Monsters

GP: 82 | W: 52 | L: 24 | OTL: 6 | P: 110
GF: 335 | GA: 261 | PP%: 20.89% | PK%: 77.68%
DG: Benoit Toupin | Morale : 50 | Moyenne d'Équipe : 46
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Andrew DesjardinsXXX100.00685684676762714668444864455651050560
2William Carrier (R)XX100.00774383687450425050435659483532050540
3Mike BrownXX100.00786660697048454274394456475850050520
4Pontus Aberg (R)XX100.00523588726654364745435062483734050520
5Jeremy MorinXX100.00535075676249434536444759524441050510
6Jerry D'AmigoX100.00453589667149333973374071463734050500
7Nick Sorensen (R)X100.00493585695752354445533557483532050500
8Zach SenyshynX100.00505050506850505050505050503230050500
9Chandler Stephenson (R)X100.00533592707053353552353560483734050480
10Scott KosmachukX100.00473587715749333635393364473532050480
11Tanner Richard (R)X100.00543579716454353547353560483532050480
12Alexander KhokhlachevXX100.00473594745550333340333361543936050470
13Mario Lucia (R)XX100.00434545456142424345434345443230050440
14Adam Tambellini (R)XX100.00414343435140404143414143423230050420
15Milan KytnarXX100.00319030336231333235323233463532050360
16Jonathon BlumX100.00463586666043313935453263464640050510
17Rasmus RissanenX100.00543577587245313235323271463532050510
18Erik BurgdoerferX100.00533595686847353135303266483532050510
19Jeremy RoyX100.00454545456445454545454545453230050460
20Mark CundariX100.00318535526231493235323255463734050450
21Reece Scarlett (R)X100.00353737375035353537353537363230050380
Rayé
1Maxim Kitsyn (R)X100.00353737376735353537353537363230050390
2Dominic Toninato (R)X100.00353737374835353537353537363230050380
3Cade FairchildX100.00319030345231343235323233463532050360
4Andreas LiljaX100.00192020202019191920191920206963050270
MOYENNE D'ÉQUIPE100.0047466356614438384438385245393505046
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alex Stalock100.0042457268394749364595704643050510
2Jean-Francois Berube (R)100.0040456264404851394565453835050480
3David Honzik (R)100.0042434279424141414141403230050440
Rayé
MOYENNE D'ÉQUIPE100.004144597040454739446752393605048
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Trent Yawney66847165897675CAN521500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Scott LaughtonColumbusC/LW57366610223195231802470014.57%14105518.5213223574233000057267.56%134400011.93110019111
2William CarrierMonsters (Clb)LW/RW8240611013075517891322185512.42%13151318.4692231683270000168347.52%10100011.3304100699
3Andrew DesjardinsMonsters (Clb)C/LW/RW663258902560306597234134413.68%13123518.73111728602731014422158.60%15700001.4613105735
4Pontus AbergMonsters (Clb)LW/RW82324880116017146284254911.27%20151318.46620266732101171524242.97%26300001.0611000236
5Nick SchmaltzColumbusC/LW5220375754011321700011.76%788517.046121858194000196249.11%95300001.2922000224
6Mike BrownMonsters (Clb)LW/RW822329525963026971154113014.94%5133716.318142247315000005368.48%9200000.7800024434
7Rasmus RissanenMonsters (Clb)D7873542204207350827168.54%85165621.235712302720003182100.00%000000.5100000102
8Jeremy MorinMonsters (Clb)LW/RW82142741330104711517214168.14%1396311.7515611610002900239.53%8600100.8500020210
9Jerry D'AmigoMonsters (Clb)LW822217391721528134149112414.77%22105712.9010141200082831161.88%56400100.7400001430
10Scott KosmachukMonsters (Clb)RW82112839201805110011510229.57%26103012.5712332501172732133.33%6300000.7600000132
11Jonathon BlumMonsters (Clb)D76132437344005350854915.29%75152120.024610442590002181100.00%000000.4900000203
12Jakub KindlColumbusD4692635153406842820110.98%42106623.1881018571880001126020.00%000000.6600000201
13Chandler StephensonMonsters (Clb)C826273311140331401147255.26%26120214.662571911601142031054.44%107100000.5500000001
14Erik BurgdoerferMonsters (Clb)D761023332440087515951116.95%85148719.576392514700012043050.00%600000.4400000210
15Zach SenyshynMonsters (Clb)RW82171633667151045012252013.93%883610.20101340000063058.70%4600000.7900012221
16Tanner RichardMonsters (Clb)C82817251024058968032110.00%107378.9900013000010051.35%74000000.6800000001
17Alexander KhokhlachevMonsters (Clb)C/LW2761723112016945102713.33%647617.6604415100000033046.07%54700000.9601000032
18Teemu PulkkinenColumbusLW/RW16101121700731740013.51%330318.9447111763000042150.00%1600001.3911000212
19Jeremy RoyMonsters (Clb)D826915-9941013714310819.35%51155318.95235162771012150100.00%000000.1900002110
20Mark CundariMonsters (Clb)D729514477356125290531.03%39113815.821235690000126100.00%000000.2500304013
21Reece ScarlettMonsters (Clb)D411349441049320150.00%770117.110000127000034000.00%000000.1100110000
22Milan KytnarMonsters (Clb)C/RW2411223010261340325.00%02138.8800001000000042.23%20600000.1900110000
23Nick SorensenMonsters (Clb)RW21121000240025.00%03417.100000600000000.00%300001.1700000010
24Cade FairchildMonsters (Clb)D1001141001721000.00%417017.09000014000011000.00%000000.1200000000
25Andreas LiljaMonsters (Clb)D6000300400000.00%09616.110000800004000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne146933458792129184716514571704266114338712.55%5742379116.20891612506243462235422117512054.91%625800220.776137719494847
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex StalockMonsters (Clb)46291340.8813.0926614213711470120.36411460201
2Jean-Francois BerubeMonsters (Clb)40231010.8763.192183011169350200.00003646001
3David HonzikMonsters (Clb)30110.9001.8299003300000.3333036000
Stats d'équipe Total ou en Moyenne89522460.8793.1149444325621120320.357148282202


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam TambelliniMonsters (Clb)C/LW211994-11-01Yes169 Lbs6 ft2NoNoNo3Contrat d'EntréePro & Farm743,000$