Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Connexion

Phantoms
GP: 82 | W: 41 | L: 33 | OTL: 8 | P: 90
GF: 174 | GA: 169 | PP%: 12.44% | PK%: 90.68%
DG: Richard Duguay | Morale : 50 | Moyenne d’équipe : 60
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Spiders
47-30-5, 99pts
2
FINAL
3 Phantoms
41-33-8, 90pts
Team Stats
L1SéquenceW4
26-14-1Fiche domicile26-12-3
21-16-4Fiche domicile15-21-5
4-4-2Derniers 10 matchs7-2-1
2.44Buts par match 2.12
1.96Buts contre par match 2.06
15.64%Pourcentage en avantage numérique12.44%
87.27%Pourcentage en désavantage numérique90.68%
Bears
29-38-15, 73pts
1
FINAL
2 Phantoms
41-33-8, 90pts
Team Stats
L1SéquenceW4
16-17-8Fiche domicile26-12-3
13-21-7Fiche domicile15-21-5
4-5-1Derniers 10 matchs7-2-1
1.99Buts par match 2.12
2.45Buts contre par match 2.06
18.04%Pourcentage en avantage numérique12.44%
81.72%Pourcentage en désavantage numérique90.68%
Meneurs d'équipe
Buts
Elliot Desnoyers
17
Passes
Sasha Chmelevski
33
Points
Sasha Chmelevski
45
Plus/Moins
Topi Niemela
18
Victoires
Devon Levi
39
Pourcentage d’arrêts
Vadim Zherenko
1

Statistiques d’équipe
Buts pour
174
2.12 GFG
Tirs pour
1511
18.43 Avg
Pourcentage en avantage numérique
12.4%
28 GF
Début de zone offensive
38.8%
Buts contre
169
2.06 GAA
Tirs contre
1539
18.77 Avg
Pourcentage en désavantage numérique
90.7%%
22 GA
Début de la zone défensive
39.3%
Informations de l'équipe

Directeur généralRichard Duguay
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,867
Billets de saison300


Informations de la formation

Équipe Pro23
Équipe Mineure18
Limite contact 41 / 50
Espoirs19


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Sasha ChmelevskiXX100.00714390756860695954745174244646050640231778,335$
2Tanner LaczynskiXX100.00664476717475676653606062665852050630253775,000$
3Alexander NylanderXXX100.00594473696466656544636358665350050620242800,000$
4Anton BlidhXX100.00624463686671706441595960646355050620271900,000$
5Trey Fix-WolanskyX100.00544663715664636844656256675250050610232809,166$
6Elliot Desnoyers (R)XX100.00614070696260616442626260655050050610203825,000$
7Logan HutskoX100.00584471715765646242625462635250050600232867,000$
8Josiah SlavinX100.00584570646464636141575555605250050580233600,000$
9Oskar Olausson (R)X100.00594067656257576241565754615050050580193894,167$
10Sam Poulin (R)XX100.00634768606860585848545453575050050560213863,333$
11Brad Lambert (R)XX100.00604068626254535740545454575050050560183950,000$
12Dillon Hamaliuk (R)X100.00727774637744444649434261424444050530213789,167$
13Jack AhcanX100.0055437171576665654064556764545005062N0254750,000$
14Mac HollowellX100.00564466715562595940595164605250050600242799,766$
15Nikolai KnyzhovX100.00624068596860595640545360565250050580241796,667$
16Topi Niemela (R)X100.00564068695658575640545460595050050580203856,667$
17Mason Millman (R)X100.00534651595352505140505053525050050530213700,000$
Rayé
1Nikita ZaitsevX100.007347777478868371406862776977690507303033,500,111$
MOYENNE D’ÉQUIPE100.0061457067646262614359556158535105060
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Arvid Holm (R)100.0069636571696971686967555250050630231845,833$
2Devon Levi (R)100.0073666573696968666969705250050630203925,000$
Rayé
1Kyle Keyser (R)100.0071636362666769686867615250050610232725,000$
2Vadim Zherenko (R)100.0068616262656567656665585050050600213846,667$
3Beck Warm (R)100.0062575759585554535459535150050530232650,000$
MOYENNE D’ÉQUIPE100.006962626565656664656559515005060
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sasha ChmelevskiPhantoms (Phi)C/RW76123345832097207102457811.76%23157320.703361516500001803252.72%137700100.57211000623
2Trey Fix-WolanskyPhantoms (Phi)RW821724414280581211493810211.41%5135416.5234712920002593253.85%7800000.6102000612
3Tanner LaczynskiPhantoms (Phi)C/RW811721385200106120158419810.76%13157019.392572419100041512658.78%24500000.48411000363
4Logan HutskoPhantoms (Phi)C8214243861806214380246717.50%30134316.380114300001252046.63%65200000.5700000164
5Jarred TinordiPhiladelphieD6210233337752106477173212.99%74150224.23459451530002141320%000000.4400001532
6Elliot DesnoyersPhantoms (Phi)C/LW77171532322081150145429311.72%10130917.0024610800000735245.81%103700000.4900000147
7Alexander NylanderPhantoms (Phi)C/LW/RW811516313275751281384010010.87%6148118.29022171810002614148.61%79400000.4225010136
8Jack AhcanPhantoms (Phi)D8152429-26340114946425307.81%53165720.46459351710000171200%000000.3500000122
9Mac HollowellPhantoms (Phi)D8191625-23540113634593220.00%60161619.96246211640001155110%000000.3100000311
10Nikolai KnyzhovPhantoms (Phi)D817152214500110413292121.88%35135716.76112858000083020%000000.3200000401
11Oskar OlaussonPhantoms (Phi)RW8271219-214052587620679.21%382310.042027140000201038.10%6300000.4600000112
12Ben HarpurPhiladelphieD3861117424063475072912.00%2792324.2935834106101195210%000000.3702000111
13Jakob PelletierPhiladelphieLW3651116-325540707824506.41%685223.67033139501121051045.53%25700000.3815010110
14Topi NiemelaPhantoms (Phi)D71313161826058351761817.65%2491212.86000329000068000%000000.3500000121
15Anton BlidhPhantoms (Phi)LW/RW457512-416067447926408.86%488219.62101101040001632145.00%4000000.2713000030
16Josiah SlavinPhantoms (Phi)C8221012-62204151465244.35%177238.830222310000241041.98%29300000.3300000110
17Sam PoulinPhantoms (Phi)C/LW3757124141038222282122.73%356215.201011240000120143.90%4100000.4300110001
18Dillon HamaliukPhantoms (Phi)LW23112-660241111189.09%229112.6801105000071046.15%1300000.1400000000
19Mason MillmanPhantoms (Phi)D1011236024350020.00%517417.450000700004000%000000.2300000100
20Brad LambertPhantoms (Phi)C/RW371121402722182205.56%53639.8200009000090033.33%2700000.1100000000
Statistiques d’équipe totales ou en moyenne124516128344465192514601494139238993011.57%4052127717.092845732611717112161516332148.65%491700100.421039131373736
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Devon LeviPhantoms (Phi)77393080.8941.9546380815114270320.75040775542
2Arvid HolmPhantoms (Phi)62300.8972.06321001110700000554000
3Vadim ZherenkoPhantoms (Phi)10001.000012000300000021000
Statistiques d’équipe totales ou en moyenne84413380.8951.964972081621537032408280542


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Recrue Poids Taille Non-échange Disponible pour échange Ballotage forcé Waiver Possible Contrat Type Salaire actuel Salaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Lien
Alexander NylanderPhantoms (Phi)C/LW/RW241998-03-02No192 Lbs6 ft1NoNoYesYes2Pro & Farm800,000$0$0$No800,000$Lien
Anton Blidh (contrat à 1 volet)Phantoms (Phi)LW/RW271995-03-14No185 Lbs6 ft0NoNoYesYes1Pro & Farm900,000$0$0$NoLien
Arvid HolmPhantoms (Phi)G231998-11-03Yes214 Lbs6 ft4NoNoNoNo1Pro & Farm845,833$0$0$NoLien
Beck WarmPhantoms (Phi)G231999-04-22Yes172 Lbs6 ft0NoNoNoNo2Pro & Farm650,000$0$0$No650,000$Lien
Brad LambertPhantoms (Phi)C/RW182003-12-19Yes183 Lbs6 ft0NoNoNoNo3Pro & Farm950,000$0$0$No950,000$950,000$
Devon LeviPhantoms (Phi)G202001-12-27Yes184 Lbs6 ft0NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$
Dillon HamaliukPhantoms (Phi)LW212000-10-30Yes201 Lbs6 ft4NoNoNoNo3Pro & Farm789,167$0$0$No789,167$789,167$Lien
Elliot DesnoyersPhantoms (Phi)C/LW202002-01-21Yes183 Lbs5 ft11NoNoNoNo3Pro & Farm825,000$0$0$No825,000$825,000$
Jack Ahcan (contrat à 1 volet)Phantoms (Phi)D251997-05-18No179 Lbs5 ft8YesNoYesYes4Pro & Farm750,000$0$0$No750,000$750,000$750,000$Lien
Josiah SlavinPhantoms (Phi)C231998-12-31No190 Lbs6 ft3NoNoNoNo3Pro & Farm600,000$0$0$No600,000$600,000$Lien
Kyle KeyserPhantoms (Phi)G231999-03-08Yes179 Lbs6 ft2NoNoNoNo2Pro & Farm725,000$0$0$No725,000$Lien
Logan HutskoPhantoms (Phi)C231999-02-11No172 Lbs5 ft10NoNoNoNo2Pro & Farm867,000$0$0$No867,000$Lien
Mac HollowellPhantoms (Phi)D241998-09-26No170 Lbs5 ft9NoNoYesYes2Pro & Farm799,766$0$0$No799,766$Lien
Mason MillmanPhantoms (Phi)D212001-07-18Yes175 Lbs6 ft1NoNoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Lien
Nikita Zaitsev (contrat à 1 volet)Phantoms (Phi)D301991-10-29No192 Lbs6 ft2NoNoYesYes3Pro & Farm3,500,111$2,600,111$0$No3,500,111$3,500,111$Lien
Nikolai KnyzhovPhantoms (Phi)D241998-03-20No218 Lbs6 ft2NoNoYesYes1Pro & Farm796,667$0$0$NoLien
Oskar OlaussonPhantoms (Phi)RW192002-11-10Yes181 Lbs6 ft1NoNoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$
Sam PoulinPhantoms (Phi)C/LW212001-02-25Yes207 Lbs6 ft1NoNoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Lien
Sasha ChmelevskiPhantoms (Phi)C/RW231999-06-09No187 Lbs6 ft0NoNoNoNo1Pro & Farm778,335$0$0$NoLien
Tanner LaczynskiPhantoms (Phi)C/RW251997-06-01No190 Lbs6 ft1NoNoYesYes3Pro & Farm775,000$0$0$No775,000$775,000$Lien
Topi NiemelaPhantoms (Phi)D202002-03-25Yes157 Lbs5 ft11NoNoNoNo3Pro & Farm856,667$0$0$No856,667$856,667$
Trey Fix-WolanskyPhantoms (Phi)RW231999-05-26No179 Lbs5 ft7NoNoNoNo2Pro & Farm809,166$0$0$No809,166$Lien
Vadim ZherenkoPhantoms (Phi)G212001-03-15Yes176 Lbs6 ft2NoNoNoNo3Pro & Farm846,667$0$0$No846,667$846,667$
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2322.65185 Lbs6 ft02.43923,777$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Alexander NylanderSasha ChmelevskiTanner Laczynski40122
2Sam PoulinElliot DesnoyersTrey Fix-Wolansky30122
3Dillon HamaliukLogan HutskoOskar Olausson20122
4Sasha ChmelevskiJosiah SlavinBrad Lambert10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jack AhcanMac Hollowell40122
2Topi NiemelaNikolai Knyzhov30122
3Mason MillmanJosiah Slavin20122
4Jack AhcanMac Hollowell10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Alexander NylanderSasha ChmelevskiTanner Laczynski60122
2Sam PoulinElliot DesnoyersTrey Fix-Wolansky40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jack AhcanMac Hollowell60122
2Topi NiemelaNikolai Knyzhov40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Sasha ChmelevskiTanner Laczynski60122
2Alexander NylanderElliot Desnoyers40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jack AhcanMac Hollowell60122
2Topi NiemelaNikolai Knyzhov40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Sasha Chmelevski60122Jack AhcanMac Hollowell60122
2Tanner Laczynski40122Topi NiemelaNikolai Knyzhov40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Sasha ChmelevskiTanner Laczynski60122
2Alexander NylanderElliot Desnoyers40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jack AhcanMac Hollowell60122
2Topi NiemelaNikolai Knyzhov40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Alexander NylanderSasha ChmelevskiTanner LaczynskiJack AhcanMac Hollowell
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Alexander NylanderSasha ChmelevskiTanner LaczynskiJack AhcanMac Hollowell
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Logan Hutsko, Oskar Olausson, Brad LambertLogan Hutsko, Oskar OlaussonBrad Lambert
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Mason Millman, Topi Niemela, Nikolai KnyzhovMason MillmanTopi Niemela, Nikolai Knyzhov
Tirs de pénalité
Sasha Chmelevski, Tanner Laczynski, Alexander Nylander, Elliot Desnoyers, Trey Fix-Wolansky
Gardien
#1 : Devon Levi, #2 : Arvid Holm


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000440110000003121010000013-220.500471110486059123445648555457349833500.00%4175.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
2Baby Hawks21000001440110000002111000000123-130.75047110048605912344564855545736312263133.33%6266.67%0998201549.53%958203946.98%535113547.14%2021142919355761029517
3Bears33000000853220000005321100000032161.000814220048605912544564855545745918575240.00%8187.50%0998201549.53%958203946.98%535113547.14%2021142919355761029517
4Bruins32100000752211000004401100000031240.667712190048605912424564855545745233157800.00%120100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
5Cabaret Lady Mary Ann33000000817110000003032200000051461.00081422024860591257456485554574520234711327.27%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
6Caroline4120000110100210000016332020000047-330.37510162600486059125245648555457842646707114.29%18288.89%1998201549.53%958203946.98%535113547.14%2021142919355761029517
7Chiefs21100000330110000003211010000001-120.50036900486059123545648555457451818474125.00%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
8Chill20100010550100000103211010000023-120.5005611004860591232456485554574091647500.00%70100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
9Comets21100000440110000003211010000012-120.50046100048605912384564855545759101425500.00%70100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
10Cougars3110000178-1110000003212010000146-230.50071320004860591248456485554577016165210110.00%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
11Crunch3100010178-1110000003212000010146-240.667714210048605912564564855545761918619222.22%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
12Heat2020000035-21010000012-11010000023-100.0003690048605912444564855545746122024500.00%10190.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
13Jayhawks211000006421010000023-11100000041320.500612180048605912504564855545743114503266.67%20100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
14Las Vegas2020000024-21010000012-11010000012-100.000246004860591248456485554573191046500.00%4250.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
15Manchots4130000048-4211000003302020000015-420.250481211486059126245648555457722736641000.00%120100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
16Marlies31100010642210000105231010000012-140.66768140148605912514564855545753141445800.00%50100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
17Minnesota2010010038-51000010034-11010000004-410.250369004860591252456485554574781239600.00%60100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
18Monarchs211000001101010000001-11100000010120.5001230148605912354564855545731828425120.00%12191.67%0998201549.53%958203946.98%535113547.14%2021142919355761029517
19Monsters4130000046-2211000003302020000013-220.2504610014860591264456485554576523267216212.50%11281.82%0998201549.53%958203946.98%535113547.14%2021142919355761029517
20Monsters2020000026-41010000012-11010000014-300.0002460048605912434564855545732814427114.29%7271.43%0998201549.53%958203946.98%535113547.14%2021142919355761029517
21Oceanics22000000743110000005321100000021141.0007132000486059123345648555457279836600.00%40100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
22Oil Kings2010010049-51010000015-41000010034-110.2504711004860591238456485554573610650600.00%3166.67%0998201549.53%958203946.98%535113547.14%2021142919355761029517
23Rocket320000101064100000104312200000063361.00010162600486059125545648555457551014529111.11%7185.71%0998201549.53%958203946.98%535113547.14%2021142919355761029517
24Sags21001000523100010003211100000020241.000591401486059124045648555457318143210110.00%70100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
25Seattle21100000440110000002111010000023-120.5004812004860591239456485554573910123910110.00%30100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
26Senators3030000039-62020000027-51010000012-100.00036900486059123745648555457601821659111.11%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
27Sound Tigers32100000550110000003122110000024-240.667510150048605912394564855545755132453800.00%12283.33%0998201549.53%958203946.98%535113547.14%2021142919355761029517
28Spiders41200010911-2201000108802110000013-240.50091423014860591266456485554577819201188225.00%80100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
29Stars21000010743100000104311100000031241.0007111800486059123045648555457271516423133.33%8275.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
30Thunder330000001248220000007251100000052361.00012233500486059121114564855545764188674125.00%40100.00%0998201549.53%958203946.98%535113547.14%2021142919355761029517
31Wolf Pack411000111082200000114402110000064250.625101626004860591292456485554578315188115320.00%9277.78%0998201549.53%958203946.98%535113547.14%2021142919355761029517
Total823433013651741695411912011621008317411521002037486-12900.5491743044782848605912151145648555457153941754515812252812.44%2362290.68%1998201549.53%958203946.98%535113547.14%2021142919355761029517
_Since Last GM Reset823433013651741695411912011621008317411521002037486-12900.5491743044782848605912151145648555457153941754515812252812.44%2362290.68%1998201549.53%958203946.98%535113547.14%2021142919355761029517
_Vs Conference4420180104190819241170104158461220911000003235-3510.580901542442648605912792456485554577832222908691221310.66%123992.68%0998201549.53%958203946.98%535113547.14%2021142919355761029517
_Vs Division2657000215053-3132200021322571335000001828-10150.2885084134134860591242945648555457482132188515691014.49%78988.46%1998201549.53%958203946.98%535113547.14%2021142919355761029517

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8290W417430447815111539417545158128
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8234331365174169
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
411912116210083
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
41152102037486
Derniers 10 matchs
WLOTWOTL SOWSOL
720100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2252812.44%2362290.68%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
4564855545748605912
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
998201549.53%958203946.98%535113547.14%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2021142919355761029517


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2023-10-1211Phantoms1Monsters2ALSommaire du match
5 - 2023-10-1419Phantoms1Senators2ALSommaire du match
8 - 2023-10-1742Comets2Phantoms3BWSommaire du match
10 - 2023-10-1954Oil Kings5Phantoms1BLSommaire du match
12 - 2023-10-2172Phantoms3Stars1AWSommaire du match
15 - 2023-10-2498Phantoms1Las Vegas2ALSommaire du match
17 - 2023-10-26104Minnesota4Phantoms3BLXSommaire du match
19 - 2023-10-28117Admirals1Phantoms3BWSommaire du match
21 - 2023-10-30131Caroline1Phantoms5BWSommaire du match
23 - 2023-11-01141Crunch2Phantoms3BWSommaire du match
25 - 2023-11-03157Phantoms2Crunch3ALXXSommaire du match
26 - 2023-11-04164Monarchs1Phantoms0BLSommaire du match
29 - 2023-11-07189Phantoms2Sags0AWSommaire du match
32 - 2023-11-10208Phantoms1Admirals3ALSommaire du match
33 - 2023-11-11221Phantoms1Monarchs0AWSommaire du match
37 - 2023-11-15238Phantoms2Caroline3ALSommaire du match
40 - 2023-11-18255Las Vegas2Phantoms1BLSommaire du match
41 - 2023-11-19268Monsters0Phantoms2BWSommaire du match
44 - 2023-11-22286Phantoms2Sound Tigers1AWSommaire du match
46 - 2023-11-24294Wolf Pack2Phantoms1BLXXSommaire du match
47 - 2023-11-25312Phantoms0Sound Tigers3ALSommaire du match
50 - 2023-11-28328Caroline2Phantoms1BLXXSommaire du match
52 - 2023-11-30344Spiders6Phantoms5BLSommaire du match
54 - 2023-12-02363Phantoms1Manchots3ALSommaire du match
56 - 2023-12-04374Manchots0Phantoms2BWSommaire du match
59 - 2023-12-07400Phantoms4Jayhawks1AWSommaire du match
61 - 2023-12-09417Phantoms1Monsters4ALSommaire du match
64 - 2023-12-12435Phantoms2Chill3ALSommaire du match
66 - 2023-12-14448Bears2Phantoms3BWSommaire du match
68 - 2023-12-16466Cougars2Phantoms3BWSommaire du match
71 - 2023-12-19487Phantoms0Spiders3ALSommaire du match
73 - 2023-12-21502Chill2Phantoms3BWXXSommaire du match
74 - 2023-12-22510Phantoms2Cougars3ALXXSommaire du match
80 - 2023-12-28543Phantoms1Comets2ALSommaire du match
81 - 2023-12-29554Phantoms2Seattle3ALSommaire du match
83 - 2023-12-31570Phantoms2Heat3ALSommaire du match
85 - 2024-01-02583Phantoms3Oil Kings4ALXSommaire du match
87 - 2024-01-04592Monsters3Phantoms1BLSommaire du match
89 - 2024-01-06605Heat2Phantoms1BLSommaire du match
91 - 2024-01-08622Manchots3Phantoms1BLSommaire du match
93 - 2024-01-10635Rocket3Phantoms4BWXXSommaire du match
95 - 2024-01-12652Phantoms0Minnesota4ALSommaire du match
96 - 2024-01-13657Phantoms2Oceanics1AWSommaire du match
98 - 2024-01-15679Phantoms0Chiefs1ALSommaire du match
101 - 2024-01-18694Stars3Phantoms4BWXXSommaire du match
103 - 2024-01-20707Monsters2Phantoms1BLSommaire du match
104 - 2024-01-21718Senators3Phantoms1BLSommaire du match
106 - 2024-01-23732Thunder1Phantoms3BWSommaire du match
108 - 2024-01-25747Phantoms2Cougars3ALSommaire du match
110 - 2024-01-27759Bruins2Phantoms3BWSommaire du match
120 - 2024-02-06786Phantoms2Cabaret Lady Mary Ann1AWSommaire du match
122 - 2024-02-08797Oceanics3Phantoms5BWSommaire du match
124 - 2024-02-10814Seattle1Phantoms2BWSommaire du match
126 - 2024-02-12821Jayhawks3Phantoms2BLSommaire du match
129 - 2024-02-15843Phantoms1Marlies2ALSommaire du match
131 - 2024-02-17859Phantoms1Spiders0AWSommaire du match
135 - 2024-02-21885Phantoms2Baby Hawks3ALXXSommaire du match
138 - 2024-02-24905Wolf Pack2Phantoms3BWXXSommaire du match
139 - 2024-02-25917Phantoms0Manchots2ALSommaire du match
141 - 2024-02-27930Thunder1Phantoms4BWSommaire du match
144 - 2024-03-01954Phantoms3Bears2AWSommaire du match
145 - 2024-03-02962Senators4Phantoms1BLSommaire du match
147 - 2024-03-04977Chiefs2Phantoms3BWSommaire du match
150 - 2024-03-07996Phantoms3Cabaret Lady Mary Ann0AWSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
152 - 2024-03-091016Phantoms5Thunder2AWSommaire du match
155 - 2024-03-121035Sags2Phantoms3BWXSommaire du match
157 - 2024-03-141050Marlies2Phantoms3BWXXSommaire du match
159 - 2024-03-161065Phantoms3Bruins1AWSommaire du match
162 - 2024-03-191086Marlies0Phantoms2BWSommaire du match
164 - 2024-03-211099Phantoms2Caroline4ALSommaire du match
166 - 2024-03-231114Bruins2Phantoms1BLSommaire du match
167 - 2024-03-241129Cabaret Lady Mary Ann0Phantoms3BWSommaire du match
169 - 2024-03-261137Phantoms1Wolf Pack2ALSommaire du match
171 - 2024-03-281152Phantoms3Rocket1AWSommaire du match
173 - 2024-03-301174Baby Hawks1Phantoms2BWSommaire du match
175 - 2024-04-011183Sound Tigers1Phantoms3BWSommaire du match
179 - 2024-04-051211Phantoms2Crunch3ALXSommaire du match
180 - 2024-04-061222Phantoms0Monsters1ALSommaire du match
183 - 2024-04-091242Phantoms3Rocket2AWSommaire du match
185 - 2024-04-111257Phantoms5Wolf Pack2AWSommaire du match
187 - 2024-04-131274Spiders2Phantoms3BWXXSommaire du match
190 - 2024-04-161299Bears1Phantoms2BWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance78,31539,223
Assistance PCT95.51%95.67%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2867 - 95.56% 97,445$3,995,244$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,062,906$ 5,109,786$ 5,109,786$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
26,613$ 2,062,906$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 26,613$ 0$




Phantoms Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Phantoms Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Phantoms Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA