV:38
Olli JokinenAGE:36PO:0OV:24
Patrick KaneAGE:26PO:0OV:76
Cal ClutterbuckAGE:27PO:0OV:64
Trevor LewisAGE:28PO:0OV:63
Devante Smith-PellyAGE:23PO:0OV:61
Joakim NordstromAGE:23PO:0OV:60
*Joonas DonskoiAGE:23PO:0OV:58
Ilya KovalchukAGE:32PO:0OV:56
Akim AliuAGE:26PO:0OV:44
*Austin WuthrichAGE:22PO:0OV:42
Louis LeblancAGE:24PO:0OV:38

Defense #1Defense #2Goalie
Ryan SuterAGE:30PO:0OV:73
Andrei MarkovAGE:36PO:0OV:71
Justin BraunAGE:28PO:0OV:67
Jonathan EricssonAGE:31PO:0OV:66
Mattias EkholmAGE:25PO:0OV:65
Eric GrybaAGE:27PO:0OV:63
Chris ButlerAGE:28PO:0OV:57
Chad RuhwedelAGE:25PO:0OV:56
Jarred TinordiAGE:23PO:0OV:54
*Seth HelgesonAGE:24PO:0OV:54
*Ryan JohnstonAGE:23PO:0OV:50
*Anthony DeangeloAGE:19PO:0OV:49
Jesse BlackerAGE:24PO:0OV:49
*Patrick McNallyAGE:23PO:0OV:41
Matthew KonanAGE:24PO:0OV:38
Sergei BobrovskyAGE:27PO:0OV:75
Jhonas EnrothAGE:27PO:0OV:62
Jussi RynnasAGE:28PO:0OV:48
*Adam MorrisonAGE:24PO:0OV:45
Connor KnappAGE:25PO:0OV:45
*Mike LeeAGE:24PO:0OV:42
Tomas PopperleAGE:30PO:0OV:40

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Anatoli GolyshevBuffalo2016125
Andrew PeekeBuffalo201667
Arvid HenriksonBuffalo2016208
Callum BoothBuffalo201592
Clayton KellerBuffalo20166
Eetu TuulolaBuffalo2016172
Henrik BorgstromBuffalo201635
Matthew TkachukBuffalo20165
Mikhail MaltsevBuffalo2016138
Patrick HarperBuffalo2016139
William BittenBuffalo201649

Draft Picks

Year R1R2R3R4R5R6R7
2017Buf Win Buf Buf Tor Buf Buf Buf Buf
2018Buf Buf Mon Buf Buf Buf Nas Buf Buf
2019Buf Buf Buf Buf Buf Buf Buf
2020Buf Buf Buf Buf Buf Buf Buf
2021Buf Buf Buf Buf Buf Buf Buf



[2016-09-11 15:33:01] - Buffalo drafts Arvid Henrikson as the #208 overall pick in the Entry Draft of year 2016.
[2016-09-14 06:53:53] - TRADE : From Buffalo to Toronto : Brandon Dubinsky (71), Evander Kane (66).
[2016-09-14 06:53:53] - TRADE : From Toronto to Buffalo : Matthew Tkachuk (P), Y:2017-RND:3-Tor.
[2016-09-14 06:54:47] - TRADE : From Buffalo to Quebec : Paul Martin (68).
[2016-09-14 06:55:56] - Unknown Player is no longer as assistant for Buffalo.
[2016-09-14 06:55:56] - Paul Martin has been selected as assistant for Buffalo.
[2016-09-16 21:10:51] - David Legwand was added to Buffalo.
[2016-09-16 21:10:59] - Ryan Johnston was added to Buffalo.
[2016-09-21 21:47:23] - Eric Wellwood was added to Buffalo.
[2016-10-30 20:00:16] - Paul Martin is no longer as assistant for Buffalo.
[2016-10-30 20:00:16] - Andrei Markov has been selected as assistant for Buffalo.
[2016-12-20 22:25:17] - Devin Shore was added to Buffalo.
[2016-12-20 22:25:17] - Michael Dal Colle was added to Buffalo.
[2016-12-20 22:25:19] - TRADE : From Buffalo to Nashville : Martin Hanzal (68).
[2016-12-20 22:25:19] - TRADE : From Nashville to Buffalo : Devin Shore (48), Michael Dal Colle (53), Y:2018-RND:5-Nas.
[2017-02-04 08:30:37] - Buffalo paid 682 320 $ to release Bryce Van Brabant.
[2017-02-04 08:30:37] - Bryce Van Brabant was released.
[2017-02-04 08:30:43] - Buffalo paid 682 320 $ to release David Broll.
[2017-02-04 08:30:43] - David Broll was released.



No Injury or Suspension.


OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201682294002434215241-2641152101121109120-1141141901313106121-15582153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533
Total Regular Season82294002434215241-2641152101121109120-1141141901313106121-15582153755902479676410197964265766544212961998815094416314.29%4206983.57%61266263448.06%1302262249.66%632125550.36%1988134019336291052533