Login

Admirals
GP: 82 | W: 46 | L: 30 | OTL: 6 | P: 98
GF: 290 | GA: 259 | PP%: 20.94% | PK%: 82.68%
GM : Yannick Masse | Morale : 50 | Team Overall : 54
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Monarchs
36-38-8, 80pts
3
FINAL
8 Admirals
46-30-6, 98pts
Team Stats
L3StreakL1
20-17-4Home Record22-15-4
16-21-4Away Record24-15-2
6-4-0Last 10 Games5-4-1
3.38Goals Per Game3.54
3.62Goals Against Per Game3.16
20.08%Power Play Percentage20.94%
77.65%Penalty Kill Percentage82.68%
Admirals
46-30-6, 98pts
4
FINAL
5 Sharks
57-21-4, 118pts
Team Stats
L1StreakW6
22-15-4Home Record33-7-1
24-15-2Away Record24-14-3
5-4-1Last 10 Games8-1-1
3.54Goals Per Game3.88
3.16Goals Against Per Game2.90
20.94%Power Play Percentage23.35%
82.68%Penalty Kill Percentage79.14%
Team Leaders
Goals
Xavier Ouellet
10
Assists
Oscar Fantenberg
18
Points
Oscar Fantenberg
25
Plus/Minus
Oscar Fantenberg
3
Wins
Christopher Gibson
46
Save Percentage
Christopher Gibson
0.918

Team Stats
Goals For
290
3.54 GFG
Shots For
3036
37.02 Avg
Power Play Percentage
20.9%
49 GF
Offensive Zone Start
39.5%
Goals Against
259
3.16 GAA
Shots Against
3075
37.50 Avg
Penalty Kill Percentage
82.7%
53 GA
Defensive Zone Start
41.7%
Team Info

General ManagerYannick Masse
DivisionEst
ConferenceEst
Captain
Assistant #1Justin Falk
Assistant #2Mitch Moroz


Arena Info

Capacity3,000
Attendance2,565
Season Tickets300


Roster Info

Pro Team26
Farm Team20
Contract Limit46 / 50
Prospects8


Team History

This Season46-30-6 (98PTS)
History46-30-8 (0.548%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Nicolas DeslauriersXX100.009399707181598359316059712568680506302911,400,000$
2Jordan WealXXX100.006764747164666764806258655561620506102831,400,000$
3Andy AndreoffXX100.00767481707455556075387469706364050600291650,000$
4Garrett PilonX100.00707069687062616780706063574444050600221742,500$
5Dominic TurgeonX100.00797392637368715771515767545353050590241750,000$
6Matthew PecaXXX100.007063868263606159745756635352520505902711,400,000$
7Trent FredericXX100.00809059657758795956525968255050050590221895,000$
8Patrick RussellXX100.00814599627457526033705561255050050580271925,000$
9Nikita Alexandrov (R)X100.00766699646652506379566765644444050580203830,833$
10Tomas JurcoXX100.00654299777052545726615551256263050570271750,000$
11Joshua Ho-Sang (R)X100.006559927664585859495653655244440505702411,000,000$
12Jack Quinn (R)X100.00716584666560615950625161484444050570193925,000$
13Dillon HeatheringtonX100.00747774658171804625383766375354050600251700,000$
14Joey KeaneX100.00807592616868655828584367374444050590213809,166$
15Axel Andersson (R)X100.00746595646556584925384560434444050550204772,500$
16Benjamin Mirageas (R)X100.00484583616744613025272844295454050470213525,000$
17Linus HultstromX100.00394545455536363945393945423230050410271825,000$
18Lukas BengtssonX100.00394545454836363945393945423230050400261742,500$
Scratches
1Jack Badini (R)XX100.00797394637353554556414462424444050520223805,000$
2Cameron Hillis (R)X100.00726296636258624556384658444444050510204838,333$
3Jan Mysak (R)XX100.00756599636557604556384760454444050510183850,833$
4D'Artagnan JolyX100.00494783666956694761513547385454050500213650,000$
5Malte StromwallXX100.00394545455436363945393945423230050400261742,500$
6James Greenway (R)X100.00374343436835353743373743403230050400221700,000$
TEAM AVERAGE100.0067627963675559525149495943484805054
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Christopher Gibson100.0061546882656356656261335045050610
2Spencer Martin100.0054537473545651595353304444050550
Scratches
TEAM AVERAGE100.005854717860605462585732474505058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Garrett PilonAdmirals (Ana)C82346195333001512693319123210.27%24176921.58911205718901172657260.49%253100001.07360005411
2Jordan WealAdmirals (Ana)C/LW/RW8134407421340731452868422911.89%36150218.551010204016110192507255.47%50300100.9925000553
3Matthew PecaAdmirals (Ana)C/LW/RW822351742216072175295722287.80%13150918.4121113372041014942356.48%21600100.9845000122
4Joey KeaneAdmirals (Ana)D8264854108420150939239896.52%127181722.1611314391860000242100.00%000000.5900211025
5Trent FredericAdmirals (Ana)C/LW74242650-28020223152249711879.64%14124116.7747114314100051135351.26%103400200.8102103143
6Tomas JurcoAdmirals (Ana)LW/RW82163248-56023105214601307.48%5126115.395510271310003541231.02%21600010.7600000042
7Patrick RussellAdmirals (Ana)LW/RW82173148214559795185701319.19%12109613.370661572000192048.94%9400000.8800000621
8Dominic TurgeonAdmirals (Ana)C821730474420128165206671808.25%29127015.49358178900011192154.83%136600000.7402000320
9Joshua Ho-SangAdmirals (Ana)RW8217294624037136210711518.10%12102912.550001110001304044.44%9900000.8900000022
10Nikita AlexandrovAdmirals (Ana)C822219415140661232026415110.89%2083010.1321357000001158.05%85100000.9900000242
11Jack QuinnAdmirals (Ana)RW82152439-920055100167391188.98%899912.18066748000003128.36%6700000.7800000035
12Xavier OuelletAnaheimD66101525-762101213287326311.49%103136420.67235181190000165100.00%000100.3700020021
13Oscar FantenbergAnaheimD3571825332074497231619.72%6382123.472573090000196200.00%000100.6100000204
14Axel AnderssonAdmirals (Ana)D8281119176751423571294811.27%118156119.04134191300000184120.00%000000.2400000100
15Dillon HeatheringtonAdmirals (Ana)D486111774151162745154213.33%93116624.30224181060001136110.00%000000.2900100031
16Cameron HillisAdmirals (Ana)C375914124061233162816.13%4051914.04000190000240142.86%2800000.5400000001
17Andy AndreoffAdmirals (Ana)C/LW12581377514145419379.26%321718.1011211220002261054.79%7300001.2011010000
18Nicolas DeslauriersAdmirals (Ana)LW/RW127613180443657163812.28%625721.483258230001350034.92%6300001.0101000310
19Jack BadiniAdmirals (Ana)C/LW734812-231567467317635.48%1780611.051015570001590046.67%12000000.3000001000
20Jan MysakAdmirals (Ana)C/LW53257-322029205422233.70%54438.3600004000010046.15%2600000.3200000001
21Benjamin MirageasAdmirals (Ana)D471676200277641016.67%3182217.49000049000076000.00%000000.1700000000
22Linus HultstromAdmirals (Ana)D19044-21203221120.00%1932717.25000017000027000.00%000000.2400000000
23Lukas BengtssonAdmirals (Ana)D321231114038183612.50%1347514.850001700009000.00%000000.1300000000
24James GreenwayAdmirals (Ana)D120225201720220.00%1219516.3200005000018000.00%000000.2000000000
25D'Artagnan JolyAdmirals (Ana)RW2000000001000.00%000.090000000000000.00%000000.0000000000
Team Total or Average14232814967771467177518571852299792522499.38%8232330516.3848911393991888213372045411955.21%728700610.671022445294044
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Christopher GibsonAdmirals (Ana)82463050.9183.0848764425030310130.700208201821
2Spencer MartinAdmirals (Ana)30010.9022.5594004410100.0000082000
Team Total or Average85463060.9173.0749704425430720230.7002082821821


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Andy AndreoffAdmirals (Ana)C/LW291991-05-17No203 Lbs6 ft1NoNoNo1Pro & Farm650,000$650,000$0$NoLink
Axel AnderssonAdmirals (Ana)D202000-02-10Yes179 Lbs6 ft0NoNoNo4Pro & Farm772,500$77,250$0$No772,500$772,500$772,500$Link
Benjamin MirageasAdmirals (Ana)D211999-05-08Yes181 Lbs6 ft1NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Cameron HillisAdmirals (Ana)C202000-06-24Yes171 Lbs5 ft10NoNoNo4Pro & Farm838,333$83,833$0$No838,333$838,333$838,333$Link
Christopher GibsonAdmirals (Ana)G271992-12-27No217 Lbs6 ft2NoNoNo1Pro & Farm800,000$80,000$0$NoLink
D'Artagnan JolyAdmirals (Ana)RW211999-04-07No181 Lbs6 ft3NoNoNo3Pro & Farm650,000$65,000$0$No650,000$650,000$Link
Dillon HeatheringtonAdmirals (Ana)D251995-05-08No215 Lbs6 ft4NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Dominic TurgeonAdmirals (Ana)C241996-02-25No199 Lbs6 ft2NoNoNo1Pro & Farm750,000$75,000$0$NoLink
Garrett PilonAdmirals (Ana)C221998-04-13No190 Lbs6 ft0NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Jack BadiniAdmirals (Ana)C/LW221998-01-19Yes203 Lbs6 ft0NoNoNo3Pro & Farm805,000$80,500$0$No805,000$805,000$Link
Jack QuinnAdmirals (Ana)RW192001-09-19Yes176 Lbs6 ft0NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
James GreenwayAdmirals (Ana)D221998-04-27Yes205 Lbs6 ft4NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Jan MysakAdmirals (Ana)C/LW182002-06-24Yes176 Lbs6 ft0NoNoNo3Pro & Farm850,833$85,083$0$No850,833$850,833$Link
Joey KeaneAdmirals (Ana)D211999-07-02No187 Lbs6 ft0NoNoNo3Pro & Farm809,166$80,917$0$No809,166$809,166$Link
Jordan WealAdmirals (Ana)C/LW/RW281992-04-15No181 Lbs5 ft9NoNoNo3Pro & Farm1,400,000$140,000$0$No1,400,000$1,400,000$Link
Joshua Ho-SangAdmirals (Ana)RW241996-01-22Yes173 Lbs6 ft0NoNoNo1Pro & Farm1,000,000$100,000$0$NoLink
Linus HultstromAdmirals (Ana)D271992-12-09No181 Lbs5 ft10NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Lukas BengtssonAdmirals (Ana)D261994-04-14No168 Lbs5 ft9NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Malte StromwallAdmirals (Ana)LW/RW261994-08-24No180 Lbs5 ft10NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Matthew PecaAdmirals (Ana)C/LW/RW271993-04-27No182 Lbs5 ft8NoNoNo1Pro & Farm1,400,000$140,000$0$NoLink
Nicolas DeslauriersAdmirals (Ana)LW/RW291991-02-22No215 Lbs6 ft1NoNoNo1Pro & Farm1,400,000$1,400,000$0$NoLink
Nikita AlexandrovAdmirals (Ana)C202000-09-16Yes185 Lbs5 ft10NoNoNo3Pro & Farm830,833$83,083$0$No830,833$830,833$Link
Patrick RussellAdmirals (Ana)LW/RW271993-01-04No203 Lbs6 ft1NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Spencer MartinAdmirals (Ana)G251995-06-08No191 Lbs6 ft1NoNoNo3Pro & Farm750,000$75,000$0$No750,000$750,000$Link
Tomas JurcoAdmirals (Ana)LW/RW271992-12-27No188 Lbs6 ft2NoNoNo1Pro & Farm750,000$75,000$0$NoLink
Trent FredericAdmirals (Ana)C/LW221998-02-11No203 Lbs6 ft2NoNoNo1Pro & Farm895,000$89,500$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.81190 Lbs6 ft01.92853,045$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nicolas DeslauriersJordan WealJack Quinn40122
2Andy AndreoffGarrett PilonMatthew Peca30122
3Trent FredericTomas JurcoJoshua Ho-Sang20122
4Patrick RussellDominic TurgeonNikita Alexandrov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonJoey Keane40122
2Axel AnderssonBenjamin Mirageas30122
3Linus HultstromLukas Bengtsson20122
4Dillon HeatheringtonJoey Keane10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nicolas DeslauriersJordan WealJack Quinn60122
2Andy AndreoffGarrett PilonMatthew Peca40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonJoey Keane60122
2Axel AnderssonBenjamin Mirageas40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jordan WealNicolas Deslauriers60122
2Garrett PilonAndy Andreoff40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonJoey Keane60122
2Axel AnderssonBenjamin Mirageas40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jordan Weal60122Dillon HeatheringtonJoey Keane60122
2Garrett Pilon40122Axel AnderssonBenjamin Mirageas40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jordan WealNicolas Deslauriers60122
2Garrett PilonAndy Andreoff40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonJoey Keane60122
2Axel AnderssonBenjamin Mirageas40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nicolas DeslauriersJordan WealJack QuinnDillon HeatheringtonJoey Keane
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nicolas DeslauriersJordan WealJack QuinnDillon HeatheringtonJoey Keane
Extra Forwards
Normal PowerPlayPenalty Kill
Matthew Peca, Trent Frederic, Dominic TurgeonMatthew Peca, Trent FredericMatthew Peca
Extra Defensemen
Normal PowerPlayPenalty Kill
Benjamin Mirageas, Linus Hultstrom, Lukas BengtssonBenjamin MirageasBenjamin Mirageas, Linus Hultstrom
Penalty Shots
Nicolas Deslauriers, Jordan Weal, Andy Andreoff, Garrett Pilon, Matthew Peca
Goalie
#1 : Christopher Gibson, #2 : Spencer Martin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Baby Hawks311001001013-31000010045-12110000068-230.500101929001138284169399997010177213141527711436.36%14192.86%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
2Bears2010010046-21000010023-11010000023-110.2504711001138284165699997010177268181458700.00%7185.71%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
3Bruins20200000410-61010000046-21010000004-400.00048121011382841664999970101772912810503133.33%4250.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
4Cabaret Lady Mary Ann220000001358110000008531100000050541.00013233601113828416100999970101772802113449333.33%4250.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
5Caroline220000001055110000003121100000074341.0001017270011382841678999970101772693220484250.00%90100.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
6Chiefs30300000310-71010000003-32020000037-400.0003580011382841670999970101772103273362800.00%12191.67%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
7Chill32100000752110000003032110000045-140.6677132001113828416809999701017729125176411218.18%60100.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
8Comets4020101017170201000108802010100099040.5001730470011382841612199997010177216837301238112.50%15566.67%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
9Cougars2010000148-41010000036-31000000112-110.250481200113828416589999701017725923144811218.18%7185.71%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
10Crunch20001010862100010004311000001043141.000811190011382841610599997010177265178589222.22%4250.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
11Heat412001001316-320200000610-42100010076130.3751322350011382841615099997010177214741301031119.09%15566.67%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
12Jayhawks412010001116-52100100086220200000310-740.5001117280011382841615799997010177216528551098112.50%18477.78%21595291954.64%1700308555.11%775138755.88%1975135719356091067531
13Las Vegas421000011512320100001710-32200000082650.6251527420111382841617199997010177213050391001200.00%15193.33%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
14Manchots211000009811010000034-11100000064220.500916250011382841682999970101772782122443133.33%10280.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
15Marlies2010100045-1100010003211010000013-220.5004711001138284165799997010177260221234500.00%5180.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
16Minnesota311000101376211000009451000001043140.667131932001138284161379999701017721153020766350.00%80100.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
17Monarchs54000010271512330000001991021000010862101.00027487500113828416226999970101772143354510719526.32%20670.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
18Monsters220000001046110000007341100000031241.0001020300011382841668999970101772991922473133.33%11281.82%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
19Monsters30201000812-4100010005412020000038-520.33381321001138284169799997010177211537325411218.18%14285.71%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
20Oceanics320001001192210001007701100000042250.833111829001138284161149999701017721363220628225.00%9188.89%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
21Oil Kings4220000011110211000003302110000088040.5001119301011382841614199997010177213441278913323.08%10190.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
22Phantoms2010100034-11010000024-21000100010120.5003690111382841682999970101772982512428112.50%6183.33%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
23Rocket211000007701010000046-21100000031220.50071219101138284166899997010177298253156300.00%11281.82%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
24Senators22000000523110000002111100000031241.00058130011382841684999970101772602529348112.50%80100.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
25Sharks404000001318-52020000069-32020000079-200.0001326390011382841611399997010177216438459710330.00%19478.95%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
26Sound Tigers2110000067-11010000025-31100000042220.500611170011382841664999970101772792927617228.57%11281.82%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
27Spiders22000000826110000006151100000021141.000814220011382841673999970101772692018569222.22%80100.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
28Stars3200001012752200000010641000001021161.000122032001138284161159999701017721104220755240.00%90100.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
29Thunder220000001174110000005321100000064241.000112031001138284161279999701017727619184811100.00%9277.78%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
30Wolf Pack220000001358110000007251100000063341.0001322350011382841685999970101772741318463133.33%8275.00%01595291954.64%1700308555.11%775138755.88%1975135719356091067531
Total823530064522902593141171504311160139214118150214113012010980.598290506796341138284163036999970101772307586175319722344920.94%3065382.68%21595291954.64%1700308555.11%775138755.88%1975135719356091067531
_Since Last GM Reset823530064522902593141171504311160139214118150214113012010980.598290506796341138284163036999970101772307586175319722344920.94%3065382.68%21595291954.64%1700308555.11%775138755.88%1975135719356091067531
_Vs Conference37201202210135107281910601200785919181060101057489480.64913524437912113828416137599997010177213863693298501052321.90%1412681.56%01595291954.64%1700308555.11%775138755.88%1975135719356091067531

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8298L129050679630363075861753197234
All Games
GPWLOTWOTL SOWSOLGFGA
8235306452290259
Home Games
GPWLOTWOTL SOWSOLGFGA
4117154311160139
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4118152141130120
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2344920.94%3065382.68%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
999970101772113828416
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1595291954.64%1700308555.11%775138755.88%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1975135719356091067531


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2021-10-1312Jayhawks1Admirals2WBoxScore
4 - 2021-10-1528Sharks5Admirals3LBoxScore
7 - 2021-10-1840Admirals1Cougars2LXXBoxScore
9 - 2021-10-2050Admirals6Manchots4WBoxScore
10 - 2021-10-2159Admirals3Monsters1WBoxScore
13 - 2021-10-2478Admirals0Bruins4LBoxScore
15 - 2021-10-2696Crunch3Admirals4WXBoxScore
17 - 2021-10-28112Caroline1Admirals3WBoxScore
19 - 2021-10-30128Heat5Admirals4LBoxScore
21 - 2021-11-01138Admirals2Chill4LBoxScore
23 - 2021-11-03152Admirals2Stars1WXXBoxScore
25 - 2021-11-05168Admirals1Monsters2LBoxScore
26 - 2021-11-06176Admirals4Las Vegas0WBoxScore
28 - 2021-11-08187Oceanics5Admirals4LXBoxScore
31 - 2021-11-11202Comets5Admirals4LBoxScore
33 - 2021-11-13219Baby Hawks5Admirals4LXBoxScore
35 - 2021-11-15233Minnesota3Admirals2LBoxScore
40 - 2021-11-20269Oil Kings1Admirals2WBoxScore
42 - 2021-11-22278Cougars6Admirals3LBoxScore
44 - 2021-11-24292Sharks4Admirals3LBoxScore
46 - 2021-11-26309Admirals1Chiefs2LBoxScore
48 - 2021-11-28316Admirals2Bears3LBoxScore
51 - 2021-12-01334Admirals5Cabaret Lady Mary Ann0WBoxScore
53 - 2021-12-03355Admirals6Thunder4WBoxScore
55 - 2021-12-05372Sound Tigers5Admirals2LBoxScore
57 - 2021-12-07386Admirals2Jayhawks5LBoxScore
59 - 2021-12-09392Oceanics2Admirals3WBoxScore
62 - 2021-12-12423Monarchs1Admirals3WBoxScore
66 - 2021-12-16451Bears3Admirals2LXBoxScore
68 - 2021-12-18463Admirals4Oceanics2WBoxScore
70 - 2021-12-20476Admirals4Minnesota3WXXBoxScore
72 - 2021-12-22497Monarchs5Admirals8WBoxScore
74 - 2021-12-24503Wolf Pack2Admirals7WBoxScore
77 - 2021-12-27528Admirals1Phantoms0WXBoxScore
78 - 2021-12-28535Admirals2Spiders1WBoxScore
81 - 2021-12-31553Admirals4Sound Tigers2WBoxScore
82 - 2022-01-01565Admirals6Wolf Pack3WBoxScore
87 - 2022-01-06591Las Vegas5Admirals4LXXBoxScore
89 - 2022-01-08610Phantoms4Admirals2LBoxScore
91 - 2022-01-10615Admirals4Las Vegas2WBoxScore
93 - 2022-01-12636Admirals1Jayhawks5LBoxScore
96 - 2022-01-15658Chill0Admirals3WBoxScore
98 - 2022-01-17674Monsters3Admirals7WBoxScore
100 - 2022-01-19687Stars3Admirals5WBoxScore
102 - 2022-01-21699Admirals1Baby Hawks5LBoxScore
104 - 2022-01-23713Admirals2Chiefs5LBoxScore
107 - 2022-01-26735Admirals2Chill1WBoxScore
108 - 2022-01-27741Admirals7Caroline4WBoxScore
118 - 2022-02-06773Admirals3Sharks4LBoxScore
120 - 2022-02-08778Jayhawks5Admirals6WXBoxScore
122 - 2022-02-10791Thunder3Admirals5WBoxScore
123 - 2022-02-11804Admirals5Monarchs4WXXBoxScore
126 - 2022-02-14819Admirals3Senators1WBoxScore
128 - 2022-02-16828Admirals3Rocket1WBoxScore
129 - 2022-02-17839Admirals1Marlies3LBoxScore
131 - 2022-02-19856Admirals4Crunch3WXXBoxScore
133 - 2022-02-21876Chiefs3Admirals0LBoxScore
135 - 2022-02-23890Heat5Admirals2LBoxScore
138 - 2022-02-26909Admirals4Comets5LBoxScore
139 - 2022-02-27916Admirals3Heat1WBoxScore
141 - 2022-03-01930Cabaret Lady Mary Ann5Admirals8WBoxScore
143 - 2022-03-03947Monsters4Admirals5WXBoxScore
145 - 2022-03-05965Las Vegas5Admirals3LBoxScore
147 - 2022-03-07980Oil Kings2Admirals1LBoxScore
150 - 2022-03-10998Manchots4Admirals3LBoxScore
152 - 2022-03-121015Spiders1Admirals6WBoxScore
154 - 2022-03-141025Admirals5Baby Hawks3WBoxScore
155 - 2022-03-151031Admirals2Monsters6LBoxScore
157 - 2022-03-171048Marlies2Admirals3WXBoxScore
159 - 2022-03-191063Minnesota1Admirals7WBoxScore
161 - 2022-03-211078Senators1Admirals2WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
165 - 2022-03-251099Admirals3Monarchs2WBoxScore
166 - 2022-03-261112Rocket6Admirals4LBoxScore
169 - 2022-03-291136Bruins6Admirals4LBoxScore
171 - 2022-03-311151Comets3Admirals4WXXBoxScore
174 - 2022-04-031174Admirals5Oil Kings3WBoxScore
176 - 2022-04-051187Admirals4Heat5LXBoxScore
179 - 2022-04-081215Admirals5Comets4WXBoxScore
180 - 2022-04-091221Admirals3Oil Kings5LBoxScore
183 - 2022-04-121241Stars3Admirals5WBoxScore
185 - 2022-04-141256Monarchs3Admirals8WBoxScore
186 - 2022-04-151271Admirals4Sharks5LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3520
Attendance78,05127,099
Attendance PCT95.18%66.10%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2565 - 85.49% 79,848$3,273,765$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,606,055$ 4,062,916$ 4,062,916$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
21,727$ 2,606,055$ 26 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 21,727$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT