Connexion

Sharks
GP: 82 | W: 57 | L: 21 | OTL: 4 | P: 118
GF: 318 | GA: 238 | PP%: 23.35% | PK%: 79.14%
DG: Marc-Andre Bois | Morale : 50 | Moyenne d’équipe : 60
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Stars
43-36-3, 89pts
4
FINAL
5 Sharks
57-21-4, 118pts
Team Stats
W1StreakW6
28-11-2Home Record33-7-1
15-25-1Away Record24-14-3
6-4-0Last 10 Games8-1-1
3.48Goals Per Game3.88
3.39Goals Against Per Game2.90
25.62%Power Play Percentage23.35%
74.35%Penalty Kill Percentage79.14%
Admirals
46-30-6, 98pts
4
FINAL
5 Sharks
57-21-4, 118pts
Team Stats
L1StreakW6
22-15-4Home Record33-7-1
24-15-2Away Record24-14-3
5-4-1Last 10 Games8-1-1
3.54Goals Per Game3.88
3.16Goals Against Per Game2.90
20.94%Power Play Percentage23.35%
82.68%Penalty Kill Percentage79.14%
Meneurs d'équipe
Victoires
Stuart Skinner
51
Pourcentage d’arrêts
Malcolm Subban
0.943

Statistiques d’équipe
Buts pour
318
3.88 GFG
Tirs pour
3322
40.51 Avg
Pourcentage en avantage numérique
23.3%
60 GF
Début de zone offensive
43.7%
Buts contre
238
2.90 GAA
Tirs contre
2680
32.68 Avg
Pourcentage en désavantage numérique
79.1%
34 GA
Début de la zone défensive
37.0%
Information d’équipe

Directeur généralMarc-Andre Bois
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance1,922
Billets de saison300


Information formation

Équipe Pro29
Équipe Mineure19
Limite contact 48 / 50
Espoirs17


Historique d'équipe

Saison actuelle57-21-4 (118PTS)
Historique57-21-7 (0.671%)
Apparitions séries éliminatoires
Historique séries éliminatoires (W-L)-


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Zack SmithXX100.008156797877607161576055752474760506403213,450,000$
2Morgan FrostX100.00624297856368547863746255254646050630213863,334$
3Sasha ChmelevskiXX100.00787587656869636987666968604444050630213778,335$
4Alexander NylanderXX100.006045918368587462336363677260600506302221,000,000$
5Rasmus AsplundXXX100.00654199776763715837627673255050050630221825,000$
6Clark BishopX100.00834590617254626471685576255758050610241875,000$
7Cooper MarodyXX100.00736786666763626780597164674444050610232750,000$
8Noah GregorXXX100.00814493776859736043537066255050050610221650,000$
9Nolan PatrickXX100.00734388767365587084605864254949050610221925,000$
10Otto SomppiX100.00747180677164646580616564624444050600221525,000$
11Austin WagnerXX100.00874589626956825925595961256161050590232722,000$
12Samuel Fagemo (R)XX100.00776995636962636050536265594444050580203795,000$
13Riley StillmanX100.00894678697267666025394883255051050640221650,000$
14Kale ClagueX100.00654192716571746625654769254646050620221767,500$
15Wyatt Kalynuk (R)X100.00774393726869596625586065254545050610234925,000$
16Brennan MenellX100.00696684636673775425563966395555050600232825,000$
Rayé
1Alexander TrueX100.00787879677867686580606369605656050620231763,333$
2Jordy BelleriveX100.00727660666970656886617065614444050610214733,333$
3Alex Turcotte (R)X100.00726782596760606278625763544444050570193925,000$
4Josh WilkinsX100.00847399646667645569485568484444050570233925,002$
5Matthew PhillipsXX100.00655393645360606379606259594444050570221525,000$
6Noah Cates (R)X100.00545271677158695460485052545454050540213525,000$
7Michal Teply (R)XX100.00767189637157595250554462424444050540193825,833$
8Cam DineenX100.00746693666661635525474862464444050570221742,500$
9Reilly Walsh (R)X100.00746888596858595525464962474444050560213700,000$
MOYENNE D’ÉQUIPE100.0074588768686366625458586643495005060
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Stuart Skinner100.0058618484566057645858304444050600
2Malcolm Subban100.0058485381615461616458955555050590
Rayé
1Garret Sparks100.0058496880616054615958304747050580
2Sam Montembeault100.0052536680555153575654304545050550
MOYENNE D’ÉQUIPE100.005753688158565661595746484805058
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Zack SmithSharks (San)C/LW79295988375152932572699121110.78%22172221.80610163219802251252154.58%244800011.02130011037
2Morgan FrostSharks (San)C822659851720402313661042677.10%19167320.41719265918821381536151.36%183800001.0204000382
3Alexander NylanderSharks (San)LW/RW7932528438155331412889020711.11%20165320.9341216411970112885342.98%22800011.0213001385
4Rasmus AsplundSharks (San)C/LW/RW7943388134604011239511323810.89%22164420.8279166420010178011439.22%10200120.98120001055
5Kale ClagueSharks (San)D8295564142603810014056916.43%114196623.9941620702210113126200.00%000100.6500000012
6Wyatt KalynukSharks (San)D821447613146013397165441008.48%125174521.2931316651991123121020.00%000000.7000000413
7Noah GregorSharks (San)C/LW/RW8225295411360178108303892358.25%21150118.32981761207000043141.74%11500010.7200000423
8Brennan MenellSharks (San)D8211415237255935293295411.83%121175621.427815391950110140120.00%000000.5900001204
9Clark BishopSharks (San)C82113950736015611680356013.75%93130815.9600001000003057.58%19800000.7600000422
10Sasha ChmelevskiSharks (San)C/RW52271946915589912136015712.68%996218.525101549139000194261.54%28600000.9602001445
11Nolan PatrickSharks (San)C/RW821032428180649414641996.85%43133916.34112521000032055.00%2000000.6300000112
12Alexander TrueSharks (San)C621822404341076112200551589.00%1496015.4900017000253160.64%90700000.8300110153
13Cooper MarodySharks (San)C/RW82261339-6806087265681679.81%14117114.2810113190003738163.92%15800000.6700000411
14Riley StillmanSharks (San)D70132538655519175158481028.23%133164123.4554962185000290110.00%000000.4600001122
15Otto SomppiSharks (San)C8251419-119530575717598.77%125366.551234180000382159.38%42100000.7100100000
16Austin WagnerSharks (San)LW/RW826915-22201306410131785.94%14102212.4600002000011135.80%8100000.2900000011
17Samuel FagemoSharks (San)LW/RW8110515120272374235813.51%24765.8800000000001150.00%3400000.6300000100
Statistiques d’équipe totales ou en moyenne13223155588732454164016711817331399423419.51%7982308417.466011217256520044711361062552254.33%683600250.76314215524447
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Stuart SkinnerSharks (San)76512030.9082.9444522121823810210.80015760343
2Malcolm SubbanSharks (San)116110.9432.0549801172980000.0000677101
Statistiques d’équipe totales ou en moyenne87572140.9122.8549502223526790210.800158277444


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex TurcotteSharks (San)C192001-02-25Yes185 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Alexander NylanderSharks (San)LW/RW221998-03-01No180 Lbs6 ft1NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Lien
Alexander TrueSharks (San)C231997-07-16No200 Lbs6 ft5NoNoNo1Pro & Farm763,333$76,333$0$NoLien
Austin WagnerSharks (San)LW/RW231997-06-22No185 Lbs6 ft1NoNoNo2Pro & Farm722,000$72,200$0$No722,000$Lien
Brennan MenellSharks (San)D231997-05-24No183 Lbs5 ft11NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Cam DineenSharks (San)D221998-06-18No183 Lbs5 ft11NoNoNo1Pro & Farm742,500$74,250$0$NoLien
Clark BishopSharks (San)C241996-03-28No199 Lbs6 ft1NoNoNo1Pro & Farm875,000$87,500$0$NoLien
Cooper MarodySharks (San)C/RW231996-12-20No184 Lbs6 ft0NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Lien
Garret SparksSharks (San)G271993-06-28No201 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Jordy BelleriveSharks (San)C211999-05-02No195 Lbs5 ft10NoNoNo4Pro & Farm733,333$73,333$0$No733,333$733,333$733,333$Lien
Josh WilkinsSharks (San)C231997-06-11No181 Lbs5 ft11NoNoNo3Pro & Farm925,002$92,500$0$No925,002$925,002$Lien
Kale ClagueSharks (San)D221998-06-05No177 Lbs6 ft0NoNoNo1Pro & Farm767,500$76,750$0$NoLien
Malcolm SubbanSharks (San)G261993-12-21No215 Lbs6 ft2NoNoNo2Pro & Farm975,000$97,500$0$No975,000$Lien
Matthew PhillipsSharks (San)C/RW221998-04-06No150 Lbs5 ft7NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Michal TeplySharks (San)LW/RW192001-05-27Yes187 Lbs6 ft3NoNoNo3Pro & Farm825,833$82,583$0$No825,833$825,833$Lien
Morgan FrostSharks (San)C211999-05-14No170 Lbs5 ft11NoNoNo3Pro & Farm863,334$86,333$0$No863,334$863,334$Lien
Noah CatesSharks (San)LW211999-02-05Yes190 Lbs6 ft2NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Lien
Noah GregorSharks (San)C/LW/RW221998-07-28No185 Lbs6 ft0NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Nolan PatrickSharks (San)C/RW221998-09-19No198 Lbs6 ft2NoNoNo1Pro & Farm925,000$92,500$0$NoLien
Otto SomppiSharks (San)C221998-01-12No190 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Rasmus AsplundSharks (San)C/LW/RW221997-12-03No189 Lbs5 ft11NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Reilly WalshSharks (San)D211999-04-21Yes185 Lbs6 ft0NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Riley StillmanSharks (San)D221998-03-09No196 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Sam MontembeaultSharks (San)G231996-10-29No199 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Samuel FagemoSharks (San)LW/RW202000-03-14Yes190 Lbs5 ft11NoNoNo3Pro & Farm795,000$79,500$0$No795,000$795,000$Lien
Sasha ChmelevskiSharks (San)C/RW211999-06-09No187 Lbs6 ft0NoNoNo3Pro & Farm778,335$77,834$0$No778,335$778,335$Lien
Stuart SkinnerSharks (San)G211998-11-01No206 Lbs6 ft4NoNoNo1Pro & Farm784,166$78,417$0$NoLien
Wyatt KalynukSharks (San)D231997-04-14Yes180 Lbs6 ft1NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Zack SmithSharks (San)C/LW321988-04-05No208 Lbs6 ft2NoNoNo1Pro & Farm3,450,000$345,000$0$NoLien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2922.48189 Lbs6 ft11.93867,253$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Rasmus AsplundZack SmithAlexander Nylander40122
2Noah GregorSasha ChmelevskiNolan Patrick30122
3Austin WagnerMorgan FrostCooper Marody20122
4Samuel FagemoClark BishopZack Smith10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Riley StillmanKale Clague40122
2Wyatt KalynukBrennan Menell30122
3Clark BishopOtto Somppi20122
4Riley StillmanKale Clague10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Rasmus AsplundZack SmithAlexander Nylander60122
2Noah GregorSasha ChmelevskiNolan Patrick40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Riley StillmanKale Clague60122
2Wyatt KalynukBrennan Menell40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Zack SmithRasmus Asplund60122
2Alexander NylanderSasha Chmelevski40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Riley StillmanKale Clague60122
2Wyatt KalynukBrennan Menell40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Zack Smith60122Riley StillmanKale Clague60122
2Rasmus Asplund40122Wyatt KalynukBrennan Menell40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Zack SmithRasmus Asplund60122
2Alexander NylanderSasha Chmelevski40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Riley StillmanKale Clague60122
2Wyatt KalynukBrennan Menell40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Rasmus AsplundZack SmithAlexander NylanderRiley StillmanKale Clague
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Rasmus AsplundZack SmithAlexander NylanderRiley StillmanKale Clague
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Morgan Frost, Cooper Marody, Otto SomppiMorgan Frost, Cooper MarodyOtto Somppi
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Wyatt Kalynuk, Brennan Menell, Riley StillmanWyatt KalynukBrennan Menell, Riley Stillman
Tirs de pénalité
Zack Smith, Rasmus Asplund, Alexander Nylander, Sasha Chmelevski, Morgan Frost
Gardien
#1 : Stuart Skinner, #2 : Malcolm Subban


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals4400000018135220000009722200000096381.00018345200118969781641044112111393311331279019421.05%10370.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
2Baby Hawks3120000010911010000034-12110000075220.333101929001189697893104411211139331003010537228.57%50100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
3Bears2110000056-1110000003211010000024-220.50059140011896978661044112111393377251047200.00%5180.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
4Bruins2020000025-31010000012-11010000013-200.000246001189697874104411211139337119123610110.00%60100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
5Cabaret Lady Mary Ann21000100880110000004311000010045-130.750814220011896978851044112111393386278455240.00%3166.67%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
6Caroline220000001275110000006421100000063341.0001218300011896978901044112111393365311840200.00%8187.50%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
7Chiefs3210000013103110000005322110000087140.667132538101189697813410441121113933842985714535.71%40100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
8Chill321000001192110000004222110000077040.66711172800118969781021044112111393383231660500.00%7442.86%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
9Comets5320000021147312000001110122000000104660.600213859011189697819010441121113933166602910616318.75%9188.89%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
10Cougars2110000036-3110000003211010000004-420.5003580011896978641044112111393357218444250.00%40100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
11Crunch220000001183110000005411100000064241.00011203100118969789510441121113933862616425360.00%70100.00%11700313054.31%1413265153.30%710138151.41%2145152417455671066558
12Heat411011001014-42100100063320100100411-750.62510172700118969781221044112111393312724356911218.18%6183.33%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
13Jayhawks4310000016115211000007612200000095460.75016284400118969781721044112111393316857269215426.67%13376.92%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
14Las Vegas420010012215721000001131122100100094570.8752238600011896978226104411211139331665820871417.14%9366.67%21700313054.31%1413265153.30%710138151.41%2145152417455671066558
15Manchots22000000734110000004131100000032141.000712190011896978811044112111393338176419222.22%3233.33%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
16Marlies2020000047-31010000013-21010000034-100.00046100011896978851044112111393361124358225.00%10100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
17Minnesota330000001138220000006241100000051461.00011193001118969781391044112111393383268621417.14%30100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
18Monarchs4210100013112210010008622110000055060.7501324370011896978168104411211139331044221831119.09%8187.50%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
19Monsters2110000068-21010000025-31100000043120.500612180011896978801044112111393367208409111.11%4250.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
20Monsters31000011981110000004312000001155050.833914230011896978871044112111393399408473133.33%330.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
21Oceanics311010001091210010008531010000024-240.667101828001189697812810441121113933106328658112.50%4250.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
22Oil Kings43100000188102200000012392110000065160.75018325000118969781461044112111393311225168316637.50%80100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
23Phantoms210010001165100010005411100000062441.00011213200118969788910441121113933701615459222.22%50100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
24Rocket210000101055110000007341000001032141.0001016260011896978661044112111393369291230200.00%50100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
25Senators211000001192110000006331010000056-120.5001120310011896978901044112111393360158494375.00%3166.67%11700313054.31%1413265153.30%710138151.41%2145152417455671066558
26Sound Tigers2110000056-1110000004311010000013-220.50058130011896978631044112111393377152739500.00%6266.67%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
27Spiders21100000752110000004131010000034-120.500713200011896978691044112111393372216375240.00%30100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
28Stars3300000013942200000010731100000032161.0001323360011896978129104411211139331081810649444.44%2150.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
29Thunder22000000927110000005141100000041341.000916250011896978115104411211139335296574125.00%30100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
30Wolf Pack220000001248110000008171100000043141.000122133001189697811010441121113933539123612433.33%6266.67%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
Total825021052223182388041297040011741146041211401221144124201180.7203185618791211896978332210441121113933268080741816812576023.35%1633479.14%41700313054.31%1413265153.30%710138151.41%2145152417455671066558
_Since Last GM Reset825021052223182388041297040011741146041211401221144124201180.7203185618791211896978332210441121113933268080741816812576023.35%1633479.14%41700313054.31%1413265153.30%710138151.41%2145152417455671066558
_Vs Conference3621120300013110328181230300072462618990000059572480.667131235366001189697814841044112111393311043061867601202420.00%742072.97%11700313054.31%1413265153.30%710138151.41%2145152417455671066558
_Vs Division1657020005850883202000322111825000002629-3140.4385810115900118969786741044112111393354215874338421433.33%32293.75%21700313054.31%1413265153.30%710138151.41%2145152417455671066558

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82118W631856187933222680807418168112
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8250215222318238
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412974001174114
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4121141221144124
Derniers 10 matchs
WLOTWOTL SOWSOL
810100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2576023.35%1633479.14%4
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
1044112111393311896978
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1700313054.31%1413265153.30%710138151.41%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2145152417455671066558


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2021-10-124Sharks5Las Vegas1WSommaire du match
3 - 2021-10-1417Las Vegas5Sharks4LXXSommaire du match
4 - 2021-10-1528Sharks5Admirals3WSommaire du match
7 - 2021-10-1841Sharks6Chill5WSommaire du match
9 - 2021-10-2054Sharks1Baby Hawks2LSommaire du match
12 - 2021-10-2377Heat1Sharks3WSommaire du match
15 - 2021-10-2697Caroline4Sharks6WSommaire du match
18 - 2021-10-29123Crunch4Sharks5WSommaire du match
21 - 2021-11-01134Sharks6Crunch4WSommaire du match
23 - 2021-11-03145Sharks3Rocket2WXXSommaire du match
24 - 2021-11-04156Sharks3Marlies4LSommaire du match
26 - 2021-11-06173Sharks5Senators6LSommaire du match
28 - 2021-11-08179Sharks1Bruins3LSommaire du match
31 - 2021-11-11203Oceanics4Sharks5WXSommaire du match
32 - 2021-11-12216Comets4Sharks3LSommaire du match
35 - 2021-11-15234Baby Hawks4Sharks3LSommaire du match
37 - 2021-11-17247Minnesota0Sharks2WSommaire du match
39 - 2021-11-19262Chill2Sharks4WSommaire du match
42 - 2021-11-22280Oil Kings1Sharks7WSommaire du match
44 - 2021-11-24292Sharks4Admirals3WSommaire du match
46 - 2021-11-26313Cougars2Sharks3WSommaire du match
49 - 2021-11-29330Oil Kings2Sharks5WSommaire du match
51 - 2021-12-01344Sharks4Las Vegas3WXSommaire du match
53 - 2021-12-03361Sound Tigers3Sharks4WSommaire du match
55 - 2021-12-05373Sharks2Monarchs4LSommaire du match
57 - 2021-12-07389Oceanics1Sharks3WSommaire du match
59 - 2021-12-09393Monarchs3Sharks4WXSommaire du match
60 - 2021-12-10411Sharks5Jayhawks3WSommaire du match
63 - 2021-12-13433Bears2Sharks3WSommaire du match
65 - 2021-12-15443Sharks6Caroline3WSommaire du match
67 - 2021-12-17457Sharks4Thunder1WSommaire du match
68 - 2021-12-18464Sharks4Cabaret Lady Mary Ann5LXSommaire du match
70 - 2021-12-20475Sharks1Chill2LSommaire du match
72 - 2021-12-22498Wolf Pack1Sharks8WSommaire du match
74 - 2021-12-24514Comets1Sharks4WSommaire du match
77 - 2021-12-27534Jayhawks4Sharks3LSommaire du match
81 - 2021-12-31564Chiefs3Sharks5WSommaire du match
82 - 2022-01-01568Las Vegas6Sharks9WSommaire du match
87 - 2022-01-06592Monarchs3Sharks4WSommaire du match
88 - 2022-01-07601Phantoms4Sharks5WXSommaire du match
91 - 2022-01-10620Sharks0Cougars4LSommaire du match
93 - 2022-01-12631Sharks3Manchots2WSommaire du match
95 - 2022-01-14642Sharks4Monsters3WSommaire du match
96 - 2022-01-15653Sharks2Bears4LSommaire du match
98 - 2022-01-17670Sharks5Chiefs2WSommaire du match
100 - 2022-01-19688Monsters5Sharks2LSommaire du match
102 - 2022-01-21702Stars3Sharks5WSommaire du match
105 - 2022-01-24724Sharks4Jayhawks2WSommaire du match
107 - 2022-01-26738Sharks1Monsters2LXXSommaire du match
109 - 2022-01-28754Sharks6Comets4WSommaire du match
118 - 2022-02-06773Admirals3Sharks4WSommaire du match
120 - 2022-02-08781Comets5Sharks4LSommaire du match
123 - 2022-02-11805Thunder1Sharks5WSommaire du match
126 - 2022-02-14823Sharks1Heat7LSommaire du match
128 - 2022-02-16837Sharks3Oil Kings4LSommaire du match
132 - 2022-02-20865Heat2Sharks3WXSommaire du match
136 - 2022-02-24891Sharks2Oceanics4LSommaire du match
137 - 2022-02-25899Sharks5Minnesota1WSommaire du match
139 - 2022-02-27915Cabaret Lady Mary Ann3Sharks4WSommaire du match
142 - 2022-03-02934Sharks3Spiders4LSommaire du match
144 - 2022-03-04953Sharks4Wolf Pack3WSommaire du match
145 - 2022-03-05962Sharks1Sound Tigers3LSommaire du match
147 - 2022-03-07972Sharks6Phantoms2WSommaire du match
149 - 2022-03-09993Spiders1Sharks4WSommaire du match
151 - 2022-03-111010Manchots1Sharks4WSommaire du match
154 - 2022-03-141028Marlies3Sharks1LSommaire du match
156 - 2022-03-161042Minnesota2Sharks4WSommaire du match
158 - 2022-03-181053Senators3Sharks6WSommaire du match
159 - 2022-03-191065Monsters3Sharks4WSommaire du match
162 - 2022-03-221079Sharks6Baby Hawks3WSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
164 - 2022-03-241094Sharks3Chiefs5LSommaire du match
165 - 2022-03-251106Sharks3Stars2WSommaire du match
168 - 2022-03-281129Sharks4Monsters3WXXSommaire du match
170 - 2022-03-301145Rocket3Sharks7WSommaire du match
172 - 2022-04-011163Bruins2Sharks1LSommaire du match
174 - 2022-04-031173Sharks3Heat4LXSommaire du match
176 - 2022-04-051189Sharks4Comets0WSommaire du match
178 - 2022-04-071203Sharks3Oil Kings1WSommaire du match
180 - 2022-04-091223Jayhawks2Sharks4WSommaire du match
182 - 2022-04-111238Sharks3Monarchs1WSommaire du match
184 - 2022-04-131254Stars4Sharks5WSommaire du match
186 - 2022-04-151271Admirals4Sharks5WSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité17501250
Prix des billets5020
Assistance44,77934,023
Assistance PCT62.41%66.39%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 1922 - 64.07% 71,205$2,919,410$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,547,485$ 2,515,032$ 2,515,032$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
13,449$ 2,547,485$ 29 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 13,449$ 0$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT