Your STHS is out of Date! Please update your STHS version!
Login

Phantoms
GP: 82 | W: 41 | L: 33 | OTL: 8 | P: 90
GF: 174 | GA: 169 | PP%: 12.44% | PK%: 90.68%
GM : Richard Duguay | Morale : 50 | Team Overall : 60
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Spiders
47-30-5, 99pts
2
FINAL
3 Phantoms
41-33-8, 90pts
Team Stats
L1StreakW4
26-14-1Home Record26-12-3
21-16-4Home Record15-21-5
4-4-2Last 10 Games7-2-1
2.44Goals Per Game2.12
1.96Goals Against Per Game2.06
15.64%Power Play Percentage12.44%
87.27%Penalty Kill Percentage90.68%
Bears
29-38-15, 73pts
1
FINAL
2 Phantoms
41-33-8, 90pts
Team Stats
L1StreakW4
16-17-8Home Record26-12-3
13-21-7Home Record15-21-5
4-5-1Last 10 Games7-2-1
1.99Goals Per Game2.12
2.45Goals Against Per Game2.06
18.04%Power Play Percentage12.44%
81.72%Penalty Kill Percentage90.68%
Team Leaders
Goals
Elliot Desnoyers
17
Assists
Sasha Chmelevski
33
Points
Sasha Chmelevski
45
Plus/Minus
Topi Niemela
18
Wins
Devon Levi
39
Save Percentage
Vadim Zherenko
1

Team Stats
Goals For
174
2.12 GFG
Shots For
1511
18.43 Avg
Power Play Percentage
12.4%
28 GF
Offensive Zone Start
38.8%
Goals Against
169
2.06 GAA
Shots Against
1539
18.77 Avg
Penalty Kill Percentage
90.7%%
22 GA
Defensive Zone Start
39.3%
Team Info

General ManagerRichard Duguay
DivisionNord-Est
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,867
Season Tickets300


Roster Info

Pro Team23
Farm Team18
Contract Limit41 / 50
Prospects19


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Sasha ChmelevskiXX100.00714390756860695954745174244646050640231778,335$
2Tanner LaczynskiXX100.00664476717475676653606062665852050630253775,000$
3Alexander NylanderXXX100.00594473696466656544636358665350050620242800,000$
4Anton BlidhXX100.00624463686671706441595960646355050620271900,000$
5Trey Fix-WolanskyX100.00544663715664636844656256675250050610232809,166$
6Elliot Desnoyers (R)XX100.00614070696260616442626260655050050610203825,000$
7Logan HutskoX100.00584471715765646242625462635250050600232867,000$
8Josiah SlavinX100.00584570646464636141575555605250050580233600,000$
9Oskar Olausson (R)X100.00594067656257576241565754615050050580193894,167$
10Sam Poulin (R)XX100.00634768606860585848545453575050050560213863,333$
11Brad Lambert (R)XX100.00604068626254535740545454575050050560183950,000$
12Dillon Hamaliuk (R)X100.00727774637744444649434261424444050530213789,167$
13Jack AhcanX100.0055437171576665654064556764545005062N0254750,000$
14Mac HollowellX100.00564466715562595940595164605250050600242799,766$
15Nikolai KnyzhovX100.00624068596860595640545360565250050580241796,667$
16Topi Niemela (R)X100.00564068695658575640545460595050050580203856,667$
17Mason Millman (R)X100.00534651595352505140505053525050050530213700,000$
Scratches
1Nikita ZaitsevX100.007347777478868371406862776977690507303033,500,111$
TEAM AVERAGE100.0061457067646262614359556158535105060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Arvid Holm (R)100.0069636571696971686967555250050630231845,833$
2Devon Levi (R)100.0073666573696968666969705250050630203925,000$
Scratches
1Kyle Keyser (R)100.0071636362666769686867615250050610232725,000$
2Vadim Zherenko (R)100.0068616262656567656665585050050600213846,667$
3Beck Warm (R)100.0062575759585554535459535150050530232650,000$
TEAM AVERAGE100.006962626565656664656559515005060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sasha ChmelevskiPhantoms (Phi)C/RW76123345832097207102457811.76%23157320.703361516500001803252.72%137700100.57211000623
2Trey Fix-WolanskyPhantoms (Phi)RW821724414280581211493810211.41%5135416.5234712920002593253.85%7800000.6102000612
3Tanner LaczynskiPhantoms (Phi)C/RW811721385200106120158419810.76%13157019.392572419100041512658.78%24500000.48411000363
4Logan HutskoPhantoms (Phi)C8214243861806214380246717.50%30134316.380114300001252046.63%65200000.5700000164
5Jarred TinordiPhiladelphieD6210233337752106477173212.99%74150224.23459451530002141320%000000.4400001532
6Elliot DesnoyersPhantoms (Phi)C/LW77171532322081150145429311.72%10130917.0024610800000735245.81%103700000.4900000147
7Alexander NylanderPhantoms (Phi)C/LW/RW811516313275751281384010010.87%6148118.29022171810002614148.61%79400000.4225010136
8Jack AhcanPhantoms (Phi)D8152429-26340114946425307.81%53165720.46459351710000171200%000000.3500000122
9Mac HollowellPhantoms (Phi)D8191625-23540113634593220.00%60161619.96246211640001155110%000000.3100000311
10Nikolai KnyzhovPhantoms (Phi)D817152214500110413292121.88%35135716.76112858000083020%000000.3200000401
11Oskar OlaussonPhantoms (Phi)RW8271219-214052587620679.21%382310.042027140000201038.10%6300000.4600000112
12Ben HarpurPhiladelphieD3861117424063475072912.00%2792324.2935834106101195210%000000.3702000111
13Jakob PelletierPhiladelphieLW3651116-325540707824506.41%685223.67033139501121051045.53%25700000.3815010110
14Topi NiemelaPhantoms (Phi)D71313161826058351761817.65%2491212.86000329000068000%000000.3500000121
15Anton BlidhPhantoms (Phi)LW/RW457512-416067447926408.86%488219.62101101040001632145.00%4000000.2713000030
16Josiah SlavinPhantoms (Phi)C8221012-62204151465244.35%177238.830222310000241041.98%29300000.3300000110
17Sam PoulinPhantoms (Phi)C/LW3757124141038222282122.73%356215.201011240000120143.90%4100000.4300110001
18Dillon HamaliukPhantoms (Phi)LW23112-660241111189.09%229112.6801105000071046.15%1300000.1400000000
19Mason MillmanPhantoms (Phi)D1011236024350020.00%517417.450000700004000%000000.2300000100
20Brad LambertPhantoms (Phi)C/RW371121402722182205.56%53639.8200009000090033.33%2700000.1100000000
Team Total or Average124516128344465192514601494139238993011.57%4052127717.092845732611717112161516332148.65%491700100.421039131373736
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Devon LeviPhantoms (Phi)77393080.8941.9546380815114270320.75040775542
2Arvid HolmPhantoms (Phi)62300.8972.06321001110700000554000
3Vadim ZherenkoPhantoms (Phi)10001.000012000300000021000
Team Total or Average84413380.8951.964972081621537032408280542


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexander NylanderPhantoms (Phi)C/LW/RW241998-03-02No192 Lbs6 ft1NoNoYesYes2Pro & Farm800,000$0$0$No800,000$Link
Anton Blidh (1 Way Contract)Phantoms (Phi)LW/RW271995-03-14No185 Lbs6 ft0NoNoYesYes1Pro & Farm900,000$0$0$NoLink
Arvid HolmPhantoms (Phi)G231998-11-03Yes214 Lbs6 ft4NoNoNoNo1Pro & Farm845,833$0$0$NoLink
Beck WarmPhantoms (Phi)G231999-04-22Yes172 Lbs6 ft0NoNoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Brad LambertPhantoms (Phi)C/RW182003-12-19Yes183 Lbs6 ft0NoNoNoNo3Pro & Farm950,000$0$0$No950,000$950,000$
Devon LeviPhantoms (Phi)G202001-12-27Yes184 Lbs6 ft0NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$
Dillon HamaliukPhantoms (Phi)LW212000-10-30Yes201 Lbs6 ft4NoNoNoNo3Pro & Farm789,167$0$0$No789,167$789,167$Link
Elliot DesnoyersPhantoms (Phi)C/LW202002-01-21Yes183 Lbs5 ft11NoNoNoNo3Pro & Farm825,000$0$0$No825,000$825,000$
Jack Ahcan (1 Way Contract)Phantoms (Phi)D251997-05-18No179 Lbs5 ft8YesNoYesYes4Pro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Josiah SlavinPhantoms (Phi)C231998-12-31No190 Lbs6 ft3NoNoNoNo3Pro & Farm600,000$0$0$No600,000$600,000$Link
Kyle KeyserPhantoms (Phi)G231999-03-08Yes179 Lbs6 ft2NoNoNoNo2Pro & Farm725,000$0$0$No725,000$Link
Logan HutskoPhantoms (Phi)C231999-02-11No172 Lbs5 ft10NoNoNoNo2Pro & Farm867,000$0$0$No867,000$Link
Mac HollowellPhantoms (Phi)D241998-09-26No170 Lbs5 ft9NoNoYesYes2Pro & Farm799,766$0$0$No799,766$Link
Mason MillmanPhantoms (Phi)D212001-07-18Yes175 Lbs6 ft1NoNoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Link
Nikita Zaitsev (1 Way Contract)Phantoms (Phi)D301991-10-29No192 Lbs6 ft2NoNoYesYes3Pro & Farm3,500,111$2,600,111$0$No3,500,111$3,500,111$Link
Nikolai KnyzhovPhantoms (Phi)D241998-03-20No218 Lbs6 ft2NoNoYesYes1Pro & Farm796,667$0$0$NoLink
Oskar OlaussonPhantoms (Phi)RW192002-11-10Yes181 Lbs6 ft1NoNoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$
Sam PoulinPhantoms (Phi)C/LW212001-02-25Yes207 Lbs6 ft1NoNoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Link
Sasha ChmelevskiPhantoms (Phi)C/RW231999-06-09No187 Lbs6 ft0NoNoNoNo1Pro & Farm778,335$0$0$NoLink
Tanner LaczynskiPhantoms (Phi)C/RW251997-06-01No190 Lbs6 ft1NoNoYesYes3Pro & Farm775,000$0$0$No775,000$775,000$Link
Topi NiemelaPhantoms (Phi)D202002-03-25Yes157 Lbs5 ft11NoNoNoNo3Pro & Farm856,667$0$0$No856,667$856,667$
Trey Fix-WolanskyPhantoms (Phi)RW231999-05-26No179 Lbs5 ft7NoNoNoNo2Pro & Farm809,166$0$0$No809,166$Link
Vadim ZherenkoPhantoms (Phi)G212001-03-15Yes176 Lbs6 ft2NoNoNoNo3Pro & Farm846,667$0$0$No846,667$846,667$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2322.65185 Lbs6 ft02.43923,777$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander NylanderSasha ChmelevskiTanner Laczynski40122
2Sam PoulinElliot DesnoyersTrey Fix-Wolansky30122
3Dillon HamaliukLogan HutskoOskar Olausson20122
4Sasha ChmelevskiJosiah SlavinBrad Lambert10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack AhcanMac Hollowell40122
2Topi NiemelaNikolai Knyzhov30122
3Mason MillmanJosiah Slavin20122
4Jack AhcanMac Hollowell10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander NylanderSasha ChmelevskiTanner Laczynski60122
2Sam PoulinElliot DesnoyersTrey Fix-Wolansky40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack AhcanMac Hollowell60122
2Topi NiemelaNikolai Knyzhov40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Sasha ChmelevskiTanner Laczynski60122
2Alexander NylanderElliot Desnoyers40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack AhcanMac Hollowell60122
2Topi NiemelaNikolai Knyzhov40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Sasha Chmelevski60122Jack AhcanMac Hollowell60122
2Tanner Laczynski40122Topi NiemelaNikolai Knyzhov40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Sasha ChmelevskiTanner Laczynski60122
2Alexander NylanderElliot Desnoyers40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack AhcanMac Hollowell60122
2Topi NiemelaNikolai Knyzhov40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Alexander NylanderSasha ChmelevskiTanner LaczynskiJack AhcanMac Hollowell
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexander NylanderSasha ChmelevskiTanner LaczynskiJack AhcanMac Hollowell
Extra Forwards
Normal PowerPlayPenalty Kill
Logan Hutsko, Oskar Olausson, Brad LambertLogan Hutsko, Oskar OlaussonBrad Lambert
Extra Defensemen
Normal PowerPlayPenalty Kill
Mason Millman, Topi Niemela, Nikolai KnyzhovMason MillmanTopi Niemela, Nikolai Knyzhov
Penalty Shots
Sasha Chmelevski, Tanner Laczynski, Alexander Nylander, Elliot Desnoyers, Trey Fix-Wolansky
Goalie
#1 : Devon Levi, #2 : Arvid Holm


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000440110000003121010000013-220.500471110486059123445648555457349833500.00%4175.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
2Baby Hawks21000001440110000002111000000123-130.75047110048605912344564855545736312263133.33%6266.67%0998201549.53%958203946.98%535113547.14%2021142919355761029517
3Bears33000000853220000005321100000032161.000814220048605912544564855545745918575240.00%8187.50%0998201549.53%958203946.98%535113547.14%2021142919355761029517
4Bruins32100000752211000004401100000031240.667712190048605912424564855545745233157800.00%120100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
5Cabaret Lady Mary Ann33000000817110000003032200000051461.00081422024860591257456485554574520234711327.27%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
6Caroline4120000110100210000016332020000047-330.37510162600486059125245648555457842646707114.29%18288.89%1998201549.53%958203946.98%535113547.14%2021142919355761029517
7Chiefs21100000330110000003211010000001-120.50036900486059123545648555457451818474125.00%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
8Chill20100010550100000103211010000023-120.5005611004860591232456485554574091647500.00%70100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
9Comets21100000440110000003211010000012-120.50046100048605912384564855545759101425500.00%70100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
10Cougars3110000178-1110000003212010000146-230.50071320004860591248456485554577016165210110.00%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
11Crunch3100010178-1110000003212000010146-240.667714210048605912564564855545761918619222.22%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
12Heat2020000035-21010000012-11010000023-100.0003690048605912444564855545746122024500.00%10190.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
13Jayhawks211000006421010000023-11100000041320.500612180048605912504564855545743114503266.67%20100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
14Las Vegas2020000024-21010000012-11010000012-100.000246004860591248456485554573191046500.00%4250.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
15Manchots4130000048-4211000003302020000015-420.250481211486059126245648555457722736641000.00%120100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
16Marlies31100010642210000105231010000012-140.66768140148605912514564855545753141445800.00%50100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
17Minnesota2010010038-51000010034-11010000004-410.250369004860591252456485554574781239600.00%60100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
18Monarchs211000001101010000001-11100000010120.5001230148605912354564855545731828425120.00%12191.67%0998201549.53%958203946.98%535113547.14%2021142919355761029517
19Monsters4130000046-2211000003302020000013-220.2504610014860591264456485554576523267216212.50%11281.82%0998201549.53%958203946.98%535113547.14%2021142919355761029517
20Monsters2020000026-41010000012-11010000014-300.0002460048605912434564855545732814427114.29%7271.43%0998201549.53%958203946.98%535113547.14%2021142919355761029517
21Oceanics22000000743110000005321100000021141.0007132000486059123345648555457279836600.00%40100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
22Oil Kings2010010049-51010000015-41000010034-110.2504711004860591238456485554573610650600.00%3166.67%0998201549.53%958203946.98%535113547.14%2021142919355761029517
23Rocket320000101064100000104312200000063361.00010162600486059125545648555457551014529111.11%7185.71%0998201549.53%958203946.98%535113547.14%2021142919355761029517
24Sags21001000523100010003211100000020241.000591401486059124045648555457318143210110.00%70100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
25Seattle21100000440110000002111010000023-120.5004812004860591239456485554573910123910110.00%30100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
26Senators3030000039-62020000027-51010000012-100.00036900486059123745648555457601821659111.11%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
27Sound Tigers32100000550110000003122110000024-240.667510150048605912394564855545755132453800.00%12283.33%0998201549.53%958203946.98%535113547.14%2021142919355761029517
28Spiders41200010911-2201000108802110000013-240.50091423014860591266456485554577819201188225.00%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
29Stars21000010743100000104311100000031241.0007111800486059123045648555457271516423133.33%8275.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
30Thunder330000001248220000007251100000052361.00012233500486059121114564855545764188674125.00%40100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
31Wolf Pack411000111082200000114402110000064250.625101626004860591292456485554578315188115320.00%9277.78%0998201549.53%958203946.98%535113547.14%2021142919355761029517
Total823433013651741695411912011621008317411521002037486-12900.5491743044782848605912151145648555457153941754515812252812.44%2362290.68%1998201549.53%958203946.98%535113547.14%2021142919355761029517
_Since Last GM Reset823433013651741695411912011621008317411521002037486-12900.5491743044782848605912151145648555457153941754515812252812.44%2362290.68%1998201549.53%958203946.98%535113547.14%2021142919355761029517
_Vs Conference4420180104190819241170104158461220911000003235-3510.580901542442648605912792456485554577832222908691221310.66%123992.68%0998201549.53%958203946.98%535113547.14%2021142919355761029517
_Vs Division2657000215053-3132200021322571335000001828-10150.2885084134134860591242945648555457482132188515691014.49%78988.46%1998201549.53%958203946.98%535113547.14%2021142919355761029517

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8290W417430447815111539417545158128
All Games
GPWLOTWOTL SOWSOLGFGA
8234331365174169
Home Games
GPWLOTWOTL SOWSOLGFGA
411912116210083
Visitor Games
GPWLOTWOTL SOWSOLGFGA
41152102037486
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2252812.44%2362290.68%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4564855545748605912
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
998201549.53%958203946.98%535113547.14%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2021142919355761029517


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2023-10-1211Phantoms1Monsters2ALBoxScore
5 - 2023-10-1419Phantoms1Senators2ALBoxScore
8 - 2023-10-1742Comets2Phantoms3BWBoxScore
10 - 2023-10-1954Oil Kings5Phantoms1BLBoxScore
12 - 2023-10-2172Phantoms3Stars1AWBoxScore
15 - 2023-10-2498Phantoms1Las Vegas2ALBoxScore
17 - 2023-10-26104Minnesota4Phantoms3BLXBoxScore
19 - 2023-10-28117Admirals1Phantoms3BWBoxScore
21 - 2023-10-30131Caroline1Phantoms5BWBoxScore
23 - 2023-11-01141Crunch2Phantoms3BWBoxScore
25 - 2023-11-03157Phantoms2Crunch3ALXXBoxScore
26 - 2023-11-04164Monarchs1Phantoms0BLBoxScore
29 - 2023-11-07189Phantoms2Sags0AWBoxScore
32 - 2023-11-10208Phantoms1Admirals3ALBoxScore
33 - 2023-11-11221Phantoms1Monarchs0AWBoxScore
37 - 2023-11-15238Phantoms2Caroline3ALBoxScore
40 - 2023-11-18255Las Vegas2Phantoms1BLBoxScore
41 - 2023-11-19268Monsters0Phantoms2BWBoxScore
44 - 2023-11-22286Phantoms2Sound Tigers1AWBoxScore
46 - 2023-11-24294Wolf Pack2Phantoms1BLXXBoxScore
47 - 2023-11-25312Phantoms0Sound Tigers3ALBoxScore
50 - 2023-11-28328Caroline2Phantoms1BLXXBoxScore
52 - 2023-11-30344Spiders6Phantoms5BLBoxScore
54 - 2023-12-02363Phantoms1Manchots3ALBoxScore
56 - 2023-12-04374Manchots0Phantoms2BWBoxScore
59 - 2023-12-07400Phantoms4Jayhawks1AWBoxScore
61 - 2023-12-09417Phantoms1Monsters4ALBoxScore
64 - 2023-12-12435Phantoms2Chill3ALBoxScore
66 - 2023-12-14448Bears2Phantoms3BWBoxScore
68 - 2023-12-16466Cougars2Phantoms3BWBoxScore
71 - 2023-12-19487Phantoms0Spiders3ALBoxScore
73 - 2023-12-21502Chill2Phantoms3BWXXBoxScore
74 - 2023-12-22510Phantoms2Cougars3ALXXBoxScore
80 - 2023-12-28543Phantoms1Comets2ALBoxScore
81 - 2023-12-29554Phantoms2Seattle3ALBoxScore
83 - 2023-12-31570Phantoms2Heat3ALBoxScore
85 - 2024-01-02583Phantoms3Oil Kings4ALXBoxScore
87 - 2024-01-04592Monsters3Phantoms1BLBoxScore
89 - 2024-01-06605Heat2Phantoms1BLBoxScore
91 - 2024-01-08622Manchots3Phantoms1BLBoxScore
93 - 2024-01-10635Rocket3Phantoms4BWXXBoxScore
95 - 2024-01-12652Phantoms0Minnesota4ALBoxScore
96 - 2024-01-13657Phantoms2Oceanics1AWBoxScore
98 - 2024-01-15679Phantoms0Chiefs1ALBoxScore
101 - 2024-01-18694Stars3Phantoms4BWXXBoxScore
103 - 2024-01-20707Monsters2Phantoms1BLBoxScore
104 - 2024-01-21718Senators3Phantoms1BLBoxScore
106 - 2024-01-23732Thunder1Phantoms3BWBoxScore
108 - 2024-01-25747Phantoms2Cougars3ALBoxScore
110 - 2024-01-27759Bruins2Phantoms3BWBoxScore
120 - 2024-02-06786Phantoms2Cabaret Lady Mary Ann1AWBoxScore
122 - 2024-02-08797Oceanics3Phantoms5BWBoxScore
124 - 2024-02-10814Seattle1Phantoms2BWBoxScore
126 - 2024-02-12821Jayhawks3Phantoms2BLBoxScore
129 - 2024-02-15843Phantoms1Marlies2ALBoxScore
131 - 2024-02-17859Phantoms1Spiders0AWBoxScore
135 - 2024-02-21885Phantoms2Baby Hawks3ALXXBoxScore
138 - 2024-02-24905Wolf Pack2Phantoms3BWXXBoxScore
139 - 2024-02-25917Phantoms0Manchots2ALBoxScore
141 - 2024-02-27930Thunder1Phantoms4BWBoxScore
144 - 2024-03-01954Phantoms3Bears2AWBoxScore
145 - 2024-03-02962Senators4Phantoms1BLBoxScore
147 - 2024-03-04977Chiefs2Phantoms3BWBoxScore
150 - 2024-03-07996Phantoms3Cabaret Lady Mary Ann0AWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
152 - 2024-03-091016Phantoms5Thunder2AWBoxScore
155 - 2024-03-121035Sags2Phantoms3BWXBoxScore
157 - 2024-03-141050Marlies2Phantoms3BWXXBoxScore
159 - 2024-03-161065Phantoms3Bruins1AWBoxScore
162 - 2024-03-191086Marlies0Phantoms2BWBoxScore
164 - 2024-03-211099Phantoms2Caroline4ALBoxScore
166 - 2024-03-231114Bruins2Phantoms1BLBoxScore
167 - 2024-03-241129Cabaret Lady Mary Ann0Phantoms3BWBoxScore
169 - 2024-03-261137Phantoms1Wolf Pack2ALBoxScore
171 - 2024-03-281152Phantoms3Rocket1AWBoxScore
173 - 2024-03-301174Baby Hawks1Phantoms2BWBoxScore
175 - 2024-04-011183Sound Tigers1Phantoms3BWBoxScore
179 - 2024-04-051211Phantoms2Crunch3ALXBoxScore
180 - 2024-04-061222Phantoms0Monsters1ALBoxScore
183 - 2024-04-091242Phantoms3Rocket2AWBoxScore
185 - 2024-04-111257Phantoms5Wolf Pack2AWBoxScore
187 - 2024-04-131274Spiders2Phantoms3BWXXBoxScore
190 - 2024-04-161299Bears1Phantoms2BWBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,31539,223
Attendance PCT95.51%95.67%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2867 - 95.56% 97,445$3,995,244$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,062,906$ 5,109,786$ 5,109,786$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
26,613$ 2,062,906$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 26,613$ 0$




Phantoms Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Phantoms Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Phantoms Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA