Monsters

GM : Paul-André Desrochers Morale : 75 Team Overall : 49
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Martin EratXX100.00563581756764866146625960517161080630
2Steve DownieX100.00605646706258555745516263455951079580
3Pierre-Edouard BellemareXXX100.00544386696864865081465473483532080580
4Cal O'ReillyXX100.00453592706352375755536064484438080560
5Tanner GlassXX100.00826567697456564535424860486254079560
6Corban Knight (R)XXX100.00523589676753375453555268454036080560
7Lucas LessioXX100.00593588677357374835445262564036080540
8Brandon CrombeenXX100.00586664677348464444414660475748038520
9Ryan HartmanX100.00703590716253354535543562483532079520
10Zach SillXX100.00635073686954394446414665484236080520
11Colin WhiteXX100.00505050505750505050505050503230080490
12Jakub Vrana (R)XX100.00505050505750505050505050503230081490
13Nate SchmidtX100.00585088686161584535474379454437079600
14Mark FraserX100.00806158597460413735373773475145079580
15Adam ClendeningX100.00573580676158404535474369483532080550
16Slater Koekkoek (R)X100.00543588635853353635403265483633080520
17Erik GustafssonX100.00327743585433623335333357474439076470
18Dominik Masin (R)X100.00454545456145454545454545453230080460
Scratches
1Eriah HayesX100.00513586647450333959334457473734020480
2Ivan Barbashev (R)XX100.00454545455545454545454545453230037450
3Ryan Kujawinski (R)XX100.00434343437143434343434343433230020440
4Oscar MollerXX100.00328535495733463335333355474237020420
5Kellan LainX100.00398535467433413335333356473532020420
6Matt Buckles (R)X100.00404040407140404040404040403230020420
7Nick Moutrey (R)XXX100.00404040407240404040404040403230020420
8Justin FlorekX100.00328535407033503335333342473633020400
9Dmytro Timashov (R)X100.00373737376137373737373737373230020390
10Carl Dahlstrom (R)X100.00454545457045454545454545453230020460
11Niklas Hansson (R)X100.00434343435343434343434343433230020430
12Mason Geertsen (R)X100.00404040406640404040404040403230020420
13Anton Cederholm (R)X100.00373737376737373737373737373230020400
14Teemu Kivihalme (R)X100.00373737374537373737373737373230020380
TEAM AVERAGE100.0050495955654846434343445446393605349
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anders Nilsson100.0045458389464646474585943734065540
2Joacim Eriksson100.0042454369424141424141403532078440
Scratches
1Konstantin Barulin100.0043434363434343434343433230020440
2Calvin Petersen (R)100.0037373767373737373737373230020400
TEAM AVERAGE100.004243527242424242425254343204646
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ian Laperriere69717069657069CAN423500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cal O'ReillyMonsters (Col)C/LW824774121597551133040015.46%9144317.601223358431500001011255.09%64800011.68110011285
2Steve DownieMonsters (Col)RW8236569265127152751233260011.04%16165620.20691567285101143206351.75%11400011.1100002868
3Martin EratMonsters (Col)LW/RW7730578724180881072660011.28%7116115.08132336863060000255261.63%8600001.5028000447
4Pierre-Edouard BellemareMonsters (Col)C/LW/RW7838498761120241302120017.92%13102213.1100045000001263.55%119900001.7000000775
5Corban KnightMonsters (Col)C/LW/RW8230437331120392052450012.24%19158319.31971670285101163797251.49%207600010.9200000842
6Nate SchmidtMonsters (Col)D711652682944069841390011.51%87166623.48101626732550112279400.00%000000.8200000412
7Adam ClendeningMonsters (Col)D8218466440680125771350013.33%76179521.89121123853250220266200.00%000010.7100000526
8Lucas LessioMonsters (Col)LW/RW822434582210039862030011.82%12123215.031111245206000112534156.25%9600000.9418000344
9Mark FraserMonsters (Col)D82113445402183027971730015.07%106163019.8821317860002279120.00%000000.5500303123
10Tanner GlassMonsters (Col)LW/RW821924431610925166881570012.10%7107013.06314113800061833149.59%12300000.8001022210
11Slater KoekkoekMonsters (Col)D82535402560184577006.49%68169020.6121820472750113300000.00%000000.4701000032
12Colin WhiteMonsters (Col)C/RW821721381418043841040016.35%499312.111013280003785152.71%97700000.7734000124
13Ryan HartmanMonsters (Col)RW78102434-24806796870011.49%1185110.9124615117000001041.89%7400000.8000000052
14Zach SillMonsters (Col)C/LW821812300420571091530011.76%1798011.9600006101102101356.16%53600000.6100000212
15Jakub VranaMonsters (Col)LW/RW81915241569511849106008.49%2115614.2826820317000033140.79%7600000.4101001001
16Erik GustafssonMonsters (Col)D82512172884406632230021.74%62113113.79011131000053010.00%000000.3000323000
17Brandon CrombeenMonsters (Col)LW/RW4151015438104328410012.20%53518.5800000000000043.48%2300000.8500101010
18Dominik MasinMonsters (Col)D82391228122017213280010.71%42149118.19235142750000175000.00%000000.1600000001
19Ivan BarbashevMonsters (Col)C/LW46055-5180253115000.00%14199.1100000000000047.56%38900000.2400000000
Team Total or Average145634161295349410701301718157126940012.66%5642332716.02771342116423163347672822542154.36%641700040.827247413575154
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anders NilssonMonsters (Col)77541350.8813.0744346122719010300.52619770231
2Konstantin BarulinMonsters (Col)62120.8892.9232900161440100.0002414000
3Joacim ErikssonMonsters (Col)61220.8903.1021300111000010.5004168000
Team Total or Average89571690.8823.0649786125421450410.480258282231


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Force Waivers Contract StatusType Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam ClendeningMonsters (Col)D221992-10-26No190 Lbs6 ft0NoNo3RFAPro & Farm818,000$818,000$818,000$Link
Anders NilssonMonsters (Col)G251990-03-19No229 Lbs6 ft5NoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Anton CederholmMonsters (Col)D201995-02-21Yes204 Lbs6 ft1NoNo4ELCPro & Farm615,000$615,000$615,000$615,000$Link
Brandon CrombeenMonsters (Col)LW/RW301985-07-10No209 Lbs6 ft2NoNo2UFAPro & Farm700,000$700,000$Link
Cal O'ReillyMonsters (Col)C/LW291986-09-30No191 Lbs6 ft0NoNo3RFAPro & Farm700,000$700,000$700,000$Link
Calvin PetersenMonsters (Col)G201994-10-19Yes183 Lbs6 ft2NoNo4ELCPro & Farm525,000$525,000$525,000$525,000$Link
Carl DahlstromMonsters (Col)D201995-01-28Yes211 Lbs6 ft3NoNo4ELCPro & Farm825,000$825,000$825,000$825,000$Link
Colin WhiteMonsters (Col)C/RW181997-01-30No183 Lbs6 ft0NoNo4ELCPro & Farm895,000$895,000$895,000$895,000$Link
Corban KnightMonsters (Col)C/LW/RW251990-09-10Yes195 Lbs6 ft2NoNo2RFAPro & Farm900,000$900,000$Link
Dmytro TimashovMonsters (Col)LW191996-10-01Yes192 Lbs5 ft9NoNo4ELCPro & Farm925,000$925,000$925,000$925,000$Link
Dominik MasinMonsters (Col)D191996-02-01Yes189 Lbs6 ft2NoNo4ELCPro & Farm667,000$667,000$667,000$667,000$Link
Eriah HayesMonsters (Col)RW271988-07-07No210 Lbs6 ft4NoNo2RFAPro & Farm900,000$900,000$Link
Erik GustafssonMonsters (Col)D261988-12-15No176 Lbs6 ft0NoNo3RFAPro & Farm600,000$600,000$600,000$Link
Ivan BarbashevMonsters (Col)C/LW191995-12-14Yes180 Lbs6 ft0NoNo4ELCPro & Farm743,000$743,000$743,000$743,000$Link
Jakub VranaMonsters (Col)LW/RW191996-02-28Yes185 Lbs5 ft11NoNo4ELCPro & Farm925,000$925,000$925,000$925,000$Link
Joacim ErikssonMonsters (Col)G251990-04-09No189 Lbs6 ft1NoNo2RFAPro & Farm925,000$925,000$Link
Justin FlorekMonsters (Col)LW251990-05-18No199 Lbs6 ft4YesNo2RFAPro & Farm975,000$975,000$Link
Kellan LainMonsters (Col)C261989-08-11No210 Lbs6 ft6NoNo2RFAPro & Farm800,000$800,000$Link
Konstantin BarulinMonsters (Col)G311984-09-04No176 Lbs6 ft0NoNo2UFAPro & Farm700,000$700,000$Link
Lucas LessioMonsters (Col)LW/RW221993-01-23No212 Lbs6 ft1NoNo2RFAPro & Farm792,000$792,000$Link
Mark FraserMonsters (Col)D291986-09-29No220 Lbs6 ft4NoNo2RFAPro & Farm750,000$750,000$Link
Martin EratMonsters (Col)LW/RW341981-08-29No196 Lbs6 ft0YesNo1UFAPro & Farm2,100,000$Link
Mason GeertsenMonsters (Col)D201995-04-19Yes199 Lbs6 ft3NoNo4ELCPro & Farm650,000$650,000$650,000$650,000$Link
Matt BucklesMonsters (Col)C201995-05-05Yes205 Lbs6 ft1NoNo4ELCPro & Farm650,000$650,000$650,000$650,000$Link
Nate SchmidtMonsters (Col)D241991-07-16No191 Lbs6 ft0NoNo2RFAPro & Farm925,000$925,000$Link
Nick MoutreyMonsters (Col)C/LW/RW201995-06-24Yes208 Lbs6 ft2NoNo4ELCPro & Farm925,000$925,000$925,000$925,000$Link
Niklas HanssonMonsters (Col)D201995-01-08Yes175 Lbs6 ft0NoNo4ELCPro & Farm700,000$700,000$700,000$700,000$Link
Oscar MollerMonsters (Col)LW/RW261989-01-22No186 Lbs5 ft10NoNo1RFAPro & Farm700,000$Link
Pierre-Edouard BellemareMonsters (Col)C/LW/RW301985-03-06No198 Lbs6 ft0NoNo3UFAPro & Farm1,200,000$1,200,000$1,200,000$Link
Ryan HartmanMonsters (Col)RW211994-09-20No191 Lbs5 ft11NoNo3ELCPro & Farm925,000$925,000$925,000$Link
Ryan KujawinskiMonsters (Col)C/RW201995-03-30Yes204 Lbs6 ft1NoNo4ELCPro & Farm667,000$667,000$667,000$667,000$Link
Slater KoekkoekMonsters (Col)D211994-02-18Yes184 Lbs6 ft2NoNo3ELCPro & Farm925,000$925,000$925,000$Link
Steve DownieMonsters (Col)RW281987-04-03No191 Lbs5 ft11NoNo4RFAPro & Farm1,000,000$1,000,000$1,000,000$1,000,000$Link
Tanner GlassMonsters (Col)LW/RW311983-11-29No213 Lbs6 ft1YesNo3UFAPro & Farm600,000$600,000$600,000$Link
Teemu KivihalmeMonsters (Col)D201995-06-14Yes161 Lbs5 ft11NoNo4ELCPro & Farm525,000$525,000$525,000$525,000$Link
Zach SillMonsters (Col)C/LW271988-05-24No202 Lbs6 ft0NoNo2RFAPro & Farm800,000$800,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3623.83195 Lbs6 ft13.03825,611$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Cal O'ReillyPierre-Edouard BellemareSteve Downie40122
2Martin EratCorban KnightRyan Hartman30122
3Jakub VranaColin WhiteTanner Glass20122
4Lucas LessioZach SillBrandon Crombeen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nate SchmidtAdam Clendening40122
2Slater KoekkoekMark Fraser30122
3Erik GustafssonDominik Masin20122
4Mark FraserNate Schmidt10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Martin EratCal O'ReillySteve Downie60122
2Jakub VranaCorban Knight40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark FraserAdam Clendening60122
2Slater KoekkoekDominik Masin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Corban KnightSteve Downie60122
2Zach SillLucas Lessio40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark FraserNate Schmidt60122
2Slater KoekkoekAdam Clendening40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Corban Knight60122Mark FraserAdam Clendening60122
2Cal O'Reilly40122Slater KoekkoekNate Schmidt40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cal O'ReillyMartin Erat60122
2Corban KnightSteve Downie40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nate SchmidtAdam Clendening60122
2Slater KoekkoekMark Fraser40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jakub VranaCal O'ReillySteve DownieNate SchmidtAdam Clendening
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Zach SillPierre-Edouard BellemareCorban KnightMark FraserNate Schmidt
Extra Forwards
Normal PowerPlayPenalty Kill
Colin White, Corban Knight, Zach SillLucas Lessio, Jakub VranaTanner Glass
Extra Defensemen
Normal PowerPlayPenalty Kill
Nate Schmidt, Slater Koekkoek, Dominik MasinDominik MasinDominik Masin, Slater Koekkoek
Penalty Shots
Lucas Lessio, Martin Erat, Colin White, Jakub Vrana, Cal O'Reilly
Goalie
#1 : Anders Nilsson, #2 : Joacim Eriksson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Admirals31002000141041000100032121001000118361.00014264000135107981384866890932638015327914214.29%15380.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Falcons21100000972110000005231010000045-120.5009162500135107981382866890932634213174416531.25%50100.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Bruins20100100510-51000010034-11010000026-410.25059140013510798136186689093263551932449222.22%15473.33%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Crunch21100000990110000006511010000034-120.500916250013510798136986689093263652320455120.00%10190.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Heat312000001112-11010000014-321100000108220.3331119300013510798139786689093263962726871600.00%12375.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Phantoms21000001770110000004311000000134-130.750713200013510798136786689093263461323401000.00%9277.78%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Baby Hawks540010001991022000000642320010001358101.00019345301135107981314386689093263121345410524625.00%20195.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Jayhawks522001001919021100000862311001001113-250.5001933521013510798131398668909326314538799312541.67%37781.08%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Cougars2110000045-1110000004221010000003-320.5004610001351079813508668909326361234344500.00%16193.75%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Oil Kings310010011385210000019541000100043150.83313253800135107981311986689093263621747602114.76%21671.43%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Sound Tigers2110000067-11010000024-21100000043120.5006121800135107981359866890932634018274611218.18%12283.33%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Monarchs330000001486220000008351100000065161.00014253900135107981387866890932636518383513323.08%18572.22%11475267055.24%1254239452.38%772140954.79%2113145017796211091562
Minnesota5500000025131222000000853330000001789101.0002544690013510798131958668909326312725481151600.00%22577.27%11475267055.24%1254239452.38%772140954.79%2113145017796211091562
Spiders21001000743110000003121000100043141.0007142100135107981364866890932634618263914428.57%7271.43%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Senators210010001082100010005411100000054141.0001017270013510798137386689093263591139419222.22%14471.43%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Manchots220000001064110000006331100000043141.00010192900135107981367866890932634016464210330.00%12466.67%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Wolf Pack220000001376110000006331100000074341.00013233600135107981389866890932635514166211327.27%60100.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Sharks21000001880110000006511000000123-130.750813210013510798135586689093263651320349111.11%9277.78%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Chiefs52100011191633110001087121000001119270.7001931500013510798131428668909326313335778823417.39%36780.56%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Thunder21100000770110000005321010000024-220.500712190013510798135386689093263551746459111.11%18477.78%11475267055.24%1254239452.38%772140954.79%2113145017796211091562
Marlies220000001073110000005411100000053241.0001019290013510798137686689093263466205817529.41%9366.67%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Comets32100000171162200000015781010000024-240.667173249001351079813113866890932636511295518633.33%10460.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Cabaret Lady Mary Ann210001007521000010034-11100000041330.750713200013510798137386689093263892831609333.33%13376.92%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
IceCaps52200010181353120000010912100001084460.600183250001351079813156866890932631233210010123521.74%28389.29%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Chill312000001113-21010000035-22110000088020.33311193000135107981397866890932638423417319315.79%17664.71%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Rocket21000001880110000004311000000145-130.7508132100135107981375866890932635715223414214.29%10370.00%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Bears220000001046110000005231100000052341.00010152500135107981378866890932634915124213215.38%6183.33%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Caroline220000001037110000005231100000051441.0001017270013510798136186689093263537163611218.18%8187.50%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Las Vegas54000001281711320000011513222000000134990.9002848760013510798132028668909326312228618927414.81%27581.48%01475267055.24%1254239452.38%772140954.79%2113145017796211091562
Vs Division3062000011288741155000000554411151200001734330130.217128222350111351079813977866890932637711924195911252419.20%1702883.53%11475267055.24%1254239452.38%772140954.79%2113145017796211091562
Vs Conference462980221419914257231630011297712623135021021027131700.76119935054911135107981315548668909326312423175739692183917.89%2515080.08%11475267055.24%1254239452.38%772140954.79%2113145017796211091562
Since Last GM Reset82491606326348261874127702212171124474122904114177137401230.7503486159631113510798132726866890932632146572108817364087718.87%4429279.19%31475267055.24%1254239452.38%772140954.79%2113145017796211091562
Total82491606326348261874127702212171124474122904114177137401230.7503486159631113510798132726866890932632146572108817364087718.87%4429279.19%31475267055.24%1254239452.38%772140954.79%2113145017796211091562

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82123SOL1348615963272621465721088173611
All Games
GPWLOTWOTL SOWSOLGFGA
8249166326348261
Home Games
GPWLOTWOTL SOWSOLGFGA
412772212171124
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412294114177137
Last 10 Games
WLOTWOTL SOWSOL
511102
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
4087718.87%4429279.19%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
866890932631351079813
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1475267055.24%1254239452.38%772140954.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2113145017796211091562


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2016-10-1528Jayhawks3Monsters2LBoxScore
6 - 2016-10-1734Monsters4Manchots3WBoxScore
7 - 2016-10-1840Monsters5Bears2WBoxScore
9 - 2016-10-2055Monsters2Thunder4LBoxScore
11 - 2016-10-2265Monsters4Cabaret Lady Mary Ann1WBoxScore
17 - 2016-10-28109IceCaps4Monsters3LBoxScore
18 - 2016-10-29118Monsters0Chill5LBoxScore
21 - 2016-11-01136Las Vegas7Monsters6LXXBoxScore
23 - 2016-11-03157Monsters4Baby Hawks0WBoxScore
25 - 2016-11-05161Minnesota4Monsters5WBoxScore
26 - 2016-11-06175Monsters5Chiefs2WBoxScore
28 - 2016-11-08192Chill5Monsters3LBoxScore
31 - 2016-11-11210IceCaps2Monsters5WBoxScore
33 - 2016-11-13227Bruins4Monsters3LXBoxScore
35 - 2016-11-15238Monarchs2Monsters4WBoxScore
37 - 2016-11-17249Monsters4Jayhawks6LBoxScore
39 - 2016-11-19262Monsters8Minnesota4WBoxScore
41 - 2016-11-21278Monsters4Falcons5LBoxScore
43 - 2016-11-23296Oil Kings2Monsters7WBoxScore
46 - 2016-11-26319Comets4Monsters8WBoxScore
49 - 2016-11-29337Las Vegas3Monsters5WBoxScore
51 - 2016-12-01354Falcons2Monsters5WBoxScore
53 - 2016-12-03364Jayhawks3Monsters6WBoxScore
56 - 2016-12-06385Monsters5Las Vegas2WBoxScore
58 - 2016-12-08395Monsters2Bruins6LBoxScore
60 - 2016-12-10420Monsters4Rocket5LXXBoxScore
61 - 2016-12-11425Monsters5Marlies3WBoxScore
64 - 2016-12-14444Phantoms3Monsters4WBoxScore
66 - 2016-12-16456Cabaret Lady Mary Ann4Monsters3LXBoxScore
68 - 2016-12-18474Monsters4IceCaps1WBoxScore
70 - 2016-12-20488Monsters6Minnesota3WBoxScore
72 - 2016-12-22503Marlies4Monsters5WBoxScore
73 - 2016-12-23516Monsters5Baby Hawks2WBoxScore
77 - 2016-12-27524Heat4Monsters1LBoxScore
79 - 2016-12-29540Monsters3Jayhawks2WBoxScore
81 - 2016-12-31548Wolf Pack3Monsters6WBoxScore
83 - 2017-01-02564Monsters2Comets4LBoxScore
85 - 2017-01-04572Monsters6Heat3WBoxScore
87 - 2017-01-06588Sound Tigers4Monsters2LBoxScore
93 - 2017-01-12630Admirals2Monsters3WXBoxScore
95 - 2017-01-14641Las Vegas3Monsters4WBoxScore
98 - 2017-01-17668Baby Hawks2Monsters3WBoxScore
100 - 2017-01-19683Monsters5Admirals3WBoxScore
102 - 2017-01-21700Monsters2Sharks3LXXBoxScore
104 - 2017-01-23709Sharks5Monsters6WBoxScore
106 - 2017-01-25726Comets3Monsters7WBoxScore
112 - 2017-01-31744Monsters6Admirals5WXBoxScore
113 - 2017-02-01757Monsters6Monarchs5WBoxScore
116 - 2017-02-04773IceCaps3Monsters2LBoxScore
119 - 2017-02-07800Rocket3Monsters4WBoxScore
121 - 2017-02-09804Manchots3Monsters6WBoxScore
123 - 2017-02-11823Monsters7Wolf Pack4WBoxScore
124 - 2017-02-12830Monsters4Sound Tigers3WBoxScore
126 - 2017-02-14836Monsters4Spiders3WXBoxScore
128 - 2017-02-16854Monsters3Crunch4LBoxScore
129 - 2017-02-17856Monsters5Caroline1WBoxScore
131 - 2017-02-19873Thunder3Monsters5WBoxScore
133 - 2017-02-21890Monarchs1Monsters4WBoxScore
135 - 2017-02-23897Monsters8Las Vegas2WBoxScore
137 - 2017-02-25911Crunch5Monsters6WBoxScore
140 - 2017-02-28928Monsters3Phantoms4LXXBoxScore
142 - 2017-03-02942Monsters5Senators4WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2017-03-04958Monsters4IceCaps3WXXBoxScore
145 - 2017-03-05966Chiefs2Monsters3WXXBoxScore
147 - 2017-03-07978Caroline2Monsters5WBoxScore
149 - 2017-03-09985Spiders1Monsters3WBoxScore
151 - 2017-03-111008Senators4Monsters5WXBoxScore
153 - 2017-03-131022Monsters8Chill3WBoxScore
155 - 2017-03-151035Cougars2Monsters4WBoxScore
158 - 2017-03-181053Monsters0Cougars3LBoxScore
159 - 2017-03-191063Monsters4Baby Hawks3WXBoxScore
161 - 2017-03-211085Chiefs3Monsters2LBoxScore
163 - 2017-03-231099Oil Kings3Monsters2LXXBoxScore
165 - 2017-03-251114Monsters4Oil Kings3WXBoxScore
167 - 2017-03-271123Monsters4Heat5LBoxScore
169 - 2017-03-291139Bears2Monsters5WBoxScore
171 - 2017-03-311153Chiefs2Monsters3WBoxScore
173 - 2017-04-021171Monsters3Minnesota1WBoxScore
175 - 2017-04-041183Baby Hawks2Monsters3WBoxScore
177 - 2017-04-061204Minnesota1Monsters3WBoxScore
179 - 2017-04-081216Monsters4Jayhawks5LXBoxScore
180 - 2017-04-091223Monsters6Chiefs7LXXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance6238631122
Attendance PCT76.08%75.91%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2281 - 76.02% 64,642$2,650,340$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,972,200$ 2,972,200$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
3,479,277$ 16,421$ 2,976,579$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 19,183$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20168249160632634826187412770221217112447412290411417713740983486159631113510798132726866890932632146572108817364087718.87%4429279.19%31475267055.24%1254239452.38%772140954.79%2113145017796211091562
Total Regular Season8249160632634826187412770221217112447412290411417713740983486159631113510798132726866890932632146572108817364087718.87%4429279.19%31475267055.24%1254239452.38%772140954.79%2113145017796211091562