Login

Minnesota
GP: 82 | W: 26 | L: 48 | OTL: 8 | P: 60
GF: 271 | GA: 359 | PP%: 24.50% | PK%: 77.60%
GM : Fred Villiard | Morale : 50 | Team Overall : 53
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Minnesota
26-48-8, 60pts
3
FINAL
10 Bears
47-29-6, 100pts
Team Stats
W1StreakW3
12-25-4Home Record28-8-5
14-23-4Away Record19-21-1
3-6-1Last 10 Games7-2-1
3.30Goals Per Game3.79
4.38Goals Against Per Game3.30
24.50%Power Play Percentage20.97%
77.60%Penalty Kill Percentage79.47%
Minnesota
26-48-8, 60pts
5
FINAL
4 Chill
29-49-4, 62pts
Team Stats
W1StreakSOL1
12-25-4Home Record16-23-2
14-23-4Away Record13-26-2
3-6-1Last 10 Games1-8-1
3.30Goals Per Game2.98
4.38Goals Against Per Game3.62
24.50%Power Play Percentage16.67%
77.60%Penalty Kill Percentage75.38%
Team Leaders
Goals
Evan Bouchard
14
Assists
Evan Bouchard
37
Points
Evan Bouchard
51
Plus/Minus
John Moore
1
Wins
Joey Daccord
25
Save Percentage
Scott Darling
0.923

Team Stats
Goals For
271
3.30 GFG
Shots For
3108
37.90 Avg
Power Play Percentage
24.5%
61 GF
Offensive Zone Start
38.5%
Goals Against
359
4.38 GAA
Shots Against
3760
45.85 Avg
Penalty Kill Percentage
77.6%
43 GA
Defensive Zone Start
42.3%
Team Info

General ManagerFred Villiard
DivisionMid-Ouest
ConferenceOuest
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,880
Season Tickets300


Roster Info

Pro Team23
Farm Team21
Contract Limit44 / 50
Prospects17


Team History

This Season26-48-8 (60PTS)
History26-48-6 (0.325%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Anthony AngelloX100.00924787667950736925606063254646050600241777,777$
2Anthony LouisXX100.00655392655365666480606262595555050590253560,000$
3Logan BrownX100.00848580628557566176635469514646050590221925,000$
4Joey AndersonX100.00746984766963645950496464614949050590221700,000$
5Jesse Ylonen (R)X100.00736983666965666150556263594444050580214880,833$
6Zack MacEwenXXX100.00849965668152626144535661254950050570242925,000$
7Mathias Emilio Pettersen (R)X100.00746692616659595974555863554444050570204903,333$
8Pavel ShenX100.00797590656856525569545166444444050560213809,169$
9Serron Noel (R)X100.00758257638253535750595163484444050560204894,167$
10Kristian VesalainenXX100.00694399627752625525585556254545050550212925,000$
11Dmitry Zavgorodniy (R)X100.00726197666157604850454559434444050520204780,000$
12Santeri Virtanen (R)X100.00504992647455694654344847525454050500213650,000$
13Brandon ManningX100.007274676678575556374739673665660505903051,500,000$
14Bobby Nardella (R)X100.00656185626155565525574060394444050550241825,000$
15Filip Westerlund (R)X100.00454191656561854125413445375454050520213825,000$
16Victor Berglund (R)X100.00474483656661854125353947425454050520213818,333$
17Kasper Kotkansalo (R)X100.00525179617249693425342848295858050500213700,000$
Scratches
1Nikolai Kovalenko (R)X100.00484290666560814249324442465454050490204560,000$
2Brayden Tracey (R)XX100.00726589716532304455384458424444050480194560,000$
3Alexander Khovanov (R)X100.00534883626937443350263443365050050420204792,500$
4Filip Berglund (R)X100.00344040406933333440343440373230050380231650,000$
TEAM AVERAGE100.0066608264705461514747485642494905053
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Scott Darling100.0044516493404350524445304444050510
2Max Paddock (R)100.0043555465404441434042425050050460
Scratches
TEAM AVERAGE100.004453597940444648424436474705049
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anthony LouisMinnesota (Min)C/LW75335083-660622563831002698.62%46167922.40315185419221381233258.51%155700010.9938000336
2Jesse YlonenMinnesota (Min)RW75383371-395951961713871192909.82%36141618.89121527761780001433448.30%14700031.0017010513
3Joey AndersonMinnesota (Min)RW61283866-2295151128358872457.82%25134722.096814711550118793050.00%12000010.9827010824
4Mathias Emilio PettersenMinnesota (Min)C82254065-1822096199258782449.69%37124615.202121447127000003055.27%180400101.0402000325
5Zack MacEwenMinnesota (Min)C/LW/RW5525275204810191117258571609.69%3199518.115712561380003491249.04%10400001.0423020611
6Evan BouchardMinnesotaD53143751-528010598168501128.33%101120122.67991877130022491000.00%000000.8500000050
7Kristian VesalainenMinnesota (Min)LW/RW82143246-181203989209631486.70%17124415.18371034119000091131.09%11900000.7400000110
8Anthony AngelloMinnesota (Min)RW511923422326087491534610312.42%1490817.8134722117000011236.00%7500020.9300000412
9Brandon ManningMinnesota (Min)D6133134-237410159699629753.13%116117119.20291140134011184100.00%000000.5800011010
10Oliver KylingtonMinnesotaD7792534-43180449710437708.65%68124316.15731044106000062100.00%000000.5500000001
11Bobby NardellaMinnesota (Min)D8282533-304401587667245211.94%111104012.69213512000019010.00%000000.6301000110
12John MooreMinnesotaD32922311235796911139788.11%7577924.375274480000161000.00%000000.7900000011
13Pavel ShenMinnesota (Min)C41141024-1112078108150481319.33%1264215.6701103000003055.14%45700000.7500000122
14Travis DermottMinnesotaD2731518-24050354615436.52%5758121.551672166000154000.00%000000.6200000010
15Filip WesterlundMinnesota (Min)D7721012-106023192314258.70%515987.7720234000025000.00%000000.4000000000
16Serron NoelMinnesota (Min)RW643710-2241057235013416.00%33705.7900000000001146.67%3000000.5400020001
17Brayden TraceyMinnesota (Min)C/LW26336-810039404812356.25%940215.5000000000081050.00%3000000.3000000000
18Nikolai KovalenkoMinnesota (Min)RW26426-920792851914.29%040615.6500001000001033.33%2400000.2900000001
19Victor BerglundMinnesota (Min)D27044-14017137050.00%1432912.1900000000019000.00%000000.2400000000
20Kasper KotkansaloMinnesota (Min)D27033-52014911630.00%171897.030000000000000.00%000000.3200000000
21Santeri VirtanenMinnesota (Min)C23213-9003201331215.38%22068.97000010000160054.27%23400000.2900000000
22Logan BrownMinnesota (Min)C1011020231010.00%21919.8700002000000045.45%2200001.0100000000
23Alexander KhovanovMinnesota (Min)C26000-300141030.00%0682.6400005000010051.56%6400000.0000000000
Team Total or Average1151256439695-2204554516581701293084521648.74%8441809215.726299161594157825727754231354.59%478700170.77828071322227
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joey DaccordMinnesota81254770.9054.2444738131633280240.55020810666
2Scott DarlingMinnesota (Min)131110.9234.0748620334280000.7789182001
Team Total or Average94264880.9074.22495910134937560240.621298282667


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexander KhovanovMinnesota (Min)C202000-04-12Yes196 Lbs5 ft11NoNoNo4Pro & Farm792,500$79,250$0$No792,500$792,500$792,500$Link
Anthony AngelloMinnesota (Min)RW241996-03-06No209 Lbs6 ft5NoNoNo1Pro & Farm777,777$77,778$0$NoLink
Anthony LouisMinnesota (Min)C/LW251995-02-10No151 Lbs5 ft7NoNoNo3Pro & Farm560,000$56,000$0$No560,000$560,000$Link
Bobby NardellaMinnesota (Min)D241996-04-22Yes174 Lbs5 ft9NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Brandon ManningMinnesota (Min)D301990-06-03No205 Lbs6 ft1NoNoNo5Pro & Farm1,500,000$150,000$0$No1,500,000$1,500,000$1,500,000$1,500,000$Link
Brayden TraceyMinnesota (Min)C/LW192001-05-28Yes176 Lbs6 ft0NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Dmitry ZavgorodniyMinnesota (Min)LW202000-08-11Yes173 Lbs5 ft9NoNoNo4Pro & Farm780,000$78,000$0$No780,000$780,000$780,000$Link
Filip BerglundMinnesota (Min)D231997-05-10Yes209 Lbs6 ft3NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Filip WesterlundMinnesota (Min)D211999-04-17Yes181 Lbs5 ft11NoNoNo3Pro & Farm825,000$82,500$0$No825,000$825,000$Link
Jesse YlonenMinnesota (Min)RW211999-10-03Yes187 Lbs6 ft1NoNoNo4Pro & Farm880,833$88,083$0$No880,833$880,833$880,833$Link
Joey AndersonMinnesota (Min)RW221998-06-19No190 Lbs5 ft11NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Kasper KotkansaloMinnesota (Min)D211998-11-16Yes198 Lbs6 ft2NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Kristian VesalainenMinnesota (Min)LW/RW211999-06-01No207 Lbs6 ft3NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Logan BrownMinnesota (Min)C221998-03-04No220 Lbs6 ft6NoNoNo1Pro & Farm925,000$925,000$0$NoLink
Mathias Emilio PettersenMinnesota (Min)C202000-04-03Yes181 Lbs5 ft11NoNoNo4Pro & Farm903,333$90,333$0$No903,333$903,333$903,333$Link
Max PaddockMinnesota (Min)G202000-06-15Yes168 Lbs6 ft2NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Nikolai KovalenkoMinnesota (Min)RW201999-10-17Yes185 Lbs5 ft10NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Pavel ShenMinnesota (Min)C211999-08-14No183 Lbs6 ft1NoNoNo3Pro & Farm809,169$80,917$0$No809,169$809,169$Link
Santeri VirtanenMinnesota (Min)C211999-05-11Yes203 Lbs6 ft2NoNoNo3Pro & Farm650,000$65,000$0$No650,000$650,000$Link
Scott DarlingMinnesota (Min)G311988-12-21No226 Lbs6 ft5NoNoNo4Pro & Farm1,800,000$180,000$0$No1,800,000$1,800,000$1,800,000$Link
Serron NoelMinnesota (Min)RW202000-08-08Yes216 Lbs6 ft5NoNoNo4Pro & Farm894,167$89,417$0$No894,167$894,167$894,167$Link
Victor BerglundMinnesota (Min)D211999-08-02Yes181 Lbs6 ft0NoNoNo3Pro & Farm818,333$81,833$0$No818,333$818,333$Link
Zack MacEwenMinnesota (Min)C/LW/RW241996-07-08No205 Lbs6 ft3NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2322.22192 Lbs6 ft12.96840,048$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zack MacEwen40122
2Kristian VesalainenMathias Emilio Pettersen30122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
3Bobby Nardella20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zack MacEwen60122
2Kristian VesalainenMathias Emilio Pettersen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Zack MacEwen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Zack MacEwen40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Zack MacEwen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Zack MacEwen
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, Bobby Nardella, Bobby Nardella,
Penalty Shots
, , , Zack MacEwen, Mathias Emilio Pettersen
Goalie
#1 : , #2 : Scott Darling


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals31100001713-61000000134-12110000049-530.50071219001148668811510131049102155137311677800.00%6350.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
2Baby Hawks4220000014140211000006512110000089-140.5001426400011486688137101310491021551895216889222.22%8275.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
3Bears20200000318-151010000008-810100000310-700.00034700114866885710131049102155137372458225.00%10100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
4Bruins20100001410-61000000145-11010000005-510.2504711001148668884101310491021551021321499222.22%7185.71%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
5Cabaret Lady Mary Ann211000001011-11010000035-21100000076120.500101929001148668887101310491021558727124210330.00%50100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
6Caroline20000101911-21000010045-11000000156-120.500916250011486688761013104910215583312385360.00%110.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
7Chiefs412001001418-42110000066020100100812-430.37514264010114866881391013104910215517363376713215.38%11463.64%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
8Chill513000101418-42020000028-6311000101210240.400142236001148668818510131049102155231872011915426.67%10280.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
9Comets303000001115-42020000079-21010000046-200.00011213200114866881131013104910215511131216510440.00%7185.71%11397292747.73%1378321442.87%663146445.29%1832126520956011038502
10Cougars2010001068-2100000104311010000025-320.500691500114866886710131049102155113191342400.00%6183.33%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
11Crunch20200000615-91010000028-61010000047-300.0006111700114866889810131049102155932610478450.00%4250.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
12Heat312000001112-120200000610-41100000052320.333112031001148668811210131049102155115353063800.00%13284.62%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
13Jayhawks31200000914-51010000026-42110000078-120.33391625001148668810310131049102155134411458700.00%7357.14%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
14Las Vegas311000011818021000001151051010000038-530.500183250001148668815210131049102155168388749444.44%40100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
15Manchots22000000853110000004311100000042241.0008142200114866887010131049102155862314426116.67%40100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
16Marlies220000001064110000005411100000052341.00010182800114866888110131049102155842519375360.00%60100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
17Monarchs312000001214-21100000043120200000811-320.3331222341011486688112101310491021551434520706233.33%10190.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
18Monsters2020000059-41010000036-31010000023-100.000591410114866887410131049102155972715446233.33%50100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
19Monsters504000011224-1230300000716-92010000158-310.100122234001148668817710131049102155228531413721419.05%6433.33%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
20Oceanics413000001418-42110000076120200000712-520.25014264000114866881441013104910215518744297714321.43%7185.71%11397292747.73%1378321442.87%663146445.29%1832126520956011038502
21Oil Kings31200000990211000006511010000034-120.333917260011486688109101310491021551373922685240.00%11190.91%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
22Phantoms2020000058-31010000023-11010000035-200.000510150011486688751013104910215597291028400.00%50100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
23Rocket2110000057-21010000014-31100000043120.50059140011486688731013104910215587358508225.00%4250.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
24Senators2110000068-21010000026-41100000042220.5006121800114866887910131049102155842114447228.57%7271.43%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
25Sharks30300000311-81010000015-42020000026-400.00035810114866888310131049102155139433082300.00%14192.86%11397292747.73%1378321442.87%663146445.29%1832126520956011038502
26Sound Tigers211000009901010000026-41100000073420.5009152400114866887810131049102155113298484125.00%3166.67%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
27Spiders2020000068-21010000034-11010000034-100.00061117001148668865101310491021551052812477114.29%5260.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
28Stars412000011117-62110000069-32010000158-330.37511193000114866881341013104910215515455208817211.76%9455.56%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
29Thunder21000010853100000106511100000020241.000813210111486688117101310491021556825649300.00%3233.33%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
30Wolf Pack220000001266110000006421100000062441.000122234001148668811210131049102155782183510660.00%30100.00%01397292747.73%1378321442.87%663146445.29%1832126520956011038502
Total82234800236271359-8841102500123129181-5241132300113142178-36600.36627148575641114866883108101310491021553760107347118202496124.50%1924377.60%31397292747.73%1378321442.87%663146445.29%1832126520956011038502
_Since Last GM Reset82234800236271359-8841102500123129181-5241132300113142178-36600.36627148575641114866883108101310491021553760107347118202496124.50%1924377.60%31397292747.73%1378321442.87%663146445.29%1832126520956011038502
_Vs Conference42102500214145193-48235150011175101-2619510001037092-22280.333145263408101148668815771013104910215518725452279271343223.88%962771.88%11397292747.73%1378321442.87%663146445.29%1832126520956011038502
_Vs Division24460011180106-261232000114452-81214001003654-18120.250801452252011486688899101310491021551084303161557561221.43%721283.33%21397292747.73%1378321442.87%663146445.29%1832126520956011038502

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8260W1271485756310837601073471182041
All Games
GPWLOTWOTL SOWSOLGFGA
8223480236271359
Home Games
GPWLOTWOTL SOWSOLGFGA
4110250123129181
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4113230113142178
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2496124.50%1924377.60%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1013104910215511486688
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1397292747.73%1378321442.87%663146445.29%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1832126520956011038502


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2021-10-139Minnesota3Chill4LBoxScore
4 - 2021-10-1527Minnesota2Monsters4LBoxScore
9 - 2021-10-2053Minnesota3Oceanics6LBoxScore
11 - 2021-10-2271Manchots3Minnesota4WBoxScore
13 - 2021-10-2479Minnesota4Senators2WBoxScore
14 - 2021-10-2585Minnesota5Marlies2WBoxScore
16 - 2021-10-2799Minnesota4Rocket3WBoxScore
19 - 2021-10-30125Rocket4Minnesota1LBoxScore
21 - 2021-11-01139Oil Kings4Minnesota3LBoxScore
23 - 2021-11-03150Minnesota4Chill2WBoxScore
25 - 2021-11-05167Monarchs3Minnesota4WBoxScore
28 - 2021-11-08186Minnesota2Stars4LBoxScore
29 - 2021-11-09190Minnesota5Chiefs8LBoxScore
32 - 2021-11-12213Chiefs4Minnesota2LBoxScore
35 - 2021-11-15233Minnesota3Admirals2WBoxScore
37 - 2021-11-17247Minnesota0Sharks2LBoxScore
39 - 2021-11-19259Minnesota2Jayhawks4LBoxScore
42 - 2021-11-22279Minnesota3Monarchs4LBoxScore
44 - 2021-11-24289Jayhawks6Minnesota2LBoxScore
46 - 2021-11-26299Caroline5Minnesota4LXBoxScore
49 - 2021-11-29318Minnesota4Crunch7LBoxScore
51 - 2021-12-01340Monsters4Minnesota2LBoxScore
53 - 2021-12-03353Minnesota0Bruins5LBoxScore
55 - 2021-12-05366Minnesota6Wolf Pack2WBoxScore
56 - 2021-12-06375Minnesota3Spiders4LBoxScore
59 - 2021-12-09395Senators6Minnesota2LBoxScore
61 - 2021-12-11416Stars3Minnesota4WBoxScore
63 - 2021-12-13426Minnesota7Cabaret Lady Mary Ann6WBoxScore
65 - 2021-12-15440Minnesota2Thunder0WBoxScore
67 - 2021-12-17459Minnesota5Caroline6LXXBoxScore
70 - 2021-12-20476Admirals4Minnesota3LXXBoxScore
72 - 2021-12-22493Oil Kings1Minnesota3WBoxScore
74 - 2021-12-24507Phantoms3Minnesota2LBoxScore
75 - 2021-12-25516Minnesota5Baby Hawks3WBoxScore
77 - 2021-12-27533Minnesota3Las Vegas8LBoxScore
79 - 2021-12-29546Minnesota5Jayhawks4WBoxScore
81 - 2021-12-31554Oceanics3Minnesota5WBoxScore
83 - 2022-01-02570Heat6Minnesota3LBoxScore
87 - 2022-01-06586Minnesota3Monsters4LXXBoxScore
89 - 2022-01-08605Sound Tigers6Minnesota2LBoxScore
91 - 2022-01-10616Marlies4Minnesota5WBoxScore
95 - 2022-01-14643Oceanics3Minnesota2LBoxScore
96 - 2022-01-15656Heat4Minnesota3LBoxScore
100 - 2022-01-19685Minnesota5Heat2WBoxScore
103 - 2022-01-22704Comets4Minnesota3LBoxScore
105 - 2022-01-24718Minnesota4Manchots2WBoxScore
107 - 2022-01-26736Thunder5Minnesota6WXXBoxScore
109 - 2022-01-28753Stars6Minnesota2LBoxScore
111 - 2022-01-30760Cabaret Lady Mary Ann5Minnesota3LBoxScore
113 - 2022-02-01767Cougars3Minnesota4WXXBoxScore
123 - 2022-02-11802Bruins5Minnesota4LXXBoxScore
126 - 2022-02-14821Baby Hawks3Minnesota2LBoxScore
128 - 2022-02-16835Comets5Minnesota4LBoxScore
129 - 2022-02-17842Minnesota3Stars4LXXBoxScore
131 - 2022-02-19859Monsters6Minnesota2LBoxScore
133 - 2022-02-21871Las Vegas3Minnesota9WBoxScore
135 - 2022-02-23887Wolf Pack4Minnesota6WBoxScore
137 - 2022-02-25899Sharks5Minnesota1LBoxScore
141 - 2022-03-01932Minnesota4Comets6LBoxScore
143 - 2022-03-03946Minnesota3Oil Kings4LBoxScore
145 - 2022-03-05964Chiefs2Minnesota4WBoxScore
147 - 2022-03-07978Monsters6Minnesota3LBoxScore
149 - 2022-03-09989Minnesota2Cougars5LBoxScore
150 - 2022-03-10995Minnesota2Monsters3LBoxScore
152 - 2022-03-121014Bears8Minnesota0LBoxScore
154 - 2022-03-141023Chill4Minnesota0LBoxScore
156 - 2022-03-161042Minnesota2Sharks4LBoxScore
158 - 2022-03-181052Minnesota5Monarchs7LBoxScore
159 - 2022-03-191063Minnesota1Admirals7LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
163 - 2022-03-231089Las Vegas7Minnesota6LXXBoxScore
165 - 2022-03-251098Minnesota3Phantoms5LBoxScore
166 - 2022-03-261116Chill4Minnesota2LBoxScore
168 - 2022-03-281127Baby Hawks2Minnesota4WBoxScore
170 - 2022-03-301143Minnesota3Baby Hawks6LBoxScore
171 - 2022-03-311148Minnesota4Oceanics6LBoxScore
174 - 2022-04-031172Monsters6Minnesota3LBoxScore
177 - 2022-04-061198Spiders4Minnesota3LBoxScore
179 - 2022-04-081213Crunch8Minnesota2LBoxScore
180 - 2022-04-091220Minnesota3Chiefs4LXBoxScore
182 - 2022-04-111229Minnesota7Sound Tigers3WBoxScore
184 - 2022-04-131248Minnesota3Bears10LBoxScore
186 - 2022-04-151267Minnesota5Chill4WXXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,29739,777
Attendance PCT95.48%97.02%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2880 - 96.00% 81,391$3,337,050$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,287,311$ 2,764,611$ 2,764,611$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
14,784$ 2,287,311$ 23 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 14,784$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT