Rangers

GP: 82 | W: 44 | L: 34 | OTL: 4 | P: 92
GF: 247 | GA: 259 | PP%: 19.18% | PK%: 83.37%
DG: Jeff Dumais | Morale : 50 | Moyenne d'Équipe : 62
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Sidney Crosby (C)X99.00564385916881918683848862687875050770
2Daniel SedinX100.00503585806377957236727157538473050690
3Antoine VermetteXX100.00543578776873906492636562507768050660
4Leo KomarovX100.00804384737274936479616672484940050660
5Troy BrouwerX99.00735683707575936462596864507164050660
6Alex KillornXX99.00645078756775946539626864425145050650
7Nikolai KuleminXX100.00614388707870926066556576536050050650
8Joffrey LupulXX100.00543585697366635838516458506859050600
9Michael RafflX100.00645085716966765779526262564839050600
10Derek RyanXX100.00514386835065566086576261453734050590
11Joel Eriksson Ek (R)XX100.00643588766852364442424656483533050520
12Sonny Milano (R)X100.00523595756858353935433556483835050500
13Kyle QuinceyX98.00725078667174805335525381486760050670
14Dan Boyle (A)X99.00523584776270835635555768488779050660
15Michael StoneX100.00753581646978825640595381484843050660
16Radko GudasX99.00946164716773865135534979484541050660
17John OduyaX99.00594386666375755135544779486859050650
18Mark FayneX100.00604388627059484635474569485547050580
Rayé
1Dennis RasmussenXX100.00603590667260704878445273483835050570
2Cody AlmondXXHO468931416931403235323249464036050410
3Adam McQuaidX80.84806572617073914535464381486054050650
4Victor BartleyXHO614379607053354535474167474439050550
5Joey Laleggia (R)X100.00353737375535353537353537363230050390
MOYENNE D'ÉQUIPE98.7862457969686671545153556649564905061
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Ben Bishop97.0090769584898385878071905450050780
2Darcy Kuemper100.0065458883666257666683874441050640
Rayé
MOYENNE D'ÉQUIPE98.507861928478737177737789494605071
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Todd Richards79667578906976USA511500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sidney CrosbyRangersC53293261-1031546150221163913.12%4109220.61101121522070001892352.94%137900021.1213001562
2Daniel SedinRangersLW69203959-1802998184144210.87%7134019.43517224926900061642026.67%12000100.8813000135
3Alex KillornRangersLW/RW822630561722011173206143512.62%11142417.38711184929801111124337.84%11100000.7911211452
4Troy BrouwerRangersRW82253055-81042020680217153211.52%13158819.371114256032610131276249.02%15300000.6912211443
5Michael StoneRangersD78114051-9143512998105121210.48%106175522.5161420662900111301320.00%000000.5800001211
6Dan BoyleRangersD82133447226017659492213.83%81180322.0061319592940000310110.00%200010.5200000223
7Leo KomarovRangersLW8223244791055187123201113311.44%13141117.2287154622503362576049.40%41900000.6713001544
8Radko GudasRangersD821135460245552859010371510.68%119166820.347714572551014252110.00%000000.5500245135
9Kyle QuinceyRangersD62123244-47351147785122814.12%89143923.2231114452221121238210.00%000100.6100100313
10Derek RyanRangersC/RW7893443-91002113115011226.00%6125616.1141418472670112321050.57%149700000.6801000012
11Antoine VermetteRangersC/LW83191837132403612812051715.83%5116614.063471913901162123058.69%117400000.6301000123
12Nikolai KuleminRangersLW/RW791615313240509116062310.00%24107013.5622494220292165046.86%17500000.5800000134
13John OduyaRangersD8022325995287665663.08%99155419.43156281840110262000.00%000000.3200001000
14Adam McQuaidRangersD8141923-7170401454346458.70%79139117.18202151140000206120.00%000000.3300224101
15Joffrey LupulRangersLW/RW8291019-1218017328541810.59%684210.270004370002640043.88%9800000.4512000100
16Dennis RasmussenRangersC/LW67710175160391036361611.11%1187012.9912312200042690049.30%106900000.3900000113
17Michael RafflRangersLW7651015-644104440709127.14%1176610.090000120000400053.01%8300000.3901011000
18Joel Eriksson EkRangersC/LW52459-102554431223418.18%24949.50123592000062030.57%54300000.3600001020
19Mark FayneRangersD63257-12235232423008.70%4895715.200117400000134110.00%000000.1500001010
20Sonny MilanoRangersLW40011-14555108110.00%143410.8700003000000021.74%2300000.0500001000
21Andrew BodnarchukWolf Pack (Ran)D1000020000000.00%01515.220000000001000.00%000000.0000000000
22Borna RendulicWolf Pack (Ran)LW/RW1000020010000.00%055.470000000000000.00%000000.0000000000
23Jordan CaronWolf Pack (Ran)LW/RW1000020000000.00%077.480000000000000.00%000000.0000000000
24Hunter ShinkarukWolf Pack (Ran)LW/RW2000000012010.00%0189.200000000000000.00%000000.0000000000
25Jean-Sebastien DeaWolf Pack (Ran)C/RW1000000011000.00%044.85000000000000100.00%100000.0000000000
26Joey LaleggiaRangersD31000-81401601000.00%03009.680001280000160025.00%1200000.0000000000
27Adam PayerlWolf Pack (Ran)C/RW3000-100030000.00%0237.6900000000000024.14%2900000.0000000000
28Anton LindholmWolf Pack (Ran)D9000-440664000.00%612213.6600001000015000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne1502247446693-73119918515981575223616538311.05%7412482916.537713521261933775914463334401649.51%688800230.566179919323941
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ben BishopRangers62352210.9042.8035322216517220600.846135922712
2Darcy KuemperRangers2991230.8643.88143700936830000.50022359200
Stats d'équipe Total ou en Moyenne91443440.8933.1249702225824050600.800158281912


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam McQuaidRangersD291986-10-12No212 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm1,250,000$