Chill

GP: 82 | W: 28 | L: 49 | OTL: 5 | P: 61
GF: 221 | GA: 304 | PP%: 20.12% | PK%: 80.48%
DG: Yvon Bergeron | Morale : 50 | Moyenne d'Équipe : 44
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1A.J. Greer (R)X100.00573577727155354435533566483532050520
2Filip ChlapikX100.00454545456745454545454545453230050460
3Samuel Kurker (R)X100.00434545457042424345434345443230050450
4Thomas NovakX100.00434343435543434343434343433230050440
5Filip AhlXX100.00404040408040404040404040403230050430
6Justin Auger (R)X100.00384040408337373840383840393230050420
7Yan Pavel Laplante (R)X100.00414343435440404143414143423230050420
8Pavel Jenys (R)X100.00353737376635353537353537363230050390
9Adam GaudetteX100.00373737375837373737373737373230050390
10Adam MarshX100.00373737374537373737373737373230050390
11Blaine Byron (R)X100.00353737374635353537353537363230050380
12Brian Pinho (R)XX100.00353737375235353537353537363230050380
13Mark BarberioX100.00563588686868514835524369484341050580
14Rasmus Andersson (R)X100.00523595687056353135303269483532050530
15Chris MartenetX100.00404040407240404040404040403230050430
16Tom Nilsson (R)X100.00384040405337373840383840393230050400
17Jordan Sambrook (R)X100.00373737373737373737373737373737050390
Rayé
1Joel Vermin (R)XX100.00523589766356374345513569483734050530
2Keegan KolesarX100.00434343437843434343434343433230050450
3Grant Besse (R)X100.00353737375235353537353537363230050380
4Henri Ikonen (R)X100.00353737375735353537353537363230050380
5Victor Crus Rydberg (R)X100.00353737376135353537353537363230050380
MOYENNE D'ÉQUIPE100.0041394845624238393940384541333105043
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jacob Markstrom100.0072458675746371755580944844050650
2Thomas McCollum100.0050454377494141474159583532050480
3Kent Simpson100.0041454374413939403939383532050430
Rayé
1Kristian Oldham100.0037373770373737373737373230050400
MOYENNE D'ÉQUIPE100.005043527450454750435457383505049
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ted Dent54757549736465CAN471500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Steven KampferNashvilleD80273360-431322021814615793117.20%103183222.91171532932560002277200.00%000000.6512211235
2Rasmus AnderssonChill (Nas)D82133447-392406411012282310.66%132182422.2581624762601011298100.00%000000.5222000201
3Matt BenningNashvilleD4673845195420684493007.53%4294120.466915652070111105110.00%000000.9600121223
4T.J. TynanNashvilleC80113142-331554917618115396.08%17142117.77312152925610171641039.26%162000000.5907010122
5Tobias LindbergNashvilleLW/RW70192342-184607813114871412.84%50143420.5029113923201152792248.89%13500000.5928000152
6Samuel KurkerChill (Nas)RW82182038-3380209655163133411.04%11125115.269101944241000052239.74%7800000.6123013114
7Thomas NovakChill (Nas)C71151732-450206175904916.67%96218.752791164000062141.71%60900001.0300013110
8Keegan KolesarChill (Nas)RW68161430-76410685711761913.68%1383312.25000115000053150.00%4400000.7212101233
9Filip ChlapikChill (Nas)C5562228-2057258110191036.59%897417.722682618400031190051.50%103100000.5712032000
10Filip AhlChill (Nas)LW/RW82131326-15400993510161812.87%9127215.51167201790001631150.72%6900000.4100000212
11A.J. GreerChill (Nas)LW5971825-232758610887598.05%2597716.571782820400021870042.04%24500000.5127000210
12Yan Pavel LaplanteChill (Nas)C8271421-1947579110789358.97%1991711.1900004000060044.75%69500000.4600100010
13Timo MeierNashvilleLW/RW1811920-51204151730015.07%337120.6345923690004621035.85%15900001.0812000031
14Chris MartenetChill (Nas)D8221719-2379514531406105.00%87160519.57268222250112264000.00%000000.2400001010
15Mark BarberioChill (Nas)D2010818-11603032421223.81%3447523.777292977000168010.00%000010.7611000121
16Justin AugerChill (Nas)RW6451318-10735122452441820.83%60100515.70000070001540127.78%1800000.3600001100
17Tom NilssonChill (Nas)D8231417-156601282847676.38%82153918.78044221820111235020.00%000000.2200000103
18Adam MarshChill (Nas)LW8221517-224405943584183.45%991811.20000150000220047.37%5700000.3700000000
19Charles HudonNashvilleLW37511166180494064007.81%1043111.66000418000001038.46%2600000.7400000110
20Jordan SambrookChill (Nas)D643912-59151263233369.09%55107716.831127710000133000.00%000000.2200001001
21Adam GaudetteChill (Nas)C4665115140294035122017.14%64229.180000160001473046.47%36800000.5200000111
22Nikita KorostelevNashvilleRW802810-282806033364155.56%207959.950444580000550045.12%8200000.2500000010
23Andreas JohnsonNashvilleLW62549-41203417309116.67%44186.7400001000022148.28%2900000.4300000101
24Pavel JenysChill (Nas)C821561120321213037.69%144745.7810176500011710041.49%9400000.2500000010
25Blaine ByronChill (Nas)C28134080264319175.26%431611.2902211400001200136.58%42100000.2500000010
26Brian PinhoChill (Nas)C/RW2000-320102330.00%03316.840000400000000.00%100000.0000000000
Stats d'équipe Total ou en Moyenne1606215398613-349110114519291595194413534411.06%8262418515.06661211875522926246332759221443.30%578100010.5113365914223130
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jacob MarkstromChill (Nas)2613940.9292.34159221628680210.63622260532
2Kent SimpsonChill (Nas)43122900.8654.4522110216412140201.00074020200
3Thomas McCollumChill (Nas)1631110.8643.9988820594330000.667121626000
4Kristian OldhamChill (Nas)40000.9063.35161009960000.0000012000
Stats d'équipe Total ou en Moyenne89284950.8873.6448534329426110410.707418258732


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
A.J. GreerChill (Nas)LW191996-12-14Yes204 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm725,000$