Connexion

Wolf Pack
GP: 82 | W: 22 | L: 49 | OTL: 11 | P: 55
GF: 245 | GA: 355 | PP%: 18.45% | PK%: 73.25%
DG: Jonathan Laroche | Morale : 50 | Moyenne d’équipe : 53
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Wolf Pack
22-49-11, 55pts
1
FINAL
3 Manchots
43-30-9, 95pts
Team Stats
W1StreakW2
12-22-7Home Record19-17-5
10-27-4Away Record24-13-4
5-5-0Last 10 Games7-3-0
2.99Goals Per Game3.74
4.33Goals Against Per Game3.45
18.45%Power Play Percentage24.51%
73.25%Penalty Kill Percentage76.39%
Baby Hawks
44-32-6, 94pts
2
FINAL
6 Wolf Pack
22-49-11, 55pts
Team Stats
L4StreakW1
21-16-4Home Record12-22-7
23-16-2Away Record10-27-4
4-5-1Last 10 Games5-5-0
3.76Goals Per Game2.99
3.41Goals Against Per Game4.33
20.38%Power Play Percentage18.45%
79.54%Penalty Kill Percentage73.25%
Meneurs d'équipe
Buts
Nicolas Aube-Kubel
18
Passes
Nicolas Aube-Kubel
41
Points
Nicolas Aube-Kubel
59
Plus/Moins
Nicolas Aube-Kubel
34
Victoires
Evan Cormier
16
Pourcentage d’arrêts
David Hrenak
0.944

Statistiques d’équipe
Buts pour
245
2.99 GFG
Tirs pour
2795
34.09 Avg
Pourcentage en avantage numérique
18.5%
43 GF
Début de zone offensive
37.3%
Buts contre
355
4.33 GAA
Tirs contre
3744
45.66 Avg
Pourcentage en désavantage numérique
73.2%
61 GA
Début de la zone défensive
43.3%
Information d’équipe

Directeur généralJonathan Laroche
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,209
Billets de saison300


Information formation

Équipe Pro28
Équipe Mineure20
Limite contact 48 / 50
Espoirs16


Historique d'équipe

Saison actuelle22-49-11 (55PTS)
Historique22-49-11 (0.268%)
Apparitions séries éliminatoires
Historique séries éliminatoires (W-L)-


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Cole BardreauX100.00726687636661616379536766645555050600271650,000$
2Sven BaertschiX100.007469876269616163505958695564650506002811,800,000$
3Christoffer EhnXXX100.0072439763705277545451537424575705058X0242700,000$
4Mathias BromeXX100.00694290726765646534545664254646050580264925,000$
5Dominik SimonXX100.007643997769546055375055542563640505702636,700,000$
6Mike VecchioneXX100.00766896606861625873476564624444050570273950,000$
7Cliff PuXX100.00757088557048456176615764544444050560221742,500$
8Jacob Perreault (R)XX100.00706971666964665771624860464444050560183925,000$
9Matt LuffX100.00674288647356575937505861255151050560232700,000$
10Tyce Thompson (R)X100.00736688666653535550485761544444050550212912,500$
11Hunter ShinkarukX100.00666690626557545349445164535252050540252900,000$
12Christian JarosX100.00858291638255575025443969375555050590241730,000$
13Cale FleuryX100.00837796747759624925443966374747050590211771,666$
14Bode WildeX100.00868099607358545528415369464444050580203778,333$
15Juuso RiikolaX100.00824389736860466524494655255353050580262850,000$
16Kevin CzuczmanX100.00827695667657604625373964374646050570292700,000$
17Justin Barron (R)X100.00757283647249485625504863464444050560183925,000$
Rayé
1Tyler Moy (R)XXX100.00484689647060834357443345366464050500253650,000$
2Jonne Tammela (R)XX100.00344040405733333440343440373230050370231716,112$
3Max Zimmer (R)X100.00344040405933333440343440373230050370221650,000$
4Daniel SedinX100.001820202020181818201818202020200502104016,000,000$
5Anton Karlsson (R)X100.00696981616958634425353859374444050530243700,000$
6Ty Emberson (R)X100.00514693627152713625343161335053050530204853,333$
7Brady AustinX100.00443573567940272735262873443532050480272850,000$
MOYENNE D’ÉQUIPE100.0066578261685355504245465940474705053
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Carter Hutton100.0056556275595257576156716464050590
2Evan Cormier (R)100.0049466680474950544849304444050520
Rayé
1David Hrenak (R)100.0047676471404748484345455858050510
2Karel Vejmelka (R)100.0032373576323131313131293230050370
MOYENNE D’ÉQUIPE100.004651577645454748464544504905050
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dominik SimonWolf Pack (Ran)LW/RW82303565-403202521753991172867.52%42178121.7286145916800031493243.75%14400010.73310000444
2Cliff PuWolf Pack (Ran)C/RW82204262-35610103239262841997.63%30144317.61066361600000430256.11%199600000.8605110111
3Nicolas Aube-KubelRangersRW6418415934635175100207641648.70%20127519.9319102815201131144038.41%15100100.9212001344
4Matt LuffWolf Pack (Ran)RW82302757-301401641693751052478.00%34129315.7763946135000001139.53%8600000.8823000342
5Jacob PerreaultWolf Pack (Ran)C/RW82134154-19520173172227841895.73%22143117.461671652000042154.48%42400000.7500000221
6Hunter ShinkarukWolf Pack (Ran)LW76222547-1010052981966514811.22%29130017.116511341410000213247.57%10300000.7203000202
7Juuso RiikolaWolf Pack (Ran)D8293544-2968018411112140637.44%95154618.86189441160002110100.00%000000.5700000120
8Mathias BromeWolf Pack (Ran)LW/RW5211314208050114181641406.08%1293417.974711281100001342243.40%5300000.9000000111
9Christoffer EhnWolf Pack (Ran)C/LW/RW661524399441038115192531437.81%23106716.1725721850000221247.95%56100010.7300000201
10Matt MartinRangersLW41122133153201477415334987.84%781619.9207717910000732239.47%7600000.8102000160
11Samuel BolducRangersD6111223322117151685083245313.25%110130821.4535822129000297200.00%000000.5000210101
12Bode WildeWolf Pack (Ran)D5410182824551135011437538.77%88108720.13459451290003120100.00%100000.5200010100
13Justin BarronWolf Pack (Ran)D8291827-3658101988010322448.74%77112213.691121123000014010.00%000000.4800002211
14Kevin CzuczmanWolf Pack (Ran)D8281624-35655139589432578.51%144149518.240332899000096300.00%100000.3200100013
15Cale FleuryWolf Pack (Ran)D65716231358101623569164810.14%91141921.83145211600002164000.00%000000.3200011121
16Mike VecchioneWolf Pack (Ran)C/RW169918300233858174815.52%732120.091457380001430058.17%20800001.1200000311
17Tyler MoyWolf Pack (Ran)C/LW/RW5171017-1860297857103512.28%1285516.78000020000760248.10%86700000.4000000001
18Tyce ThompsonWolf Pack (Ran)RW238816133540288220479.76%536215.7500005000000035.00%2000000.8800000100
19Christian JarosWolf Pack (Ran)D387714-11320983358163412.07%6874619.654262881011080100.00%000000.3800000000
20Ty EmbersonWolf Pack (Ran)D6221214-33001736258148.00%8687614.1400000000050100.00%000000.3200000000
21Cole BardreauWolf Pack (Ran)C118311700162245112717.78%219918.181016240112381053.69%14900001.1000000300
22Sven BaertschiWolf Pack (Ran)LW116511420141939103215.38%420718.831237251014351155.56%1800101.0600000020
23Anton KarlssonWolf Pack (Ran)D51268-2401571791011.76%202645.18011110000025100.00%000000.6100000000
24Brady AustinWolf Pack (Ran)D8000-320241110.00%8556.920000000000000.00%000000.0000000000
Statistiques d’équipe totales ou en moyenne1324274472746-1598017523721905315894321808.68%10362321317.5345891345051945134231419301851.71%485800220.64625444323124
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Evan CormierWolf Pack (Ran)711640100.9044.4637794028129120500.545336911946
2Carter HuttonWolf Pack (Ran)116500.9183.2559020323890200.0000110002
3Jeremy SwaymanRangers82410.9213.2045020243030000.500280202
4David HrenakWolf Pack (Ran)110210.9442.4743700183230000.6676049100
Statistiques d’équipe totales ou en moyenne1012451120.9104.0552578035539270700.56141886012410


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Anton KarlssonWolf Pack (Ran)D241996-08-03Yes187 Lbs6 ft1NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Bode WildeWolf Pack (Ran)D202000-01-24No192 Lbs6 ft3NoNoNo3Pro & Farm778,333$77,833$0$No778,333$778,333$Lien
Brady AustinWolf Pack (Ran)D271993-06-16No230 Lbs6 ft4NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Lien
Cale FleuryWolf Pack (Ran)D211998-11-18No213 Lbs6 ft1NoNoNo1Pro & Farm771,666$77,167$0$NoLien
Carter HuttonWolf Pack (Ran)G341985-12-18No208 Lbs6 ft0NoNoNo2Pro & Farm2,400,000$260,000$0$No2,200,000$Lien
Christian JarosWolf Pack (Ran)D241996-04-01No222 Lbs6 ft3NoNoNo1Pro & Farm730,000$73,000$0$NoLien
Christoffer EhnWolf Pack (Ran)C/LW/RW241996-04-05No181 Lbs6 ft3NoYesNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Cliff PuWolf Pack (Ran)C/RW221998-06-02No185 Lbs6 ft2NoNoNo1Pro & Farm742,500$74,250$0$NoLien
Cole BardreauWolf Pack (Ran)C271993-07-22No185 Lbs5 ft10NoNoNo1Pro & Farm650,000$650,000$0$NoLien
Daniel Sedin (contrat à 1 volet)Wolf Pack (Ran)LW401980-09-26No190 Lbs6 ft1NoNoNo1Pro & Farm6,000,000$6,000,000$0$NoLien
David HrenakWolf Pack (Ran)G221998-05-05Yes181 Lbs6 ft2NoNoNo4Pro & Farm820,000$82,000$0$No820,000$820,000$820,000$Lien
Dominik SimonWolf Pack (Ran)LW/RW261994-08-08No190 Lbs5 ft11NoNoNo3Pro & Farm6,700,000$670,000$0$No6,700,000$6,700,000$Lien
Evan CormierWolf Pack (Ran)G221997-11-06Yes200 Lbs6 ft3NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Hunter ShinkarukWolf Pack (Ran)LW251994-10-13No181 Lbs5 ft10NoNoNo2Pro & Farm900,000$90,000$0$No900,000$Lien
Jacob PerreaultWolf Pack (Ran)C/RW182002-04-15Yes192 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Jonne TammelaWolf Pack (Ran)LW/RW231997-08-05Yes186 Lbs5 ft10NoNoNo1Pro & Farm716,112$71,611$0$NoLien
Justin BarronWolf Pack (Ran)D182001-11-15Yes194 Lbs6 ft2NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Juuso RiikolaWolf Pack (Ran)D261993-11-09No189 Lbs6 ft0NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Lien
Karel VejmelkaWolf Pack (Ran)G241996-05-25Yes202 Lbs6 ft3NoNoNo2Pro & Farm740,000$74,000$0$No740,000$Lien
Kevin CzuczmanWolf Pack (Ran)D291991-01-09No206 Lbs6 ft2NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Mathias BromeWolf Pack (Ran)LW/RW261994-07-28No183 Lbs6 ft0NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Matt LuffWolf Pack (Ran)RW231997-05-05No196 Lbs6 ft2NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Max ZimmerWolf Pack (Ran)LW221997-10-29Yes187 Lbs6 ft0NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Mike VecchioneWolf Pack (Ran)C/RW271993-02-25No194 Lbs5 ft10NoNoNo3Pro & Farm950,000$95,000$0$No950,000$950,000$Lien
Sven BaertschiWolf Pack (Ran)LW281992-10-04No190 Lbs5 ft11NoNoNo1Pro & Farm1,800,000$1,800,000$0$NoLien
Ty EmbersonWolf Pack (Ran)D202000-05-03Yes195 Lbs6 ft1NoNoNo4Pro & Farm853,333$85,333$0$No853,333$853,333$853,333$
Tyce ThompsonWolf Pack (Ran)RW211999-07-11Yes178 Lbs6 ft1NoNoNo2Pro & Farm912,500$91,250$0$No912,500$Lien
Tyler MoyWolf Pack (Ran)C/LW/RW251995-07-18Yes194 Lbs6 ft1NoNoNo3Pro & Farm650,000$65,000$0$No650,000$650,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2824.57194 Lbs6 ft12.141,274,623$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Sven BaertschiJacob PerreaultMike Vecchione40122
2Mathias BromeTyce Thompson30122
3Dominik SimonCliff PuCole Bardreau20122
4Jacob PerreaultMatt Luff10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Christian JarosCale Fleury40122
2Bode WildeJuuso Riikola30122
3Kevin CzuczmanJustin Barron20122
4Christian JarosCale Fleury10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Sven BaertschiCole BardreauMike Vecchione60122
2Mathias BromeMike VecchioneCliff Pu40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Christian JarosCale Fleury60122
2Bode WildeJuuso Riikola40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Cole BardreauSven Baertschi60122
2Mike VecchioneMathias Brome40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Christian JarosCale Fleury60122
2Bode WildeJuuso Riikola40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Cole Bardreau60122Christian JarosCale Fleury60122
2Mike Vecchione40122Bode WildeJuuso Riikola40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Cole BardreauSven Baertschi60122
2Mike VecchioneMathias Brome40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Christian JarosCale Fleury60122
2Bode WildeJuuso Riikola40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Sven BaertschiCole BardreauMike VecchioneChristian JarosCale Fleury
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Sven BaertschiCole BardreauMike VecchioneChristian JarosCale Fleury
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Mike Vecchione, Cliff Pu, Jacob PerreaultMike Vecchione, Cliff PuMike Vecchione
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Juuso Riikola, Kevin Czuczman, Justin BarronJuuso RiikolaJuuso Riikola, Kevin Czuczman
Tirs de pénalité
Sven Baertschi, Cole Bardreau, Mathias Brome, Dominik Simon, Mike Vecchione
Gardien
#1 : Carter Hutton, #2 : Evan Cormier


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals20200000513-81010000036-31010000027-500.0005712009673739749019359316685188458225.00%3166.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
2Baby Hawks2110000089-1110000006241010000027-520.500813210096737398490193593166883312454125.00%5260.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
3Bears41300000617-112110000057-220200000110-920.2506111700967373912090193593166198592210517211.76%11372.73%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
4Bruins30300000415-1120200000310-71010000015-400.000461000967373988901935931661503320688112.50%9188.89%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
5Cabaret Lady Mary Ann312000001416-21010000067-12110000089-120.333142438009673739129901935931661393712788225.00%6266.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
6Caroline431000002015522000000106421100000109160.7502033530096737391679019359316614338239912325.00%9366.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
7Chiefs20100100611-51000010045-11010000026-410.2506111700967373949901935931661052812393133.33%60100.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
8Chill20200000411-71010000035-21010000016-500.00046100096737395890193593166752110416233.33%5180.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
9Comets2020000036-31010000034-11010000002-200.00036900967373956901935931668718635900.00%3166.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
10Cougars301000111216-420100001712-51000001054130.50012193100967373996901935931661534485912325.00%4250.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
11Crunch330000001275220000008531100000042261.000122133009673739114901935931661203416845120.00%8275.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
12Heat2110000057-2110000003211010000025-320.500581300967373960901935931667224447200.00%20100.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
13Jayhawks2020000036-31010000024-21010000012-100.000358009673739589019359316610123854700.00%4175.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
14Las Vegas2110000067-11010000015-41100000052320.5006111700967373965901935931661052212415120.00%5180.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
15Manchots403000011016-62010000168-22020000048-410.125101828009673739115901935931661513340938450.00%20480.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
16Marlies301001011115-420000101911-21010000024-220.333111829009673739111901935931661334014676350.00%7271.43%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
17Minnesota20200000612-61010000026-41010000046-200.000610160096737397890193593166112242256300.00%10640.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
18Monarchs220000001192110000005411100000065141.0001119300096737399290193593166921730515120.00%8187.50%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
19Monsters4120000113130210000018532020000058-330.375132437009673739142901935931662056228981300.00%14285.71%11194272043.90%1302316041.20%630141344.59%1782121321456061050502
20Monsters2000000246-21000000112-11000000134-120.5004711009673739739019359316680368405120.00%40100.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
21Oceanics20200000713-61010000045-11010000038-500.000712190096737396090193593166922812579555.56%6433.33%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
22Oil Kings21000001541110000003121000000123-130.7505914009673739559019359316678266353133.33%3166.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
23Phantoms4110100111110211000005502000100166050.625112132009673739152901935931661935624861516.67%12283.33%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
24Rocket30300000814-61010000025-32020000069-300.0008152300967373984901935931661384128747228.57%13469.23%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
25Senators30200001913-41010000024-22010000179-210.1679152400967373995901935931661293350575240.00%15473.33%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
26Sharks20200000412-81010000034-11010000018-700.00045900967373953901935931661103324426233.33%12466.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
27Sound Tigers404000001020-1020200000412-82020000068-200.000101929009673739144901935931662157519811317.69%6266.67%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
28Spiders403010001120-920200000511-62010100069-320.250112132009673739121901935931661775516821500.00%8275.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
29Stars21100000510-5110000004311010000017-620.500591400967373974901935931669026247700.00%110.00%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
30Thunder32100000121111010000015-422000000116540.667122234009673739128901935931661283518787114.29%9277.78%01194272043.90%1302316041.20%630141344.59%1782121321456061050502
Total82194902219245355-11041122200205128171-434172702014117184-67550.3352454256700096737392795901935931663744105251418842334318.45%2286173.25%11194272043.90%1302316041.20%630141344.59%1782121321456061050502
_Since Last GM Reset82194902219245355-11041122200205128171-434172702014117184-67550.3352454256700096737392795901935931663744105251418842334318.45%2286173.25%11194272043.90%1302316041.20%630141344.59%1782121321456061050502
_Vs Conference4673102105128209-81234150010366102-36233160200262107-45240.261128224352009673739155390193593166213359833510511412719.15%1453575.86%11194272043.90%1302316041.20%630141344.59%1782121321456061050502
_Vs Division282100200281112-311425000014354-111405020013858-20100.17981147228009673739961901935931661282378172644931111.83%801877.50%11194272043.90%1302316041.20%630141344.59%1782121321456061050502

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8255W1245425670279537441052514188400
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8219492219245355
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4112220205128171
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
417272014117184
Derniers 10 matchs
WLOTWOTL SOWSOL
550000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2334318.45%2286173.25%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
901935931669673739
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1194272043.90%1302316041.20%630141344.59%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1782121321456061050502


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2021-10-136Oceanics5Wolf Pack4LSommaire du match
4 - 2021-10-1520Wolf Pack5Senators6LSommaire du match
11 - 2021-10-2261Oil Kings1Wolf Pack3WSommaire du match
16 - 2021-10-27100Wolf Pack4Spiders3WXSommaire du match
17 - 2021-10-28109Wolf Pack0Bears5LSommaire du match
19 - 2021-10-30124Comets4Wolf Pack3LSommaire du match
21 - 2021-11-01136Jayhawks4Wolf Pack2LSommaire du match
23 - 2021-11-03147Crunch2Wolf Pack4WSommaire du match
26 - 2021-11-06175Bruins6Wolf Pack1LSommaire du match
28 - 2021-11-08181Thunder5Wolf Pack1LSommaire du match
32 - 2021-11-12205Wolf Pack1Chill6LSommaire du match
34 - 2021-11-14221Senators4Wolf Pack2LSommaire du match
36 - 2021-11-16235Cougars5Wolf Pack4LXXSommaire du match
37 - 2021-11-17241Wolf Pack4Caroline6LSommaire du match
40 - 2021-11-20263Cabaret Lady Mary Ann7Wolf Pack6LSommaire du match
42 - 2021-11-22274Manchots5Wolf Pack4LXXSommaire du match
44 - 2021-11-24287Wolf Pack4Thunder3WSommaire du match
46 - 2021-11-26306Wolf Pack5Cabaret Lady Mary Ann7LSommaire du match
50 - 2021-11-30332Bears5Wolf Pack0LSommaire du match
52 - 2021-12-02347Wolf Pack2Senators3LXXSommaire du match
53 - 2021-12-03354Wolf Pack2Rocket4LSommaire du match
55 - 2021-12-05366Minnesota6Wolf Pack2LSommaire du match
57 - 2021-12-07381Caroline4Wolf Pack6WSommaire du match
59 - 2021-12-09391Wolf Pack1Bruins5LSommaire du match
60 - 2021-12-10403Wolf Pack2Spiders6LSommaire du match
62 - 2021-12-12420Las Vegas5Wolf Pack1LSommaire du match
65 - 2021-12-15444Wolf Pack2Monsters3LSommaire du match
66 - 2021-12-16448Rocket5Wolf Pack2LSommaire du match
68 - 2021-12-18465Wolf Pack5Las Vegas2WSommaire du match
70 - 2021-12-20483Wolf Pack6Monarchs5WSommaire du match
72 - 2021-12-22498Wolf Pack1Sharks8LSommaire du match
74 - 2021-12-24503Wolf Pack2Admirals7LSommaire du match
76 - 2021-12-26520Chill5Wolf Pack3LSommaire du match
80 - 2021-12-30550Marlies5Wolf Pack4LXXSommaire du match
82 - 2022-01-01565Admirals6Wolf Pack3LSommaire du match
83 - 2022-01-02574Wolf Pack3Phantoms4LXXSommaire du match
87 - 2022-01-06584Caroline2Wolf Pack4WSommaire du match
88 - 2022-01-07594Wolf Pack2Marlies4LSommaire du match
91 - 2022-01-10624Wolf Pack2Oil Kings3LXXSommaire du match
93 - 2022-01-12635Wolf Pack2Heat5LSommaire du match
95 - 2022-01-14651Wolf Pack0Comets2LSommaire du match
98 - 2022-01-17666Monsters2Wolf Pack1LXXSommaire du match
100 - 2022-01-19682Spiders5Wolf Pack1LSommaire du match
102 - 2022-01-21698Wolf Pack2Chiefs6LSommaire du match
104 - 2022-01-23710Sound Tigers5Wolf Pack2LSommaire du match
107 - 2022-01-26730Wolf Pack2Sound Tigers3LSommaire du match
110 - 2022-01-29758Monsters4Wolf Pack3LXXSommaire du match
112 - 2022-01-31762Sound Tigers7Wolf Pack2LSommaire du match
122 - 2022-02-10785Cougars7Wolf Pack3LSommaire du match
123 - 2022-02-11797Wolf Pack5Cougars4WXXSommaire du match
125 - 2022-02-13810Stars3Wolf Pack4WSommaire du match
127 - 2022-02-15825Marlies6Wolf Pack5LXSommaire du match
129 - 2022-02-17840Crunch3Wolf Pack4WSommaire du match
131 - 2022-02-19857Monarchs4Wolf Pack5WSommaire du match
133 - 2022-02-21872Wolf Pack3Oceanics8LSommaire du match
135 - 2022-02-23887Wolf Pack4Minnesota6LSommaire du match
136 - 2022-02-24893Wolf Pack3Monsters5LSommaire du match
138 - 2022-02-26907Bruins4Wolf Pack2LSommaire du match
141 - 2022-03-01927Wolf Pack2Baby Hawks7LSommaire du match
143 - 2022-03-03942Wolf Pack6Caroline3WSommaire du match
144 - 2022-03-04953Sharks4Wolf Pack3LSommaire du match
147 - 2022-03-07971Wolf Pack4Sound Tigers5LSommaire du match
149 - 2022-03-09985Wolf Pack4Rocket5LSommaire du match
150 - 2022-03-10994Wolf Pack3Phantoms2WXSommaire du match
152 - 2022-03-121011Phantoms1Wolf Pack3WSommaire du match
154 - 2022-03-141021Chiefs5Wolf Pack4LXSommaire du match
156 - 2022-03-161036Bears2Wolf Pack5WSommaire du match
158 - 2022-03-181056Spiders6Wolf Pack4LSommaire du match
161 - 2022-03-211076Wolf Pack1Stars7LSommaire du match
162 - 2022-03-221081Wolf Pack3Monsters4LXXSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
165 - 2022-03-251107Wolf Pack1Jayhawks2LSommaire du match
167 - 2022-03-271119Heat2Wolf Pack3WSommaire du match
169 - 2022-03-291133Manchots3Wolf Pack2LSommaire du match
171 - 2022-03-311146Wolf Pack3Manchots5LSommaire du match
173 - 2022-04-021165Wolf Pack4Crunch2WSommaire du match
175 - 2022-04-041178Monsters1Wolf Pack5WSommaire du match
177 - 2022-04-061194Wolf Pack1Bears5LSommaire du match
179 - 2022-04-081211Wolf Pack7Thunder3WSommaire du match
181 - 2022-04-101225Wolf Pack3Cabaret Lady Mary Ann2WSommaire du match
183 - 2022-04-121239Phantoms4Wolf Pack2LSommaire du match
184 - 2022-04-131247Wolf Pack1Manchots3LSommaire du match
186 - 2022-04-151257Baby Hawks2Wolf Pack6WSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance63,32327,248
Assistance PCT77.22%66.46%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2209 - 73.63% 75,070$3,077,880$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
3,205,603$ 5,173,944$ 5,193,944$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
27,775$ 3,222,562$ 27 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 27,668$ 0$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT