Connexion

Comets
GP: 82 | W: 42 | L: 31 | OTL: 9 | P: 93
GF: 295 | GA: 287 | PP%: 20.75% | PK%: 78.66%
DG: Samuel Gendron-Mallet | Morale : 50 | Moyenne d’équipe : 55
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Comets
42-31-9, 93pts
4
FINAL
5 Jayhawks
40-33-9, 89pts
Team Stats
W1StreakW2
22-16-3Home Record19-16-6
20-15-6Away Record21-17-3
4-2-4Last 10 Games5-4-1
3.60Goals Per Game3.77
3.50Goals Against Per Game3.82
20.75%Power Play Percentage25.86%
78.66%Penalty Kill Percentage77.61%
Las Vegas
25-47-10, 60pts
4
FINAL
5 Comets
42-31-9, 93pts
Team Stats
L2StreakW1
12-24-5Home Record22-16-3
13-23-5Away Record20-15-6
1-5-4Last 10 Games4-2-4
3.72Goals Per Game3.60
4.73Goals Against Per Game3.50
19.83%Power Play Percentage20.75%
77.59%Penalty Kill Percentage78.66%
Meneurs d'équipe
Buts
Ryan Carpenter
26
Passes
Ryan Carpenter
40
Points
Ryan Carpenter
66
Plus/Moins
Ryan Carpenter
17
Victoires
Lukas Dostal
42
Pourcentage d’arrêts
Lukas Dostal
0.908

Statistiques d’équipe
Buts pour
295
3.60 GFG
Tirs pour
3030
36.95 Avg
Pourcentage en avantage numérique
20.7%
50 GF
Début de zone offensive
40.0%
Buts contre
287
3.50 GAA
Tirs contre
3042
37.10 Avg
Pourcentage en désavantage numérique
78.7%
54 GA
Début de la zone défensive
40.7%
Information d’équipe

Directeur généralSamuel Gendron-Mallet
DivisionNord
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,918
Billets de saison300


Information formation

Équipe Pro23
Équipe Mineure20
Limite contact 43 / 50
Espoirs7


Historique d'équipe

Saison actuelle42-31-9 (93PTS)
Historique42-31-8 (0.519%)
Apparitions séries éliminatoires
Historique séries éliminatoires (W-L)-


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Eric RobinsonXX100.008245976275629064446466712558590506302531,000,000$
2Givani SmithXX100.00834565667857766125655759254747050590221742,500$
3Maxim Sushko (R)X100.00757286657174555853526164254444050570213775,002$
4Maxim LetunovX100.00767188627165675771446563624444050570241825,000$
5Ivan Lodnia (R)X100.00494783706965756163555651605454050570213747,500$
6Sheldon RempalXX100.00676083626064666050595660534444050560251925,000$
7Shane GersichXX100.00676668626665685771525759544444050560241867,000$
8Aidan Dudas (R)X100.00685792655768725468475659534444050550204786,667$
9Filip Hallander (R)X100.00504591676968914955414851505051050530204764,167$
10Bulat Shafigullin (R)X100.00494279676167954250334343455454050500204700,000$
11Semyon Der-Arguchintsev (R)X100.00413395695650574750434351455052050490204766,667$
12Jonas SiegenthalerX100.00784591687967626225394786255960050650232900,000$
13Doyle SomerbyX100.00838383628361655025434067385252050590261725,000$
14Timothy LiljegrenX100.00747084727058605425504362414545050580212863,333$
15Kyle CapobiancoX100.00757281647259615525534263404545050570231700,000$
16Markus Phillips (R)X100.00777386517361654925414262404444050550213796,667$
17Max Gildon (R)X100.00565567657256694725493755405454050540213700,000$
18Stanislav Demin (R)X100.00575371627146613525313250345050050490204700,000$
Rayé
1Joe HickettsX100.00696383676363665425534060384949050570241700,000$
2Daniel BrickleyX100.00807689567648494925364663444444050540251825,000$
MOYENNE D’ÉQUIPE100.0068598364706169534148496042494905056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Lukas Dostal (R)100.0062698667636552645958304444050600
2Matt Villalta100.0051617667475250555050334844050530
Rayé
1Matej Tomek (R)100.0037434166363535353535333230050390
MOYENNE D’ÉQUIPE100.005058686749514651484832413905051
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Eric RobinsonComets (Van)LW/RW824049893024013614137911725510.55%34183422.3767136019702282137344.03%40200000.9729000684
2Maxim SushkoComets (Van)RW82324173-95020122130325952499.85%15153318.705712361271012564246.43%14000000.9501004515
3Ryan CarpenterVancouverC/RW4926406617240140171263842189.89%21112422.95211133412301131263347.89%158700001.1704000536
4Maxim LetunovComets (Van)C823332654395792002256916114.67%19152518.614711361690000233054.51%198300010.8501010122
5Jonas SiegenthalerComets (Van)D6221446514280128951715511612.28%110147223.7511617671501234154520.00%000000.8800000356
6Sheldon RempalComets (Van)LW/RW82213758-9340106157236491698.90%20134816.441565500001223246.49%11400000.8600000122
7Givani SmithComets (Van)LW/RW8218365410660278112233611667.73%12166920.362683718801131302038.55%16600010.6516000254
8Aleksi HeponiemiVancouverLW/RW452028489007721805814011.11%1592320.535712411191016953237.14%10500001.0413000141
9Shane GersichComets (Van)C/LW8219294823601381391726114111.05%12122514.9505515106000141153.45%123100000.7800000221
10Kyle CapobiancoComets (Van)D7673744-37715177758825537.95%76145619.17246221180000120110.00%000000.6000111202
11Timothy LiljegrenComets (Van)D827323916435147709339617.53%112175721.44268381890000183000.00%000000.4400001001
12Ivan LodniaComets (Van)RW82142539-510030118202621436.93%6139617.031237610002972055.06%17800000.5614000010
13Joe HickettsComets (Van)D6242226-618080475421297.41%83120019.3622419106000098200.00%000000.4300000202
14Aidan DudasComets (Van)C82111122-82007511612040879.17%2091711.19000020000381051.12%102300000.4801000100
15Markus PhillipsComets (Van)D774711-88030142325318417.55%101115214.97101331000035000.00%000000.1900312001
16Max GildonComets (Van)D591910-12005229346122.94%6386914.7400029000051000.00%000000.2300000001
17Doyle SomerbyComets (Van)D42358-738097224615216.52%5589121.221231994000090000.00%000000.1800000001
18Filip HallanderComets (Van)C71257-600833326226.25%44676.5900005000000047.67%19300000.3000000000
19Stanislav DeminComets (Van)D160221401433100.00%81469.1500001000013000.00%000000.2700000000
20Daniel BrickleyComets (Van)D6011-120821130.00%56010.150110000002000.00%000000.3300000000
21Bulat ShafigullinComets (Van)C711011004322150.00%0640.92101113000050154.55%3300000.3100000000
22Semyon Der-ArguchintsevComets (Van)C52011000003330.00%0250.49000150000000100.00%100000.7900000000
Statistiques d’équipe totales ou en moyenne1426284493777416137519681767291588820919.74%7912306516.1846781244431874369301565371750.71%715600020.67529438313339
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Lukas DostalComets (Van)82423190.9083.4048144327329550100.67928820651
2Matt VillaltaComets (Van)50000.9083.22149008870000.0000082000
Statistiques d’équipe totales ou en moyenne87423190.9083.4049634328130420100.679288282651


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Aidan DudasComets (Van)C202000-06-14Yes162 Lbs5 ft8NoNoNo4Pro & Farm786,667$78,667$0$No786,667$786,667$786,667$Lien
Bulat ShafigullinComets (Van)C201999-12-29Yes161 Lbs6 ft1NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Lien
Daniel BrickleyComets (Van)D251995-03-30No203 Lbs6 ft3NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Doyle SomerbyComets (Van)D261994-07-04No218 Lbs6 ft6NoNoNo1Pro & Farm725,000$72,500$0$NoLien
Eric RobinsonComets (Van)LW/RW251995-06-14No200 Lbs6 ft2NoNoNo3Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$Lien
Filip HallanderComets (Van)C202000-06-29Yes188 Lbs6 ft2NoNoNo4Pro & Farm764,167$76,417$0$No764,167$764,167$764,167$Lien
Givani SmithComets (Van)LW/RW221998-02-27No210 Lbs6 ft2NoNoNo1Pro & Farm742,500$74,250$0$NoLien
Ivan LodniaComets (Van)RW211999-08-21Yes194 Lbs6 ft0NoNoNo3Pro & Farm747,500$74,750$0$No747,500$747,500$Lien
Joe HickettsComets (Van)D241996-05-04No180 Lbs5 ft8NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Jonas SiegenthalerComets (Van)D231997-05-06No211 Lbs6 ft3NoNoNo2Pro & Farm900,000$90,000$0$No900,000$Lien
Kyle CapobiancoComets (Van)D231997-08-13No196 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Lukas DostalComets (Van)G202000-06-22Yes174 Lbs6 ft2NoNoNo4Pro & Farm822,500$82,250$0$No822,500$822,500$822,500$Lien
Markus PhillipsComets (Van)D211999-03-20Yes202 Lbs6 ft0NoNoNo3Pro & Farm796,667$79,667$0$No796,667$796,667$Lien
Matej TomekComets (Van)G231997-05-24Yes180 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Matt VillaltaComets (Van)G211999-06-03No165 Lbs6 ft3NoNoNo2Pro & Farm778,333$77,833$0$No778,333$Lien
Max GildonComets (Van)D211999-05-17Yes192 Lbs6 ft3NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Maxim LetunovComets (Van)C241996-02-20No180 Lbs6 ft4NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Maxim SushkoComets (Van)RW211999-02-10Yes198 Lbs6 ft0NoNoNo3Pro & Farm775,002$77,500$0$No775,002$775,002$Lien
Semyon Der-ArguchintsevComets (Van)C202000-09-15Yes159 Lbs5 ft10NoNoNo4Pro & Farm766,667$76,667$0$No766,667$766,667$766,667$
Shane GersichComets (Van)C/LW241996-07-10No180 Lbs5 ft11NoNoNo1Pro & Farm867,000$86,700$0$NoLien
Sheldon RempalComets (Van)LW/RW251995-08-07No165 Lbs5 ft10NoNoNo1Pro & Farm925,000$92,500$0$NoLien
Stanislav DeminComets (Van)D202000-04-04Yes190 Lbs6 ft2NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Lien
Timothy LiljegrenComets (Van)D211999-04-30No192 Lbs6 ft0NoNoNo2Pro & Farm863,333$86,333$0$No863,333$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2322.17187 Lbs6 ft12.35787,406$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Eric RobinsonMaxim LetunovGivani Smith40122
2Sheldon RempalShane GersichIvan Lodnia30122
3Filip HallanderAidan DudasMaxim Sushko20122
4Eric RobinsonFilip HallanderGivani Smith10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jonas SiegenthalerDoyle Somerby40122
2Timothy LiljegrenKyle Capobianco30122
3Markus PhillipsMax Gildon20122
4Stanislav DeminJonas Siegenthaler10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Eric RobinsonMaxim LetunovGivani Smith60122
2Sheldon RempalShane GersichIvan Lodnia40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jonas SiegenthalerDoyle Somerby60122
2Timothy LiljegrenKyle Capobianco40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Eric RobinsonGivani Smith60122
2Ivan LodniaMaxim Sushko40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jonas SiegenthalerDoyle Somerby60122
2Timothy LiljegrenKyle Capobianco40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Eric Robinson60122Jonas SiegenthalerDoyle Somerby60122
2Givani Smith40122Timothy LiljegrenKyle Capobianco40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Eric RobinsonGivani Smith60122
2Ivan LodniaMaxim Sushko40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jonas SiegenthalerDoyle Somerby60122
2Timothy LiljegrenKyle Capobianco40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Eric RobinsonMaxim LetunovGivani SmithJonas SiegenthalerDoyle Somerby
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Eric RobinsonMaxim LetunovGivani SmithJonas SiegenthalerDoyle Somerby
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Bulat Shafigullin, Semyon Der-Arguchintsev, Aidan DudasBulat Shafigullin, Semyon Der-ArguchintsevAidan Dudas
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Markus Phillips, Max Gildon, Stanislav DeminMarkus PhillipsMax Gildon, Stanislav Demin
Tirs de pénalité
Eric Robinson, Givani Smith, Ivan Lodnia, Maxim Sushko, Maxim Letunov
Gardien
#1 : Lukas Dostal, #2 : Matt Villalta


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals4200010117170210001009902100000188060.750173047001219475716810279849896112147168315533.33%8187.50%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
2Baby Hawks310010011091210000016601000100043150.8331017270012194757104102798498961942818629333.33%8275.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
3Bears211000009631010000034-11100000062420.500915240012194757841027984989615815145514428.57%6266.67%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
4Bruins20200000711-41010000034-11010000047-300.00071320001219475769102798498961762018419111.11%8275.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
5Cabaret Lady Mary Ann22000000945110000004131100000053241.0009162500121947579610279849896180291359500.00%40100.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
6Caroline20100010660100000103211010000034-120.5006814001219475795102798498961632210567228.57%50100.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
7Chiefs3210000013762200000011381010000024-240.66713253801121947571161027984989619833207410220.00%100100.00%11513299350.55%1513304049.77%723144250.14%1966134019046131099554
8Chill30300000611-52020000047-31010000024-200.000610160012194757761027984989611283224518225.00%11190.91%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
9Cougars21000010844100000103211100000052341.0008132100121947576410279849896157131240500.00%6183.33%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
10Crunch21100000862110000005141010000035-220.5008142200121947579210279849896169239534125.00%20100.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
11Heat4120001014140211000007522010001079-240.50014233700121947571501027984989611453429987114.29%11281.82%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
12Jayhawks4210000116160211000008802100000188050.6251630460012194757158102798498961156423411319631.58%11372.73%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
13Las Vegas412010001718-1211000009902010100089-140.5001730470012194757170102798498961196543912214321.43%17382.35%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
14Manchots211000007611010000034-11100000042220.50071219001219475783102798498961782823476116.67%8275.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
15Marlies2110000056-1110000003211010000024-220.5005914001219475777102798498961752614539111.11%6183.33%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
16Minnesota3300000015114110000006422200000097261.000152944001219475711110279849896111318271037114.29%10460.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
17Monarchs4310000014122220000006422110000088060.7501427410012194757143102798498961141343510111218.18%9366.67%11513299350.55%1513304049.77%723144250.14%1966134019046131099554
18Monsters22000000826110000004131100000041341.00081422001219475778102798498961732017464125.00%6183.33%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
19Monsters31200000990211000006511010000034-120.333917260012194757931027984989611173427676350.00%11281.82%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
20Oceanics30200100713-61010000025-32010010058-310.16771320001219475790102798498961126423469800.00%11372.73%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
21Oil Kings41200100914-52110000079-22010010025-330.3759172600121947571211027984989611583524981119.09%11372.73%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
22Phantoms22000000862110000004311100000043141.00081523001219475781102798498961851423596233.33%9277.78%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
23Rocket20100001510-51000000145-11010000015-410.2505101500121947575510279849896191221245400.00%6266.67%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
24Senators220000001129110000007251100000040441.000112031011219475780102798498961642012419111.11%60100.00%21513299350.55%1513304049.77%723144250.14%1966134019046131099554
25Sharks523000001421-720200000410-6321000001011-140.400142539001219475716610279849896119052431239111.11%16381.25%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
26Sound Tigers20100001911-21010000056-11000000145-110.25091827001219475770102798498961702510454125.00%4250.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
27Spiders20200000512-71010000048-41010000014-300.000591400121947576510279849896174226558112.50%3233.33%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
28Stars311000011112-11010000034-12100000188030.500112132001219475793102798498961972022627342.86%11554.55%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
29Thunder220000001284110000007431100000054141.00012223400121947579510279849896193262246300.00%10280.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
30Wolf Pack22000000633110000002021100000043141.00061117011219475787102798498961562118543133.33%90100.00%01513299350.55%1513304049.77%723144250.14%1966134019046131099554
Total823731023362952878412016001221521371541171502214143150-7930.56729553382803121947573030102798498961304285162520212415020.75%2535478.66%41513299350.55%1513304049.77%723144250.14%1966134019046131099554
_Since Last GM Reset823731023362952878412016001221521371541171502214143150-7930.56729553382803121947573030102798498961304285162520212415020.75%2535478.66%41513299350.55%1513304049.77%723144250.14%1966134019046131099554
_Vs Conference411714021341501401021116000228264182068021126876-8490.59815027042001121947571518102798498961153440729610521152622.61%1232778.05%11513299350.55%1513304049.77%723144250.14%1966134019046131099554
_Vs Division2135000027172-1112200001383441013000013338-580.190711322030112194757683102798498961773207172488551425.45%721776.39%11513299350.55%1513304049.77%723144250.14%1966134019046131099554

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8293W129553382830303042851625202103
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8237312336295287
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4120160122152137
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4117152214143150
Derniers 10 matchs
WLOTWOTL SOWSOL
420103
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2415020.75%2535478.66%4
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
10279849896112194757
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1513299350.55%1513304049.77%723144250.14%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1966134019046131099554


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2021-10-123Comets1Oil Kings2LXSommaire du match
4 - 2021-10-1529Comets3Heat6LSommaire du match
8 - 2021-10-1946Monarchs2Comets3WSommaire du match
11 - 2021-10-2273Phantoms3Comets4WSommaire du match
14 - 2021-10-2589Cougars2Comets3WXXSommaire du match
16 - 2021-10-27101Comets2Chiefs4LSommaire du match
18 - 2021-10-29113Comets1Spiders4LSommaire du match
19 - 2021-10-30124Comets4Wolf Pack3WSommaire du match
21 - 2021-11-01137Comets5Cougars2WSommaire du match
24 - 2021-11-04160Bears4Comets3LSommaire du match
27 - 2021-11-07178Cabaret Lady Mary Ann1Comets4WSommaire du match
29 - 2021-11-09193Comets5Monarchs2WSommaire du match
31 - 2021-11-11202Comets5Admirals4WSommaire du match
32 - 2021-11-12216Comets4Sharks3WSommaire du match
35 - 2021-11-15232Chiefs0Comets5WSommaire du match
37 - 2021-11-17243Comets4Baby Hawks3WXSommaire du match
38 - 2021-11-18250Comets2Oceanics4LSommaire du match
40 - 2021-11-20265Spiders8Comets4LSommaire du match
42 - 2021-11-22277Chill3Comets1LSommaire du match
44 - 2021-11-24291Stars4Comets3LSommaire du match
46 - 2021-11-26311Monsters1Comets5WSommaire du match
49 - 2021-11-29327Comets6Stars5WSommaire du match
51 - 2021-12-01339Comets2Chill4LSommaire du match
53 - 2021-12-03348Comets6Bears2WSommaire du match
55 - 2021-12-05367Comets4Phantoms3WSommaire du match
57 - 2021-12-07382Comets4Manchots2WSommaire du match
60 - 2021-12-10415Comets1Oil Kings3LSommaire du match
61 - 2021-12-11418Oil Kings6Comets1LSommaire du match
63 - 2021-12-13432Senators2Comets7WSommaire du match
67 - 2021-12-17453Crunch1Comets5WSommaire du match
70 - 2021-12-20481Marlies2Comets3WSommaire du match
72 - 2021-12-22496Caroline2Comets3WXXSommaire du match
74 - 2021-12-24514Comets1Sharks4LSommaire du match
75 - 2021-12-25518Comets3Las Vegas5LSommaire du match
77 - 2021-12-27532Rocket5Comets4LXXSommaire du match
79 - 2021-12-29547Las Vegas5Comets4LSommaire du match
81 - 2021-12-31563Manchots4Comets3LSommaire du match
83 - 2022-01-02579Oil Kings3Comets6WSommaire du match
88 - 2022-01-07599Monarchs2Comets3WSommaire du match
89 - 2022-01-08611Comets4Heat3WXXSommaire du match
93 - 2022-01-12637Baby Hawks3Comets4WSommaire du match
95 - 2022-01-14651Wolf Pack0Comets2WSommaire du match
98 - 2022-01-17663Comets5Thunder4WSommaire du match
100 - 2022-01-19681Comets5Cabaret Lady Mary Ann3WSommaire du match
102 - 2022-01-21692Comets3Crunch5LSommaire du match
103 - 2022-01-22704Comets4Minnesota3WSommaire du match
105 - 2022-01-24721Comets3Oceanics4LXSommaire du match
107 - 2022-01-26739Jayhawks3Comets6WSommaire du match
109 - 2022-01-28754Sharks6Comets4LSommaire du match
118 - 2022-02-06772Chiefs3Comets6WSommaire du match
120 - 2022-02-08781Comets5Sharks4WSommaire du match
123 - 2022-02-11793Comets4Sound Tigers5LXXSommaire du match
124 - 2022-02-12808Comets3Caroline4LSommaire du match
126 - 2022-02-14812Comets4Bruins7LSommaire du match
128 - 2022-02-16835Comets5Minnesota4WSommaire du match
130 - 2022-02-18853Heat3Comets2LSommaire du match
132 - 2022-02-20864Chill4Comets3LSommaire du match
134 - 2022-02-22879Baby Hawks3Comets2LXXSommaire du match
138 - 2022-02-26909Admirals4Comets5WSommaire du match
141 - 2022-03-01932Minnesota4Comets6WSommaire du match
144 - 2022-03-04956Bruins4Comets3LSommaire du match
147 - 2022-03-07969Comets1Rocket5LSommaire du match
149 - 2022-03-09988Comets4Senators0WSommaire du match
151 - 2022-03-111003Comets2Marlies4LSommaire du match
152 - 2022-03-121013Comets4Monsters1WSommaire du match
155 - 2022-03-151032Jayhawks5Comets2LSommaire du match
157 - 2022-03-171047Monsters4Comets1LSommaire du match
159 - 2022-03-191064Monsters1Comets4WSommaire du match
161 - 2022-03-211077Sound Tigers6Comets5LSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
163 - 2022-03-231092Comets4Jayhawks3WSommaire du match
164 - 2022-03-241096Comets3Monsters4LSommaire du match
166 - 2022-03-261117Oceanics5Comets2LSommaire du match
169 - 2022-03-291134Thunder4Comets7WSommaire du match
171 - 2022-03-311151Comets3Admirals4LXXSommaire du match
172 - 2022-04-011161Comets3Monarchs6LSommaire du match
174 - 2022-04-031175Comets5Las Vegas4WXSommaire du match
176 - 2022-04-051189Sharks4Comets0LSommaire du match
178 - 2022-04-071204Heat2Comets5WSommaire du match
179 - 2022-04-081215Admirals5Comets4LXSommaire du match
181 - 2022-04-101227Comets2Stars3LXXSommaire du match
184 - 2022-04-131253Comets4Jayhawks5LXXSommaire du match
186 - 2022-04-151268Las Vegas4Comets5WSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3015
Assistance80,09939,522
Assistance PCT97.68%96.40%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2918 - 97.25% 73,068$2,995,800$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,004,602$ 1,811,034$ 1,811,034$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,685$ 2,004,602$ 23 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 9,685$ 0$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT