Dallas

GP: 82 | W: 22 | L: 57 | OTL: 3 | P: 47
GF: 248 | GA: 362 | PP%: 14.65% | PK%: 74.13%
DG: Jean-François Langlais | Morale : 50 | Moyenne d'Équipe : 58
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Thomas Vanek (A)XX96.00563587797471767335747155807161050680
2Patrik Elias (A)XX98.00464385736369496781706362569791050660
3Colin WilsonXX98.00594388747670866554676362455850050650
4Chris StewartXX100.00636768708663915935526556616152050620
5Christian Dvorak (R)XX100.00543587795958555980556270453532050600
6Ryan WhiteXX100.00736666736962785582486160455348050600
7Sebastian Aho (R)X100.00533587855159576450596859613532050600
8Nathan GerbeXX100.00523585725163675246495568515447050580
9Greg McKegg (R)XX100.00575084706361485277505466484338050560
10David ClarksonX100.00645064687157504935435555446455050550
11Ondrej Kase (R)XX100.00523586795558485235525256643633050550
12Brendan SmithX98.00735669636974714835494778485146050630
13James WisniewskiX98.00634379616651446135655565476355050590
14Justin FalkX99.00694381617664614350473967485247050590
15Jakob Chychrun (R)X100.00674379756654494935475169453532050580
16Ladislav SmidX100.00664385597052393635353763476050050540
17Gustav Forsling (R)X100.00493592725858424335404561483532050530
Rayé
1Jeff Skinner (C)X94.00553585836876947335687863445344050690
2Pavel Buchnevich (R)XX90.58504387736661446035586255483533050570
3Shawn ThorntonX100.00586564677556574637434855487773050550
4Jim O'BrienX100.00533582666851333360333363474237050480
5Colby RobakX100.00483586596454333435373268464238050520
6Marc-Andre BourdonX100.00458337486731413235323254463533050450
MOYENNE D'ÉQUIPE98.7458467970676057524751536251524605058
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Petr Mrazek98.0078729167777580766978944441050700
2Michael Leighton100.0036457068354647354595705450050510
Rayé
MOYENNE D'ÉQUIPE99.005759816856616456578782494605061
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Randy Carlyle71717076999981CAN611500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Thomas VanekDallasLW/RW7428437153808783196183114.29%9142319.24813215930311291700041.83%15300001.0000000333
2Jeff SkinnerDallasLW65343468632069110247134113.77%14134020.626111752244101142245032.76%58600021.0100000733
3Patrik EliasDallasC/LW6622386096021114153143114.38%9106916.2061117442340003851053.77%123300001.1201000331
4Sebastian AhoDallasLW6518264441604310414193512.77%1090713.967815311351012250036.68%25900000.9700000121
5Ryan WhiteDallasC/RW82182240-1111030132119136132113.24%3111113.55224149902221342052.01%94400000.7211222211
6Pavel BuchnevichDallasLW/RW81152540-25140266111351913.27%5109413.51369131261012942030.18%16900000.7300000220
7Jakob ChychrunDallasD70112940-879511660907612.22%99141820.2731013532411011251210.00%000000.5600001121
8Chris StewartDallasLW/RW82172138-691151185513862312.32%5130115.871892525310141050028.89%13500000.5801102022
9Brendan SmithDallasD7782836-102091521886894168.99%138174922.735611492920111287120.00%000000.4100201300
10Christian DvorakDallasC/LW79151934526046125109101913.76%1898412.47213106210131702049.11%112400000.6900000222
11Colin WilsonDallasC/LW821220323320738414114358.51%19123615.0830317110011102632242.80%54200000.5200000022
12Colby RobakDallasD6141317-173604739252816.00%63106117.3932511940000149110.00%600000.3200000010
13Justin FalkDallasD794913-1594101164754387.41%123173221.93101222810221319000.00%000000.1500011000
14Nathan GerbeDallasLW/RW555813-13401869719167.04%1163611.5700063111241071025.00%6800000.4100000000
15Gustav ForslingDallasD575813-1440048192211322.73%4499117.391125890000132000.00%000000.2600000020
16Ondrej KaseDallasLW/RW605813-24801755471910.64%968811.480113200001840021.10%10900000.3800000001
17James WisniewskiDallasD201910-5240161492911.11%3034117.06112330000039100.00%000000.5900000000
18Greg McKeggDallasC/LW722810-232152710668892.94%1874410.340003400031570047.72%72500000.2700001001
19David ClarksonDallasRW49325-253954224261211.54%74489.150001140000131038.24%3400000.2200001000
20Ahtti OksanenStars (Dal)D2203333002452000.00%736916.77011043000050000.00%000000.1600000000
21Ladislav SmidDallasD27033-634035106100.00%3253019.65000385011083000.00%000000.1100000000
22Jim O'BrienDallasC35123-1840183114007.14%63379.63000040002850043.64%16500000.1800000000
23Marc-Andre BourdonDallasD27022-1144104043050.00%1944716.57000143000067000.00%000000.0900002000
24Shawn ThorntonDallasRW53202-1340203411170111.76%23696.9700000000020033.33%2100000.1100121001
25Andrew NielsenStars (Dal)D60111801313000.00%210116.8500017000011000.00%000000.2000000000
26Brandon BolligStars (Dal)LW/RW2000080201000.00%1178.7000000000030050.00%1000000.0000000000
27Colby CohenStars (Dal)D2000-140600000.00%03015.280000000004000.00%000000.0000000000
28Brandon HickeyStars (Dal)D9000-21201531000.00%514015.560000400008000.00%000000.0000000000
29Daniel AudetteStars (Dal)C12000100270000.00%016413.710000260000390026.92%7800000.0000000000
30Max SauveStars (Dal)C/LW4000100410000.00%0348.7400001000020050.00%600000.0000000000
31Philippe CornetStars (Dal)LW4000020100000.00%04210.6200002000010040.00%500000.0000000000
32Rob KlinkhammerStars (Dal)LW6000000123000.00%2457.5900001000070033.33%300000.0000000000
33Ryan DonatoStars (Dal)C16000-108015152000.00%117611.04000114000010034.76%18700000.0000000000
Stats d'équipe Total ou en Moyenne1501230381611-219111311514901464192714135711.94%7112308715.3852821344272907891762318721645.02%656200020.53136512242519
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Petr MrazekDallas66203910.8734.1733276023118210301.00045824012
2Michael LeightonDallas3721710.8474.911381001137370320.00002251001
3Andrew HammondStars (Dal)50110.8644.4921400161180000.000027000
Stats d'équipe Total ou en Moyenne108225730.8654.3949236036026760621.00048282013


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Brendan SmithDallasD271989-02-08No211 Lbs6 ft2NoNoNo5Avec RestrictionPro & Farm2,000,000$