Connexion

Marlies
GP: 82 | W: 48 | L: 30 | OTL: 4 | P: 100
GF: 291 | GA: 249 | PP%: 20.09% | PK%: 82.31%
DG: Patrick Pellegrino | Morale : 50 | Moyenne d’équipe : 58
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Cougars
56-20-6, 118pts
2
FINAL
5 Marlies
48-30-4, 100pts
Team Stats
W1StreakL1
30-9-2Home Record28-12-1
26-11-4Away Record20-18-3
8-1-1Last 10 Games5-4-1
4.00Goals Per Game3.55
3.10Goals Against Per Game3.04
20.94%Power Play Percentage20.09%
82.63%Penalty Kill Percentage82.31%
Rocket
54-20-8, 116pts
4
FINAL
1 Marlies
48-30-4, 100pts
Team Stats
W7StreakL1
27-9-5Home Record28-12-1
27-11-3Away Record20-18-3
8-2-0Last 10 Games5-4-1
4.23Goals Per Game3.55
3.28Goals Against Per Game3.04
24.82%Power Play Percentage20.09%
79.03%Penalty Kill Percentage82.31%
Meneurs d'équipe
Buts
Zack Kassian
22
Passes
Zack Kassian
42
Points
Zack Kassian
64
Plus/Moins
Erik Gustafsson
15
Victoires
Jonathan Quick
25
Pourcentage d’arrêts
Joonas Korpisalo
0.949

Statistiques d’équipe
Buts pour
291
3.55 GFG
Tirs pour
3236
39.46 Avg
Pourcentage en avantage numérique
20.1%
47 GF
Début de zone offensive
41.4%
Buts contre
249
3.04 GAA
Tirs contre
2971
36.23 Avg
Pourcentage en désavantage numérique
82.3%
52 GA
Début de la zone défensive
40.4%
Information d’équipe

Directeur généralPatrick Pellegrino
DivisionAtlantique
ConférenceEst
Capitaine
Assistant #1Brian Gibbons
Assistant #2Kevin Connauton


Informations de l’aréna

Capacité6,000
Assistance4,007
Billets de saison600


Information formation

Équipe Pro27
Équipe Mineure20
Limite contact 47 / 50
Espoirs15


Historique d'équipe

Saison actuelle48-30-4 (100PTS)
Historique48-30-4 (0.585%)
Apparitions séries éliminatoires
Historique séries éliminatoires (W-L)-


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Nicholas MerkleyX100.007543917968597062337558642546460506202321,100,000$
2Timothy Gettinger (R)X100.00818376668362626450606568624444050610222770,000$
3Pontus AbergXX100.006861837570677260435962626054550506102711,250,000$
4Riley Damiani (R)X100.00696285586272746680676262594444050600204803,333$
5Shane BowersX100.00837797667067635975476768584444050590213925,002$
6Vitaly Abramov (R)XX100.00726587686562626350626163584444050590221742,500$
7Kody ClarkX100.00837892607158536355507269624444050590204808,333$
8Brian Gibbons (A)XX100.006341906961536553275053685164650505703222,200,000$
9Valentin ZykovXX100.007147897080575560256054612448480505702511,225,000$
10Justin AlmeidaX100.00796799606159546176536367544444050570214809,166$
11Jan Jenik (R)X100.00696285666258585974555860554444050560204795,000$
12Tyler Madden (R)X100.00685795665749495366564658444444050530204925,000$
13Mattias Samuelsson (R)X100.00824689668475605625524783254545050640204925,000$
14Scott HarringtonX100.007143857076695256255249792561620506302712,300,000$
15Kevin Connauton (A)X100.0083769980764850432528396937656605060X03021,500,000$
16Kevin Bahl (R)X100.00908893648864694625374068384444050600204795,000$
17Alex PetrovicX100.008081776281585957255545654344440505902811,600,000$
18Lucas JohansenX100.00736989596753474625383761364444050530221925,000$
Rayé
1Riley Stotts (R)X100.00524574666350614251383845405050050470204700,000$
2Albin Eriksson (R)X100.00535099617754763654313444365050050460204825,000$
3Spencer FooX100.00433592656246293449313861453532050440261925,000$
4Xavier Bernard (R)X100.00585576607548663225342548265050050490204650,000$
MOYENNE D’ÉQUIPE100.0071618866715959534550516344484805057
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alexandar Georgiev100.0069586467726670697769705656050660
2Jonathan Quick100.0058637279585971626659957676050650
Rayé
1Joonas Korpisalo100.0064646878676160676764876061050640
2Anthony Stolarz100.0062537195666352636159304646050610
3Daniil Tarasov (R)100.0050556980495150554949304444050530
MOYENNE D’ÉQUIPE100.006159698062606163646062565705062
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pontus AbergMarlies (Tor)LW/RW8229538238120611383371012708.61%14163019.89413176118900041356148.85%13100101.01160006102
2Shane BowersMarlies (Tor)C82304070344515121211311912499.65%18161419.69711186318800081439159.24%219100010.8713102735
3Timothy GettingerMarlies (Tor)LW82283765229230222110315781818.89%26130415.913710361020004815052.34%12800001.0013123651
4Zack KassianTorontoLW/RW8022426412740251146268731838.21%15172721.59651143186101152351431.34%13400100.7458000296
5Kody ClarkMarlies (Tor)RW773025551447512686308772299.74%11123716.07791641900003445251.61%12400000.8912100527
6Riley DamianiMarlies (Tor)C69213354560302201895011011.11%13143320.77481240171011102301460.60%217000200.7501000004
7Scott HarringtonMarlies (Tor)D77133346540010210715250848.55%140173222.506713571530002208020.00%000100.5300000223
8Nicholas MerkleyMarlies (Tor)RW5915274228031991404511910.71%894416.00088191120000142033.33%12000000.8902000122
9Alex PetrovicMarlies (Tor)D8283341208210201518320539.64%125152218.5722416820111162200.00%000000.5400101143
10Brian GibbonsMarlies (Tor)C/LW82162541144020126141307611.35%16100612.2713423000051121136.54%111100000.8100000132
11Vitaly AbramovMarlies (Tor)LW/RW7012273956047103189521446.35%13102914.711342364000052043.56%10100000.7600000111
12Valentin ZykovMarlies (Tor)LW/RW82927367100597314633946.16%885310.41000422000020144.68%4700000.8400000112
13Justin AlmeidaMarlies (Tor)C82131528-225541127176431007.39%78079.8400000000012357.14%89600000.6900001211
14Kevin ConnautonMarlies (Tor)D8271522115410163469748667.22%136170420.79112331730000203110.00%100000.2600011021
15Mattias SamuelssonMarlies (Tor)D338142213200745071264511.27%4875222.812242173000378200.00%000000.5800000221
16Kevin BahlMarlies (Tor)D614141817610157277017435.71%88116019.02022241070002102100.00%000000.3100101110
17Erik GustafssonTorontoD2331417151002430426247.14%2553323.211342049000067000.00%000000.6400000100
18Lucas JohansenMarlies (Tor)D644913194751071737122610.81%86108116.90000335000074010.00%000000.2400001002
19Jan JenikMarlies (Tor)C41325-22011292642411.54%21403.4200011000030061.64%14600000.7100000100
20Albin ErikssonMarlies (Tor)LW14101-3001552120.00%21228.73000000000140063.64%1100000.1600000000
21Spencer FooMarlies (Tor)RW5000-100020020.00%1377.450000000000000.00%300000.0000000000
22Tyler MaddenMarlies (Tor)C13000-6556117390.00%2937.1700000000000054.90%10200000.0000001000
23Xavier BernardMarlies (Tor)D3500001803154150.00%3256116.0600005000012000.00%000000.0000000000
Statistiques d’équipe totales ou en moyenne13772764857612236839518861819311486221378.86%8362303216.7345841295071841123571934402154.29%741600510.669255311404843
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jonathan QuickMarlies (Tor)41251310.9113.0123746011913380100.800154040210
2Alexandar GeorgievMarlies (Tor)35221120.9232.852086419912780110.8005350302
3Joonas KorpisaloMarlies (Tor)31110.9492.161672061170000.6005213001
Statistiques d’équipe totales ou en moyenne79482540.9182.91462712122427330210.760257753513


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Albin ErikssonMarlies (Tor)LW202000-07-20Yes205 Lbs6 ft4NoNoNo4Pro & Farm825,000$82,500$0$No825,000$825,000$825,000$Lien
Alex PetrovicMarlies (Tor)D281992-03-03No216 Lbs6 ft4NoNoNo1Pro & Farm1,600,000$160,000$0$NoLien
Alexandar GeorgievMarlies (Tor)G241996-02-10No178 Lbs6 ft1NoNoNo2Pro & Farm1,525,000$152,500$0$No1,525,000$Lien
Anthony StolarzMarlies (Tor)G261994-01-20No230 Lbs6 ft5NoNoNo2Pro & Farm900,000$90,000$0$No900,000$Lien
Brian GibbonsMarlies (Tor)C/LW321988-02-05No175 Lbs5 ft8NoNoNo2Pro & Farm2,000,000$220,000$0$No2,000,000$Lien
Daniil TarasovMarlies (Tor)G211999-03-27Yes185 Lbs6 ft5NoNoNo3Pro & Farm825,000$82,500$0$No825,000$825,000$Lien
Jan JenikMarlies (Tor)C202000-09-15Yes161 Lbs6 ft1NoNoNo4Pro & Farm795,000$79,500$0$No795,000$795,000$795,000$Lien
Jonathan QuickMarlies (Tor)G341986-01-20No216 Lbs6 ft1NoNoNo1Pro & Farm5,000,000$500,000$0$NoLien
Joonas KorpisaloMarlies (Tor)G261994-04-27No192 Lbs6 ft3NoNoNo1Pro & Farm3,100,000$310,000$0$NoLien
Justin AlmeidaMarlies (Tor)C211999-02-06No165 Lbs5 ft11NoNoNo4Pro & Farm809,166$80,917$0$No809,166$809,166$809,166$Lien
Kevin BahlMarlies (Tor)D202000-06-27Yes230 Lbs6 ft6NoNoNo4Pro & Farm795,000$79,500$0$No795,000$795,000$795,000$Lien
Kevin ConnautonMarlies (Tor)D301990-02-23No205 Lbs6 ft2NoYesNo2Pro & Farm1,500,000$150,000$0$No1,500,000$Lien
Kody ClarkMarlies (Tor)RW201999-10-13No185 Lbs6 ft3NoNoNo4Pro & Farm808,333$80,833$0$No808,333$808,333$808,333$Lien
Lucas JohansenMarlies (Tor)D221997-11-16No176 Lbs6 ft2NoNoNo1Pro & Farm925,000$92,500$0$NoLien
Mattias SamuelssonMarlies (Tor)D202000-03-14Yes226 Lbs6 ft4NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Nicholas MerkleyMarlies (Tor)RW231997-05-23No194 Lbs5 ft10NoNoNo2Pro & Farm1,100,000$110,000$0$No1,100,000$Lien
Pontus AbergMarlies (Tor)LW/RW271993-09-22No196 Lbs5 ft11NoNoNo1Pro & Farm1,250,000$125,000$0$NoLien
Riley DamianiMarlies (Tor)C202000-03-20Yes170 Lbs5 ft10NoNoNo4Pro & Farm803,333$80,333$0$No803,333$803,333$803,333$Lien
Riley StottsMarlies (Tor)C202000-01-05Yes172 Lbs6 ft0NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Lien
Scott HarringtonMarlies (Tor)D271993-03-10No206 Lbs6 ft2NoNoNo1Pro & Farm2,300,000$230,000$0$NoLien
Shane BowersMarlies (Tor)C211999-07-30No186 Lbs6 ft2NoNoNo3Pro & Farm925,002$92,500$0$No925,002$925,002$Lien
Spencer FooMarlies (Tor)RW261994-05-19No190 Lbs6 ft0NoNoNo1Pro & Farm925,000$92,500$0$NoLien
Timothy GettingerMarlies (Tor)LW221998-04-13Yes218 Lbs6 ft6NoNoNo2Pro & Farm770,000$77,000$0$No770,000$Lien
Tyler MaddenMarlies (Tor)C201999-11-09Yes152 Lbs5 ft11NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Valentin ZykovMarlies (Tor)LW/RW251995-05-14No224 Lbs6 ft1NoNoNo1Pro & Farm1,225,000$122,500$0$NoLien
Vitaly AbramovMarlies (Tor)LW/RW221998-05-08Yes181 Lbs5 ft10NoNoNo1Pro & Farm742,500$74,250$0$NoLien
Xavier BernardMarlies (Tor)D202000-01-06Yes202 Lbs6 ft3NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2723.59194 Lbs6 ft22.481,283,272$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Pontus AbergRiley DamianiNicholas Merkley40122
2Timothy GettingerShane BowersVitaly Abramov30122
3Valentin ZykovJustin AlmeidaKody Clark20122
4Brian GibbonsJan JenikValentin Zykov10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mattias SamuelssonScott Harrington40122
2Kevin ConnautonKevin Bahl30122
3Alex PetrovicLucas Johansen20122
4Mattias SamuelssonScott Harrington10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Pontus AbergRiley DamianiNicholas Merkley60122
2Timothy GettingerShane BowersVitaly Abramov40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mattias SamuelssonScott Harrington60122
2Kevin ConnautonKevin Bahl40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Riley DamianiPontus Aberg60122
2Shane BowersTimothy Gettinger40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mattias SamuelssonScott Harrington60122
2Kevin ConnautonKevin Bahl40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Riley Damiani60122Mattias SamuelssonScott Harrington60122
2Shane Bowers40122Kevin ConnautonKevin Bahl40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Riley DamianiPontus Aberg60122
2Shane BowersTimothy Gettinger40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Mattias SamuelssonScott Harrington60122
2Kevin ConnautonKevin Bahl40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Pontus AbergRiley DamianiNicholas MerkleyMattias SamuelssonScott Harrington
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Pontus AbergRiley DamianiNicholas MerkleyMattias SamuelssonScott Harrington
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Vitaly Abramov, Kody Clark, Shane BowersVitaly Abramov, Kody ClarkVitaly Abramov
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Kevin Bahl, Alex Petrovic, Lucas JohansenKevin BahlKevin Bahl, Alex Petrovic
Tirs de pénalité
Nicholas Merkley, Pontus Aberg, Timothy Gettinger, Riley Damiani, Vitaly Abramov
Gardien
#1 : Alexandar Georgiev, #2 : Jonathan Quick


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21000100541110000003121000010023-130.750591400971088010609901119111240572212385120.00%50100.00%11707308055.42%1598300953.11%735135754.16%2008138618806041076539
2Baby Hawks2110000078-1110000005321010000025-320.5007121900971088010639901119111240902316485240.00%80100.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
3Bears3110001089-1100000103212110000057-240.667814220097108801011599011191112409127277111218.18%11281.82%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
4Bruins422000001113-22110000067-12110000056-140.500112132009710880101459901119111240160486711911327.27%13284.62%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
5Cabaret Lady Mary Ann43100000191182110000084422000000117460.750193554009710880102219901119111240125504110717741.18%16193.75%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
6Caroline31100010151052100001013671010000024-240.6671523381097108801011599011191112401122427809222.22%10370.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
7Chiefs211000007701010000024-21100000053220.5007132000971088010649901119111240722316485120.00%8187.50%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
8Chill22000000835110000004131100000042241.000814220097108801080990111911124057171250400.00%5180.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
9Comets21100000651110000004221010000023-120.5006101600971088010759901119111240771620556116.67%9188.89%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
10Cougars422000001192220000009542020000024-240.5001119300097108801013899011191112401405646928112.50%17194.12%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
11Crunch43100000171162200000011562110000066060.75017304700971088010182990111911124014441401258337.50%20575.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
12Heat2010000169-31010000035-21000000134-110.2506111700971088010589901119111240954218474125.00%7271.43%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
13Jayhawks21100000862110000004131010000045-120.500813210097108801084990111911124079281451500.00%7185.71%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
14Las Vegas211000001082110000006241010000046-220.50010203000971088010639901119111240901518534125.00%8187.50%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
15Manchots3120000069-31010000023-12110000046-220.3336814009710880109899011191112401052929716116.67%11281.82%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
16Minnesota20200000610-41010000025-31010000045-100.000611170097108801084990111911124081271761600.00%5340.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
17Monarchs211000007611010000023-11100000053220.5007121900971088010709901119111240632718419111.11%8275.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
18Monsters3110000168-2210000015411010000014-330.500612180097108801010499011191112401022535731119.09%10280.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
19Monsters2110000057-2110000005321010000004-420.5005914009710880108099011191112405715154311218.18%40100.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
20Oceanics2020000079-21010000045-11010000034-100.0007101700971088010649901119111240112273241300.00%11463.64%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
21Oil Kings20100010770100000103211010000045-120.5007101700971088010739901119111240742119447114.29%7357.14%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
22Phantoms321000009721010000003-32200000094540.667918270097108801012499011191112409332206310110.00%100100.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
23Rocket40300001815-72020000048-42010000147-310.1258162400971088010145990111911124014144289010220.00%13284.62%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
24Senators440000002112922000000106422000000116581.00021365700971088010201990111911124012726341008337.50%120100.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
25Sharks22000000743110000004311100000031241.000711180097108801061990111911124085331850100.00%8275.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
26Sound Tigers330000001266220000008351100000043161.000122234009710880101469901119111240952228698225.00%14192.86%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
27Spiders3200001013762200000010551000001032161.0001322350097108801095990111911124011839368013215.38%13192.31%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
28Stars20200000310-71010000015-41010000025-300.00035800971088010719901119111240682312397228.57%6433.33%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
29Thunder440000002181322000000116522000000102881.00021396001971088010224990111911124015034269815213.33%12283.33%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
30Wolf Pack31001010151141100000042220001010119261.0001525400097108801013399011191112401114612707228.57%6350.00%01707308055.42%1598300953.11%735135754.16%2008138618806041076539
Total824230011532912494241251200031156114424117180112213513501000.6102915108011197108801032369901119111240297190275320172344720.09%2945282.31%11707308055.42%1598300953.11%735135754.16%2008138618806041076539
_Since Last GM Reset824230011532912494241251200031156114424117180112213513501000.6102915108011197108801032369901119111240297190275320172344720.09%2945282.31%11707308055.42%1598300953.11%735135754.16%2008138618806041076539
_Vs Conference432710011311561164021145000117654222213501120806218640.7441562734290197108801017209901119111240152645440610341222117.21%1492483.89%11707308055.42%1598300953.11%735135754.16%2008138618806041076539
_Vs Division2875000001087929143300000594118144200000493811140.2501081963040197108801012569901119111240987299282731772127.27%1031387.38%01707308055.42%1598300953.11%735135754.16%2008138618806041076539

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82100L129151080132362971902753201711
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8242301153291249
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4125120031156114
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4117181122135135
Derniers 10 matchs
WLOTWOTL SOWSOL
540001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2344720.09%2945282.31%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
9901119111240971088010
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1707308055.42%1598300953.11%735135754.16%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2008138618806041076539


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2021-10-121Senators3Marlies5WSommaire du match
3 - 2021-10-1416Marlies1Monsters4LSommaire du match
4 - 2021-10-1519Rocket4Marlies3LSommaire du match
6 - 2021-10-1734Chiefs4Marlies2LSommaire du match
9 - 2021-10-2047Thunder1Marlies3WSommaire du match
11 - 2021-10-2267Marlies1Cougars2LSommaire du match
14 - 2021-10-2585Minnesota5Marlies2LSommaire du match
15 - 2021-10-2693Marlies4Bears2WSommaire du match
18 - 2021-10-29116Bruins5Marlies3LSommaire du match
20 - 2021-10-31129Monsters2Marlies4WSommaire du match
21 - 2021-11-01133Marlies4Bruins3WSommaire du match
24 - 2021-11-04156Sharks3Marlies4WSommaire du match
25 - 2021-11-05163Marlies3Rocket4LXXSommaire du match
28 - 2021-11-08180Bears2Marlies3WXXSommaire du match
32 - 2021-11-12210Marlies4Phantoms1WSommaire du match
35 - 2021-11-15228Monarchs3Marlies2LSommaire du match
37 - 2021-11-17237Las Vegas2Marlies6WSommaire du match
39 - 2021-11-19254Phantoms3Marlies0LSommaire du match
40 - 2021-11-20267Marlies2Baby Hawks5LSommaire du match
43 - 2021-11-23282Marlies4Sound Tigers3WSommaire du match
45 - 2021-11-25294Bruins2Marlies3WSommaire du match
46 - 2021-11-26308Marlies3Manchots2WSommaire du match
49 - 2021-11-29329Marlies4Las Vegas6LSommaire du match
51 - 2021-12-01343Marlies4Jayhawks5LSommaire du match
53 - 2021-12-03351Marlies0Monsters4LSommaire du match
57 - 2021-12-07379Marlies1Cougars2LSommaire du match
59 - 2021-12-09396Marlies2Crunch3LSommaire du match
60 - 2021-12-10406Crunch3Marlies4WSommaire du match
63 - 2021-12-13428Marlies5Phantoms3WSommaire du match
64 - 2021-12-14434Monsters3Marlies5WSommaire du match
67 - 2021-12-17454Marlies5Chiefs3WSommaire du match
70 - 2021-12-20481Marlies2Comets3LSommaire du match
72 - 2021-12-22494Marlies3Heat4LXXSommaire du match
74 - 2021-12-24506Marlies4Oil Kings5LSommaire du match
77 - 2021-12-27525Crunch2Marlies7WSommaire du match
80 - 2021-12-30550Marlies5Wolf Pack4WXXSommaire du match
81 - 2021-12-31557Cougars3Marlies4WSommaire du match
83 - 2022-01-02569Caroline1Marlies7WSommaire du match
87 - 2022-01-06583Marlies3Spiders2WXXSommaire du match
88 - 2022-01-07594Wolf Pack2Marlies4WSommaire du match
91 - 2022-01-10616Marlies4Minnesota5LSommaire du match
93 - 2022-01-12633Marlies3Oceanics4LSommaire du match
95 - 2022-01-14646Sound Tigers2Marlies5WSommaire du match
97 - 2022-01-16659Oil Kings2Marlies3WXXSommaire du match
99 - 2022-01-18675Oceanics5Marlies4LSommaire du match
103 - 2022-01-22707Marlies5Cabaret Lady Mary Ann4WSommaire du match
105 - 2022-01-24715Spiders2Marlies6WSommaire du match
107 - 2022-01-26728Heat5Marlies3LSommaire du match
109 - 2022-01-28747Baby Hawks3Marlies5WSommaire du match
118 - 2022-02-06770Marlies4Chill2WSommaire du match
120 - 2022-02-08776Marlies2Stars5LSommaire du match
123 - 2022-02-11796Senators3Marlies5WSommaire du match
125 - 2022-02-13809Cabaret Lady Mary Ann1Marlies6WSommaire du match
127 - 2022-02-15825Marlies6Wolf Pack5WXSommaire du match
129 - 2022-02-17839Admirals1Marlies3WSommaire du match
130 - 2022-02-18846Marlies1Rocket3LSommaire du match
133 - 2022-02-21867Jayhawks1Marlies4WSommaire du match
135 - 2022-02-23881Stars5Marlies1LSommaire du match
137 - 2022-02-25901Marlies5Senators2WSommaire du match
138 - 2022-02-26913Marlies4Crunch3WSommaire du match
140 - 2022-02-28921Marlies1Manchots4LSommaire du match
142 - 2022-03-02933Manchots3Marlies2LSommaire du match
144 - 2022-03-04951Caroline5Marlies6WXXSommaire du match
147 - 2022-03-07970Marlies3Thunder0WSommaire du match
149 - 2022-03-09987Marlies6Cabaret Lady Mary Ann3WSommaire du match
151 - 2022-03-111003Comets2Marlies4WSommaire du match
154 - 2022-03-141028Marlies3Sharks1WSommaire du match
156 - 2022-03-161041Marlies5Monarchs3WSommaire du match
157 - 2022-03-171048Marlies2Admirals3LXSommaire du match
161 - 2022-03-211070Thunder5Marlies8WSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
163 - 2022-03-231083Chill1Marlies4WSommaire du match
165 - 2022-03-251101Marlies1Bruins3LSommaire du match
168 - 2022-03-281123Spiders3Marlies4WSommaire du match
170 - 2022-03-301137Sound Tigers1Marlies3WSommaire du match
172 - 2022-04-011155Monsters2Marlies1LXXSommaire du match
174 - 2022-04-031170Cabaret Lady Mary Ann3Marlies2LSommaire du match
176 - 2022-04-051185Marlies7Thunder2WSommaire du match
177 - 2022-04-061195Marlies2Caroline4LSommaire du match
179 - 2022-04-081209Marlies6Senators4WSommaire du match
182 - 2022-04-111231Marlies1Bears5LSommaire du match
184 - 2022-04-131242Cougars2Marlies5WSommaire du match
186 - 2022-04-151262Rocket4Marlies1LSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité40002000
Prix des billets5020
Assistance106,60457,680
Assistance PCT65.00%70.34%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 4007 - 66.78% 150,135$6,155,540$6000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
3,752,071$ 3,464,833$ 3,484,833$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
18,635$ 3,772,181$ 27 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 18,529$ 0$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT