Tampa Bay

DG: Jean-François Moquin Morale : 71 Moyenne d'Équipe : 64
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nicklas Backstrom (A)X100.00573583817479937985867270526757086740
2Derek Stepan (A)X100.00564387786776887581777274666050058710
3Milan LucicX100.00795673758375957243737163566860082700
4Lee StempniakX100.00613584786674946835686869446555086680
5Josh BaileyXX100.00533588747373946444656363615748086650
6Anders LeeXX100.00685081728168946335596762484239083640
7Matt MoulsonXX100.00543590717369946135606265525850086640
8Brandon SutterX100.00553590686573576284547075505950081630
9Scottie UpshallXX100.00633581706965845740526170536861084630
10Kevin HayesXXX100.00583586718064846370616462453734086630
11Brian FlynnXXX100.00543591705765745488525673584439086600
12Sergey KalininXXX100.00753584737055554975445462483532068560
13Brent Seabrook (C)X100.00885085757482956535696182487470086750
14Mark GiordanoX100.00705080836485907035746584485951085730
15Marek ZidlickyX100.00613583736072775535575364456858086630
16Kevin ConnautonX100.00685076686869695135515172454537080620
17Anthony BitettoX100.00774379666953394535464362483532021550
18Brady SkjeiX100.00523581626855353135303276483532089540
Rayé
1Jacob JosefsonX84.52583586696266645482515670684943073590
2Kevan MillerX91.29786179676973755035524783484538073650
3Nikita NikitinX100.00573583607362404735464771485043020570
4Ryan Pulock (R)X97.85504386657153364935435567483532045550
MOYENNE D'ÉQUIPE98.7363418371706874585158597051534607464
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Frederik Andersen100.0090709185878991838784804639066790
2Robin Lehner100.0064459194676268695681704643083660
Rayé
MOYENNE D'ÉQUIPE100.007758919077768076728375464107573
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Barry Trotz99959099999897CAN542500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nicklas BackstromTampa BayC82345084-1160491832430013.99%9150418.3414284277397101157254.56%187500011.1211000353
2Mark GiordanoTampa BayD822062823163451201331830010.93%125197724.111221331323960000303510.00%000100.8300116638
3Derek StepanTampa BayC6733387124200561512410013.69%12119517.8582129702870002756352.28%142700021.194110001035
4Brent SeabrookTampa BayD821653693150101661151340011.94%95207025.25111930864090223311210.00%000000.6700000514
5Milan LucicTampa BayLW823034641014725268712320012.93%9149218.2015102562389000003138.18%11000000.8624014381
6Lee StempniakTampa BayRW8224355955201181142000012.00%21154218.81819277035400062035535.24%10500000.7711000550
7Anders LeeTampa BayLW/RW8215274226515130371180012.71%6123615.0861723273900002633225.00%8400000.6800021323
8Josh BaileyTampa BayLW/RW8215274291207073173008.67%9137116.7241014473310000112232.99%9700000.61212000146
9Brandon SutterTampa BayC73141226-5100341561210011.57%21113015.48202113511283213152.64%156900100.4600000044
10Brian FlynnTampa BayC/LW/RW82816245601769670011.94%1188210.7602214710152721051.18%38100000.5418000011
11Kevin HayesTampa BayC/LW/RW8213112441604051860015.12%488110.75033686000004040.96%16600000.5400000121
12Kevin ConnautonTampa BayD803202311104201034142007.14%48119514.94123549011096010.00%000000.3800112200
13Jacob JosefsonTampa BayC7561521111203792520011.54%76779.040000000001341048.09%73400000.62112000013
14Matt MoulsonTampa BayLW/RW8281321131401847780010.26%8114313.9400006000001028.95%7600000.3700000002
15Kevan MillerTampa BayD6931518610135947533009.09%75130818.970113130002280000.00%000000.2800313020
16Marek ZidlickyTampa BayD828816144606039600013.33%70172521.04448372920000330200.00%000000.1900000012
17Scottie UpshallTampa BayLW/RW8077140320725971009.86%688211.030000200023280035.62%7300000.3200000110
18Brady SkjeiTampa BayD50491320100221046008.70%5488417.6902223200000080100.00%000000.2900000200
19Ryan PulockTampa BayD45459-91401617260015.38%2971415.8842618172000012000.00%100000.2500000000
20Sergey KalininTampa BayC/LW/RW29011-5315311210000.00%01996.8600000000030046.81%9400000.1000000000
21Anthony BitettoTampa BayD50003215821000.00%47414.9000001100007000.00%000000.0000001000
Stats d'équipe Total ou en Moyenne147526545872312310421601529154722170011.95%6232408916.33891612506753875347312842461950.57%679200230.6012495617424343
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Frederik AndersenTampa Bay69431670.9072.4039936616017280320.684386814873
2Robin LehnerTampa Bay198620.8952.6099200434090100.700101468000
Stats d'équipe Total ou en Moyenne88512290.9052.4449866620321370420.688488282873


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Anders LeeTampa BayLW/RW251990-07-03No228 Lbs6 ft3NoNo1Avec RestrictionPro & Farm900,000$Lien
Anthony BitettoTampa BayD251990-07-15No210 Lbs6 ft1NoNo3Avec RestrictionPro & Farm605,000$605,000$605,000$Lien
Brady SkjeiTampa BayD211994-03-26No206 Lbs6 ft3NoNo4Contrat d'EntréePro & Farm925,000$925,000$925,000$925,000$Lien
Brandon SutterTampa BayC261989-02-14No190 Lbs6 ft3NoNo1Avec RestrictionPro & Farm1,350,000$Lien
Brent SeabrookTampa BayD301985-04-20No220 Lbs6 ft3NoNo5Sans RestrictionPro & Farm6,500,000$6,000,000$6,000,000$5,750,000$5,500,000$Lien
Brian FlynnTampa BayC/LW/RW271988-07-26No183 Lbs6 ft1NoNo1Avec RestrictionPro & Farm925,000$Lien
Derek StepanTampa BayC251990-06-18No196 Lbs6 ft0NoNo1Avec RestrictionPro & Farm4,000,000$Lien
Frederik AndersenTampa BayG261989-10-02No220 Lbs6 ft4NoNo2Avec RestrictionPro & Farm925,000$925,000$Lien
Jacob JosefsonTampa BayC241991-03-02No190 Lbs6 ft0NoNo3Avec RestrictionPro & Farm1,100,000$1,100,000$1,100,000$Lien
Josh BaileyTampa BayLW/RW261989-10-02No210 Lbs6 ft1NoNo1Avec RestrictionPro & Farm1,600,000$Lien
Kevan MillerTampa BayD271987-11-15No210 Lbs6 ft2NoNo2Avec RestrictionPro & Farm550,000$550,000$Lien
Kevin ConnautonTampa BayD251990-02-23No205 Lbs6 ft2NoNo2Avec RestrictionPro & Farm600,000$600,000$Lien
Kevin HayesTampa BayC/LW/RW231992-05-08No225 Lbs6 ft5NoNo3Avec RestrictionPro & Farm900,000$900,000$900,000$Lien
Lee StempniakTampa BayRW321983-02-04No195 Lbs5 ft11YesNo5Sans RestrictionPro & Farm5,000,000$5,000,000$5,000,000$5,000,000$5,000,000$Lien
Marek Zidlicky (Contrat à 1 Volet)Tampa BayD381977-02-03No190 Lbs5 ft11NoNo1Sans RestrictionPro & Farm2,500,000$Lien
Mark GiordanoTampa BayD321983-10-03No198 Lbs6 ft0NoNo1Sans RestrictionPro & Farm3,000,000$Lien
Matt MoulsonTampa BayLW/RW311983-11-01No212 Lbs6 ft1YesNo5Sans RestrictionPro & Farm2,074,000$2,074,000$2,074,000$2,074,000$2,074,000$Lien
Milan LucicTampa BayLW271988-06-07No233 Lbs6 ft3YesNo5Avec RestrictionPro & Farm6,000,000$5,000,000$5,000,000$5,000,000$4,500,000$Lien
Nicklas BackstromTampa BayC271987-11-23No213 Lbs6 ft1YesNo6Avec RestrictionPro & Farm8,000,000$6,000,000$6,000,000$6,000,000$5,800,000$5,800,000$Lien
Nikita NikitinTampa BayD291986-06-16No217 Lbs6 ft4NoNo0Avec RestrictionPro & FarmLien
Robin LehnerTampa BayG241991-07-24No240 Lbs6 ft5NoNo3Avec RestrictionPro & Farm1,600,000$1,600,000$1,600,000$Lien
Ryan PulockTampa BayD201994-10-06Yes215 Lbs6 ft2NoNo4Contrat d'EntréePro & Farm925,000$925,000$925,000$925,000$Lien
Scottie UpshallTampa BayLW/RW311983-10-07No200 Lbs6 ft0YesNo5Sans RestrictionPro & Farm2,000,000$1,750,000$1,650,000$1,650,000$1,300,000$Lien
Sergey KalininTampa BayC/LW/RW241991-03-17No200 Lbs6 ft3NoNo4Avec RestrictionPro & Farm925,000$925,000$925,000$925,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2426.88209 Lbs6 ft22.832,204,333$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
52,904,000$34,879,000$32,704,000$28,249,000$24,174,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Milan LucicDerek StepanLee Stempniak32122
2Josh BaileyNicklas BackstromMatt Moulson30122
3Kevin HayesBrandon SutterAnders Lee23122
4Sergey KalininBrian FlynnScottie Upshall15131
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brent SeabrookKevin Connauton31122
2Marek ZidlickyMark Giordano29122
3Anthony BitettoBrady Skjei23131
4Brent SeabrookMark Giordano17122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Milan LucicNicklas BackstromAnders Lee60113
2Kevin HayesDerek StepanLee Stempniak40113
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brent SeabrookMark Giordano60113
2Brady SkjeiAnthony Bitetto40113
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brandon SutterLee Stempniak57131
2Brian FlynnScottie Upshall43131
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brent SeabrookKevin Connauton58131
2Marek ZidlickyMark Giordano42131
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Brian Flynn61140Brent SeabrookMark Giordano60140
2Nicklas Backstrom39140Marek ZidlickyBrady Skjei40140
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brandon SutterJosh Bailey55122
2Nicklas BackstromAnders Lee45122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Marek ZidlickyMark Giordano56122
2Anthony BitettoBrady Skjei44122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Milan LucicNicklas BackstromLee StempniakBrent SeabrookMark Giordano
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brian FlynnNicklas BackstromLee StempniakBrent SeabrookMark Giordano
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nicklas Backstrom, Milan Lucic, Josh BaileyNicklas Backstrom, Derek StepanBrian Flynn
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mark Giordano, Brent Seabrook, Marek ZidlickyMark GiordanoBrent Seabrook, Mark Giordano
Tirs de Pénalité
Derek Stepan, Josh Bailey, Brian Flynn, Brandon Sutter, Milan Lucic
Gardien
#1 : Frederik Andersen, #2 : Robin Lehner


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Anaheim220000001257110000003211100000093641.0001221330052505718182105715264511218.18%13469.23%11432281150.94%1322267049.51%681131151.95%503443142613
Atlanta31200000611-52020000039-61100000032120.333612180031207828183208116555519421.05%15473.33%01432281150.94%1322267049.51%681131151.95%694673243718
Boston522000012013720200000710-3320000011331050.50020345402461001554553539127375780391025.64%23291.30%01432281150.94%1322267049.51%681131151.95%12989113386231
Buffalo420010011486210010008262100000166070.875142539002101210225512387525527520315.00%25388.00%01432281150.94%1322267049.51%681131151.95%996899304924
Calgary22000000514110000003031100000021141.00058130112204315121604420143316212.50%70100.00%01432281150.94%1322267049.51%681131151.95%473146162613
Philadelphie311010001192110000007432010100045-140.6671121320062219033282727425506921419.05%15286.67%01432281150.94%1322267049.51%681131151.95%765166223820
Chicago2110000057-2110000002111010000036-320.50059140011304717111904611232714214.29%11281.82%01432281150.94%1322267049.51%681131151.95%483042152815
Colorado2010000135-21010000012-11000000123-110.25035800201152102413948152736800.00%11190.91%01432281150.94%1322267049.51%681131151.95%473348162814
Kansas City211000001192110000006241010000057-220.5001120310064105526141506324394014428.57%12466.67%11432281150.94%1322267049.51%681131151.95%483345142513
Detroit513000011317-430200001711-42110000066030.300131932002380147485247315552679724520.83%31583.87%01432281150.94%1322267049.51%681131151.95%12182121366130
Edmonton21100000761110000005141010000025-320.500712190022305710262104616202917317.65%90100.00%01432281150.94%1322267049.51%681131151.95%473146172612
Islanders33000000954110000003212200000063361.00091423002430803128210741135611715.88%14285.71%01432281150.94%1322267049.51%681131151.95%785563213819
LA Kings22000000844110000003121100000053241.0008142200332046121519058930429222.22%9277.78%01432281150.94%1322267049.51%681131151.95%463046152612
Minnesota2020000036-31010000013-21010000023-100.000347101200531319210421316418112.50%7185.71%01432281150.94%1322267049.51%681131151.95%513643132412
Hartford310001017612000010135-21100000041340.667714210014208726302878723436618316.67%140100.00%01432281150.94%1322267049.51%681131151.95%735076213718
Ottawa4210000113121210000016602110000076150.625132538002560103353532511223518417529.41%22481.82%11432281150.94%1322267049.51%681131151.95%986893285226
Pittsburgh321000001073110000004132110000066040.6671015250042407726242708623284915533.33%14192.86%01432281150.94%1322267049.51%681131151.95%704972233617
Rangers310000111073100000103212100000175250.8331015250043217727291797330285319421.05%14285.71%01432281150.94%1322267049.51%681131151.95%795572243819
San Jose2110000078-11010000024-21100000054120.50071118102410411413140631533357342.86%9277.78%01432281150.94%1322267049.51%681131151.95%483347142412
St-Louis2020000048-41010000036-31010000012-100.0004711001210581421230541512447114.29%60100.00%01432281150.94%1322267049.51%681131151.95%473146152612
Toronto431000001367220000008352110000053260.75013213401553010537383009234467221314.29%19289.47%01432281150.94%1322267049.51%681131151.95%1057185294925
Vancouver22000000752110000004311100000032141.000713200022305019171404621234010220.00%40100.00%01432281150.94%1322267049.51%681131151.95%463148162512
Quebec420000201394210000106422100001075281.0001320330035341214040381010431477733412.12%20290.00%01432281150.94%1322267049.51%681131151.95%1037094325126
Winnipeg21000010633110000002021000001043141.0006915012211611620254591242369111.11%11372.73%01432281150.94%1322267049.51%681131151.95%533542142815
Nashville22000000633110000003211100000031241.0006915002220491517170531424409222.22%120100.00%01432281150.94%1322267049.51%681131151.95%452949152512
Montreal4310000014113220000007432110000077060.750142438004820106264634010245547421523.81%22290.91%01432281150.94%1322267049.51%681131151.95%8958100324924
Washington3300000015782200000010551100000052361.0001524390058208817393208214474921419.05%21290.48%01432281150.94%1322267049.51%681131151.95%785463223819
Caroline32000001963220000007341000000123-150.833917260124317924213257820384917317.65%14285.71%01432281150.94%1322267049.51%681131151.95%785466223920
Las Vegas20100010990100000106511010000034-120.50091625004133532012215581521311317.69%80100.00%01432281150.94%1322267049.51%681131151.95%563841142715
Vs Division3015801024100762415740101249409158400012513615400.667100168268032242336839256315257357672473745591753520.00%1622087.65%11432281150.94%1322267049.51%681131151.95%747509708227377190
Vs Conference542912021371771344327146011238971182715601014886325760.704177300477044970539149546853247358140240969810103226319.57%2833587.63%11432281150.94%1322267049.51%681131151.95%13529261264410680344
Since Last GM Reset8244220215827021357412310011331331033041211201025137110271110.67727045872826839981142217687771732762139624104815294748918.78%4125486.89%31432281150.94%1322267049.51%681131151.95%2038138819036251051535
Total8244220215827021357412310011331331033041211201025137110271110.67727045872826839981142217687771732762139624104815294748918.78%4125486.89%31432281150.94%1322267049.51%681131151.95%2038138819036251051535

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82111OTW1270458728221721396241048152926
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8244222158270213
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4123101133133103
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4121121025137110
Derniers 10 Matchs
WLOTWOTL SOWSOL
621001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
4748918.78%4125486.89%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
6877717327683998114
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1432281150.94%1322267049.51%681131151.95%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2038138819036251051535


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2016-10-135Detroit5Tampa Bay3LSommaire du Match
4 - 2016-10-1520Hartford2Tampa Bay1LXSommaire du Match
7 - 2016-10-1843Quebec3Tampa Bay4WSommaire du Match
9 - 2016-10-2055Colorado2Tampa Bay1LSommaire du Match
11 - 2016-10-2275Tampa Bay3Ottawa5LSommaire du Match
14 - 2016-10-2587Tampa Bay3Toronto0WSommaire du Match
16 - 2016-10-27102Tampa Bay4Montreal5LSommaire du Match
18 - 2016-10-29114Tampa Bay4Hartford1WSommaire du Match
19 - 2016-10-30127Tampa Bay2Rangers3LXXSommaire du Match
21 - 2016-11-01139Tampa Bay3Islanders2WSommaire du Match
23 - 2016-11-03154Boston5Tampa Bay4LSommaire du Match
25 - 2016-11-05166Hartford3Tampa Bay2LXXSommaire du Match
27 - 2016-11-07182Tampa Bay4Quebec3WXXSommaire du Match
30 - 2016-11-10198Islanders2Tampa Bay3WSommaire du Match
32 - 2016-11-12217San Jose4Tampa Bay2LSommaire du Match
34 - 2016-11-14229Tampa Bay3Islanders1WSommaire du Match
35 - 2016-11-15230Tampa Bay6Detroit2WSommaire du Match
37 - 2016-11-17253Tampa Bay2Buffalo1WSommaire du Match
39 - 2016-11-19265Tampa Bay3Philadelphie2WXSommaire du Match
41 - 2016-11-21279Tampa Bay3Las Vegas4LSommaire du Match
43 - 2016-11-23294Philadelphie4Tampa Bay7WSommaire du Match
45 - 2016-11-25305Atlanta5Tampa Bay1LSommaire du Match
47 - 2016-11-27325Tampa Bay2Boston3LXXSommaire du Match
49 - 2016-11-29332Tampa Bay3Atlanta2WSommaire du Match
51 - 2016-12-01351Tampa Bay1St-Louis2LSommaire du Match
53 - 2016-12-03359Washington3Tampa Bay4WSommaire du Match
54 - 2016-12-04371Tampa Bay2Caroline3LXXSommaire du Match
58 - 2016-12-08399Vancouver3Tampa Bay4WSommaire du Match
60 - 2016-12-10411Pittsburgh1Tampa Bay4WSommaire du Match
64 - 2016-12-14443Tampa Bay2Calgary1WSommaire du Match
66 - 2016-12-16458Tampa Bay3Vancouver2WSommaire du Match
67 - 2016-12-17469Tampa Bay2Edmonton5LSommaire du Match
70 - 2016-12-20486Detroit3Tampa Bay2LSommaire du Match
72 - 2016-12-22500St-Louis6Tampa Bay3LSommaire du Match
73 - 2016-12-23512Tampa Bay5Washington2WSommaire du Match
78 - 2016-12-28529Montreal1Tampa Bay3WSommaire du Match
79 - 2016-12-29535Toronto2Tampa Bay3WSommaire du Match
81 - 2016-12-31555Caroline0Tampa Bay3WSommaire du Match
84 - 2017-01-03569Winnipeg0Tampa Bay2WSommaire du Match
86 - 2017-01-05580Las Vegas5Tampa Bay6WXXSommaire du Match
88 - 2017-01-07601Tampa Bay1Philadelphie3LSommaire du Match
89 - 2017-01-08603Tampa Bay4Pittsburgh3WSommaire du Match
93 - 2017-01-12626Buffalo1Tampa Bay6WSommaire du Match
94 - 2017-01-13635Atlanta4Tampa Bay2LSommaire du Match
97 - 2017-01-16659Tampa Bay5LA Kings3WSommaire du Match
98 - 2017-01-17671Tampa Bay9Anaheim3WSommaire du Match
100 - 2017-01-19684Tampa Bay5San Jose4WSommaire du Match
102 - 2017-01-21697Tampa Bay3Nashville1WSommaire du Match
105 - 2017-01-24722Tampa Bay3Chicago6LSommaire du Match
107 - 2017-01-26731Tampa Bay3Quebec2WSommaire du Match
112 - 2017-01-31752Boston5Tampa Bay3LSommaire du Match
114 - 2017-02-02760Ottawa2Tampa Bay3WSommaire du Match
116 - 2017-02-04776Anaheim2Tampa Bay3WSommaire du Match
119 - 2017-02-07797LA Kings1Tampa Bay3WSommaire du Match
122 - 2017-02-10813Tampa Bay2Minnesota3LSommaire du Match
123 - 2017-02-11825Tampa Bay4Winnipeg3WXXSommaire du Match
130 - 2017-02-18864Tampa Bay5Kansas City7LSommaire du Match
131 - 2017-02-19873Tampa Bay2Colorado3LXXSommaire du Match
133 - 2017-02-21887Edmonton1Tampa Bay5WSommaire du Match
135 - 2017-02-23896Calgary0Tampa Bay3WSommaire du Match
139 - 2017-02-27920Ottawa4Tampa Bay3LXXSommaire du Match
141 - 2017-03-01934Caroline3Tampa Bay4WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
143 - 2017-03-03948Tampa Bay2Pittsburgh3LSommaire du Match
144 - 2017-03-04953Tampa Bay4Buffalo5LXXSommaire du Match
146 - 2017-03-06971Rangers2Tampa Bay3WXXSommaire du Match
149 - 2017-03-09993Minnesota3Tampa Bay1LSommaire du Match
151 - 2017-03-111005Quebec1Tampa Bay2WXXSommaire du Match
153 - 2017-03-131017Tampa Bay5Rangers2WSommaire du Match
154 - 2017-03-141024Tampa Bay4Ottawa1WSommaire du Match
156 - 2017-03-161045Toronto1Tampa Bay5WSommaire du Match
158 - 2017-03-181057Washington2Tampa Bay6WSommaire du Match
161 - 2017-03-211080Nashville2Tampa Bay3WSommaire du Match
163 - 2017-03-231089Tampa Bay2Boston0WSommaire du Match
164 - 2017-03-241102Tampa Bay0Detroit4LSommaire du Match
167 - 2017-03-271126Chicago1Tampa Bay2WSommaire du Match
170 - 2017-03-301141Detroit3Tampa Bay2LXXSommaire du Match
172 - 2017-04-011160Montreal3Tampa Bay4WSommaire du Match
173 - 2017-04-021168Kansas City2Tampa Bay6WSommaire du Match
175 - 2017-04-041187Tampa Bay9Boston0WSommaire du Match
177 - 2017-04-061201Tampa Bay2Toronto3LSommaire du Match
178 - 2017-04-071206Tampa Bay3Montreal2WSommaire du Match
180 - 2017-04-091230Buffalo1Tampa Bay2WXSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna60005000250040001000
Prix des Billets100603520205
Assistance24525920403710194916396041000
Attendance PCT99.70%99.53%99.46%99.98%100.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 18444 - 99.70% 1,273,855$52,228,035$18500100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
52,904,000$ 49,390,666$ 0$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jourTaxe de Luxe Totale
52,232,920$ 292,287$ 51,730,189$ 0$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 295,050$ 0$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
0$ 54,242,570$ 160,828,453$ 160,828,453$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
Milan LucicAGE:27PO:0OV:70
Josh BaileyAGE:26PO:0OV:65
Anders LeeAGE:25PO:0OV:64
Matt MoulsonAGE:31PO:0OV:64
Scottie UpshallAGE:31PO:0OV:63
Kevin HayesAGE:23PO:0OV:63
Brian FlynnAGE:27PO:0OV:60
Sergey KalininAGE:24PO:0OV:56
Ronalds KeninsAGE:24PO:0OV:55
Nicklas JensenAGE:22PO:0OV:52
Tommy SestitoAGE:28PO:0OV:52
Derek GrantAGE:25PO:0OV:50
Carter AshtonAGE:24PO:0OV:48
Kasperi KapanenAGE:19PO:0OV:48
Petr StrakaAGE:23PO:0OV:46
*Samuel HenleyAGE:22PO:0OV:46
John PerssonAGE:23PO:0OV:42
Luca CaputiAGE:27PO:0OV:40
Nicolas DeschampsAGE:25PO:0OV:37
Nicklas BackstromAGE:27PO:0OV:74
Derek StepanAGE:25PO:0OV:71
Brandon SutterAGE:26PO:0OV:63
Kevin HayesAGE:23PO:0OV:63
Brian FlynnAGE:27PO:0OV:60
Jacob JosefsonAGE:24PO:0OV:59
Sergey KalininAGE:24PO:0OV:56
Derek GrantAGE:25PO:0OV:50
*Brody SutterAGE:24PO:0OV:49
*Samuel HenleyAGE:22PO:0OV:46
*Ryan MartindaleAGE:23PO:0OV:44
*Adam GilmourAGE:21PO:0OV:42
*Thomas Di PauliAGE:21PO:0OV:41
Jamie ArnielAGE:25PO:0OV:36
Lee StempniakAGE:32PO:0OV:68
Josh BaileyAGE:26PO:0OV:65
Anders LeeAGE:25PO:0OV:64
Matt MoulsonAGE:31PO:0OV:64
Scottie UpshallAGE:31PO:0OV:63
Kevin HayesAGE:23PO:0OV:63
Brian FlynnAGE:27PO:0OV:60
Sergey KalininAGE:24PO:0OV:56
Brett RitchieAGE:22PO:0OV:54
Nicklas JensenAGE:22PO:0OV:52
*Brody SutterAGE:24PO:0OV:49
Kasperi KapanenAGE:19PO:0OV:48
Petr StrakaAGE:23PO:0OV:46
*Adam GilmourAGE:21PO:0OV:42
Spencer MachacekAGE:26PO:0OV:40
Jamie ArnielAGE:25PO:0OV:36

Défense #1Défense #2Gardien
Brent SeabrookAGE:30PO:0OV:75
Mark GiordanoAGE:32PO:0OV:73
Kevan MillerAGE:27PO:0OV:65
Marek ZidlickyAGE:38PO:0OV:63
Kevin ConnautonAGE:25PO:0OV:62
Nikita NikitinAGE:29PO:0OV:57
Anthony BitettoAGE:25PO:0OV:55
*Ryan PulockAGE:20PO:0OV:55
Brady SkjeiAGE:21PO:0OV:54
Rinat ValievAGE:20PO:0OV:52
*Brett LernoutAGE:20PO:0OV:50
*Thomas VannelliAGE:20PO:0OV:45
*James MelindyAGE:21PO:0OV:44
*Simon BertilssonAGE:24PO:0OV:44
*Calle AnderssonAGE:21PO:0OV:42
*Michael BrodzinskiAGE:20PO:0OV:40
*Adam PolasekAGE:24PO:0OV:39
*Mikael WikstrandAGE:21PO:0OV:39
Frederik AndersenAGE:26PO:0OV:79
Robin LehnerAGE:24PO:0OV:66
Calvin PickardAGE:23PO:0OV:65
Linus UllmarkAGE:22PO:0OV:53
*Jake PatersonAGE:21PO:0OV:44
*Zachary NagelvoortAGE:21PO:0OV:42
*Janne JuvonenAGE:21PO:0OV:40
Timo PielmeierAGE:26PO:0OV:39

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Brendan GuhleTampa Bay201557
Jacob LarssonTampa Bay201534
Mitchell MarnerTampa Bay20154
Samuel BlaisTampa Bay2015154
Tage ThompsonTampa Bay201624

Choix au Repêchage

Année R1R2R3R4R5R6R7
2017Tam Tam Tam Tam KC Tam Edm KC KC Tam
2018Tam Tam Tam Tam Tam Tam Que Tam
2019Tam Tam Tam Tam Tam Tam Tam
2020Tam Tam Tam Tam Tam Tam Tam
2021Tam Tam Tam Tam Tam Tam Tam



[2016-09-16 21:15:38] - Kevan Miller was added to Tampa Bay.
[2016-09-16 21:15:39] - TRADE : From Tampa Bay to Caroline : Tomas Plekanec (71).
[2016-09-16 21:15:39] - TRADE : From Caroline to Tampa Bay : Kevan Miller (65), Y:2017-RND:5-Edm.
[2017-01-17 20:00:21] - New Record for Team's Most Goals (9) in 1 Game for Tampa Bay!
[2017-01-17 20:00:21] - New Record for Team's Most Assists (16) in 1 Game for Tampa Bay!
[2017-01-17 20:00:21] - New Record for Team's Most Points (25) in 1 Game for Tampa Bay!



Nikita Nikitin est suspendu indéfiniement.



LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
20168244220215827021357412310011331331033041211201025137110278827045872826839981142217687771732762139624104815294748918.78%4125486.89%31432281150.94%1322267049.51%681131151.95%2038138819036251051535
Total Saison Régulière8244220215827021357412310011331331033041211201025137110278827045872826839981142217687771732762139624104815294748918.78%4125486.89%31432281150.94%1322267049.51%681131151.95%2038138819036251051535