Login

Sharks
GP: 82 | W: 57 | L: 21 | OTL: 4 | P: 118
GF: 318 | GA: 238 | PP%: 23.35% | PK%: 79.14%
GM : Marc-Andre Bois | Morale : 50 | Team Overall : 60
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Stars
43-36-3, 89pts
4
FINAL
5 Sharks
57-21-4, 118pts
Team Stats
W1StreakW6
28-11-2Home Record33-7-1
15-25-1Away Record24-14-3
6-4-0Last 10 Games8-1-1
3.48Goals Per Game3.88
3.39Goals Against Per Game2.90
25.62%Power Play Percentage23.35%
74.35%Penalty Kill Percentage79.14%
Admirals
46-30-6, 98pts
4
FINAL
5 Sharks
57-21-4, 118pts
Team Stats
L1StreakW6
22-15-4Home Record33-7-1
24-15-2Away Record24-14-3
5-4-1Last 10 Games8-1-1
3.54Goals Per Game3.88
3.16Goals Against Per Game2.90
20.94%Power Play Percentage23.35%
82.68%Penalty Kill Percentage79.14%
Team Leaders
Wins
Stuart Skinner
51
Save Percentage
Malcolm Subban
0.943

Team Stats
Goals For
318
3.88 GFG
Shots For
3322
40.51 Avg
Power Play Percentage
23.3%
60 GF
Offensive Zone Start
43.7%
Goals Against
238
2.90 GAA
Shots Against
2680
32.68 Avg
Penalty Kill Percentage
79.1%
34 GA
Defensive Zone Start
37.0%
Team Info

General ManagerMarc-Andre Bois
DivisionAtlantique
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,922
Season Tickets300


Roster Info

Pro Team29
Farm Team19
Contract Limit48 / 50
Prospects17


Team History

This Season57-21-4 (118PTS)
History57-21-7 (0.671%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
C
L
R
D
CON
CK
FG
DI
SK
ST
EN
DU
PH
FO
PA
SC
DF
PS
EX
LD
PO
MO
OV
TA
SP
Age
Contract
Salary Average
1Zack SmithXX100.008156797877607161576055752474760506403213,450,000$
2Morgan FrostX100.00624297856368547863746255254646050630213863,334$
3Sasha ChmelevskiXX100.00787587656869636987666968604444050630213778,335$
4Alexander NylanderXX100.006045918368587462336363677260600506302221,000,000$
5Rasmus AsplundXXX100.00654199776763715837627673255050050630221825,000$
6Clark BishopX100.00834590617254626471685576255758050610241875,000$
7Cooper MarodyXX100.00736786666763626780597164674444050610232750,000$
8Noah GregorXXX100.00814493776859736043537066255050050610221650,000$
9Nolan PatrickXX100.00734388767365587084605864254949050610221925,000$
10Otto SomppiX100.00747180677164646580616564624444050600221525,000$
11Austin WagnerXX100.00874589626956825925595961256161050590232722,000$
12Samuel Fagemo (R)XX100.00776995636962636050536265594444050580203795,000$
13Riley StillmanX100.00894678697267666025394883255051050640221650,000$
14Kale ClagueX100.00654192716571746625654769254646050620221767,500$
15Wyatt Kalynuk (R)X100.00774393726869596625586065254545050610234925,000$
16Brennan MenellX100.00696684636673775425563966395555050600232825,000$
Scratches
1Alexander TrueX100.00787879677867686580606369605656050620231763,333$
2Jordy BelleriveX100.00727660666970656886617065614444050610214733,333$
3Alex Turcotte (R)X100.00726782596760606278625763544444050570193925,000$
4Josh WilkinsX100.00847399646667645569485568484444050570233925,002$
5Matthew PhillipsXX100.00655393645360606379606259594444050570221525,000$
6Noah Cates (R)X100.00545271677158695460485052545454050540213525,000$
7Michal Teply (R)XX100.00767189637157595250554462424444050540193825,833$
8Cam DineenX100.00746693666661635525474862464444050570221742,500$
9Reilly Walsh (R)X100.00746888596858595525464962474444050560213700,000$
TEAM AVERAGE100.0074588768686366625458586643495005060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
CON
SK
DU
EN
SZ
AG
RB
SC
HS
RT
PH
PS
EX
LD
PO
MO
OV
TA
SP
1Stuart Skinner100.0058618484566057645858304444050600
2Malcolm Subban100.0058485381615461616458955555050590
Scratches
1Garret Sparks100.0058496880616054615958304747050580
2Sam Montembeault100.0052536680555153575654304545050550
TEAM AVERAGE100.005753688158565661595746484805058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
Team Name
POS
GP
G
A
P
+/-
PIM
PIM5
HIT
HTT
SHT
OSB
OSM
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PPM
PKG
PKA
PKP
PKS
PKM
GW
GT
FO%
FOT
GA
TA
EG
HT
P/20
PSG
PSS
FW
FL
FT
S1
S2
S3
1Zack SmithSharks (San)C/LW79295988375152932572699121110.78%22172221.80610163219802251252154.58%244800011.02130011037
2Morgan FrostSharks (San)C822659851720402313661042677.10%19167320.41719265918821381536151.36%183800001.0204000382
3Alexander NylanderSharks (San)LW/RW7932528438155331412889020711.11%20165320.9341216411970112885342.98%22800011.0213001385
4Rasmus AsplundSharks (San)C/LW/RW7943388134604011239511323810.89%22164420.8279166420010178011439.22%10200120.98120001055
5Kale ClagueSharks (San)D8295564142603810014056916.43%114196623.9941620702210113126200.00%000100.6500000012
6Wyatt KalynukSharks (San)D821447613146013397165441008.48%125174521.2931316651991123121020.00%000000.7000000413
7Noah GregorSharks (San)C/LW/RW8225295411360178108303892358.25%21150118.32981761207000043141.74%11500010.7200000423
8Brennan MenellSharks (San)D8211415237255935293295411.83%121175621.427815391950110140120.00%000000.5900001204
9Clark BishopSharks (San)C82113950736015611680356013.75%93130815.9600001000003057.58%19800000.7600000422
10Sasha ChmelevskiSharks (San)C/RW52271946915589912136015712.68%996218.525101549139000194261.54%28600000.9602001445
11Nolan PatrickSharks (San)C/RW821032428180649414641996.85%43133916.34112521000032055.00%2000000.6300000112
12Alexander TrueSharks (San)C621822404341076112200551589.00%1496015.4900017000253160.64%90700000.8300110153
13Cooper MarodySharks (San)C/RW82261339-6806087265681679.81%14117114.2810113190003738163.92%15800000.6700000411
14Riley StillmanSharks (San)D70132538655519175158481028.23%133164123.4554962185000290110.00%000000.4600001122
15Otto SomppiSharks (San)C8251419-119530575717598.77%125366.551234180000382159.38%42100000.7100100000
16Austin WagnerSharks (San)LW/RW826915-22201306410131785.94%14102212.4600002000011135.80%8100000.2900000011
17Samuel FagemoSharks (San)LW/RW8110515120272374235813.51%24765.8800000000001150.00%3400000.6300000100
Team Total or Average13223155588732454164016711817331399423419.51%7982308417.466011217256520044711361062552254.33%683600250.76314215524447
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
Team Name
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
ST
BG
S1
S2
S3
1Stuart SkinnerSharks (San)76512030.9082.9444522121823810210.80015760343
2Malcolm SubbanSharks (San)116110.9432.0549801172980000.0000677101
Team Total or Average87572140.9122.8549502223526790210.800158277444


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name
Team Name
POS
Age
Birthday
Rookie
Weight
Height
No Trade
Available For Trade
Force Waivers
Contract
Type
Current Salary
Salary Remaining
Salary Cap
Salary Cap Remaining
Exclude from Salary Cap
Salary Year 2
Salary Year 3
Salary Year 4
Salary Year 5
Salary Year 6
Salary Year 7
Salary Year 8
Salary Year 9
Salary Year 10
Link
Alex TurcotteSharks (San)C192001-02-25Yes185 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Alexander NylanderSharks (San)LW/RW221998-03-01No180 Lbs6 ft1NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Link
Alexander TrueSharks (San)C231997-07-16No200 Lbs6 ft5NoNoNo1Pro & Farm763,333$76,333$0$NoLink
Austin WagnerSharks (San)LW/RW231997-06-22No185 Lbs6 ft1NoNoNo2Pro & Farm722,000$72,200$0$No722,000$Link
Brennan MenellSharks (San)D231997-05-24No183 Lbs5 ft11NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Cam DineenSharks (San)D221998-06-18No183 Lbs5 ft11NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Clark BishopSharks (San)C241996-03-28No199 Lbs6 ft1NoNoNo1Pro & Farm875,000$87,500$0$NoLink
Cooper MarodySharks (San)C/RW231996-12-20No184 Lbs6 ft0NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Link
Garret SparksSharks (San)G271993-06-28No201 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Jordy BelleriveSharks (San)C211999-05-02No195 Lbs5 ft10NoNoNo4Pro & Farm733,333$73,333$0$No733,333$733,333$733,333$Link
Josh WilkinsSharks (San)C231997-06-11No181 Lbs5 ft11NoNoNo3Pro & Farm925,002$92,500$0$No925,002$925,002$Link
Kale ClagueSharks (San)D221998-06-05No177 Lbs6 ft0NoNoNo1Pro & Farm767,500$76,750$0$NoLink
Malcolm SubbanSharks (San)G261993-12-21No215 Lbs6 ft2NoNoNo2Pro & Farm975,000$97,500$0$No975,000$Link
Matthew PhillipsSharks (San)C/RW221998-04-06No150 Lbs5 ft7NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Michal TeplySharks (San)LW/RW192001-05-27Yes187 Lbs6 ft3NoNoNo3Pro & Farm825,833$82,583$0$No825,833$825,833$Link
Morgan FrostSharks (San)C211999-05-14No170 Lbs5 ft11NoNoNo3Pro & Farm863,334$86,333$0$No863,334$863,334$Link
Noah CatesSharks (San)LW211999-02-05Yes190 Lbs6 ft2NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Noah GregorSharks (San)C/LW/RW221998-07-28No185 Lbs6 ft0NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Nolan PatrickSharks (San)C/RW221998-09-19No198 Lbs6 ft2NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Otto SomppiSharks (San)C221998-01-12No190 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Rasmus AsplundSharks (San)C/LW/RW221997-12-03No189 Lbs5 ft11NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Reilly WalshSharks (San)D211999-04-21Yes185 Lbs6 ft0NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Riley StillmanSharks (San)D221998-03-09No196 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Sam MontembeaultSharks (San)G231996-10-29No199 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Samuel FagemoSharks (San)LW/RW202000-03-14Yes190 Lbs5 ft11NoNoNo3Pro & Farm795,000$79,500$0$No795,000$795,000$Link
Sasha ChmelevskiSharks (San)C/RW211999-06-09No187 Lbs6 ft0NoNoNo3Pro & Farm778,335$77,834$0$No778,335$778,335$Link
Stuart SkinnerSharks (San)G211998-11-01No206 Lbs6 ft4NoNoNo1Pro & Farm784,166$78,417$0$NoLink
Wyatt KalynukSharks (San)D231997-04-14Yes180 Lbs6 ft1NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Link
Zack SmithSharks (San)C/LW321988-04-05No208 Lbs6 ft2NoNoNo1Pro & Farm3,450,000$345,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2922.48189 Lbs6 ft11.93867,253$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Rasmus AsplundZack SmithAlexander Nylander40122
2Noah GregorSasha ChmelevskiNolan Patrick30122
3Austin WagnerMorgan FrostCooper Marody20122
4Samuel FagemoClark BishopZack Smith10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanKale Clague40122
2Wyatt KalynukBrennan Menell30122
3Clark BishopOtto Somppi20122
4Riley StillmanKale Clague10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Rasmus AsplundZack SmithAlexander Nylander60122
2Noah GregorSasha ChmelevskiNolan Patrick40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanKale Clague60122
2Wyatt KalynukBrennan Menell40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Zack SmithRasmus Asplund60122
2Alexander NylanderSasha Chmelevski40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanKale Clague60122
2Wyatt KalynukBrennan Menell40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Zack Smith60122Riley StillmanKale Clague60122
2Rasmus Asplund40122Wyatt KalynukBrennan Menell40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Zack SmithRasmus Asplund60122
2Alexander NylanderSasha Chmelevski40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanKale Clague60122
2Wyatt KalynukBrennan Menell40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Rasmus AsplundZack SmithAlexander NylanderRiley StillmanKale Clague
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Rasmus AsplundZack SmithAlexander NylanderRiley StillmanKale Clague
Extra Forwards
Normal PowerPlayPenalty Kill
Morgan Frost, Cooper Marody, Otto SomppiMorgan Frost, Cooper MarodyOtto Somppi
Extra Defensemen
Normal PowerPlayPenalty Kill
Wyatt Kalynuk, Brennan Menell, Riley StillmanWyatt KalynukBrennan Menell, Riley Stillman
Penalty Shots
Zack Smith, Rasmus Asplund, Alexander Nylander, Sasha Chmelevski, Morgan Frost
Goalie
#1 : Stuart Skinner, #2 : Malcolm Subban


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Overall
Home
Visitor
#
VS Team
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
PCT
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT
1Admirals4400000018135220000009722200000096381.00018345200118969781641044112111393311331279019421.05%10370.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
2Baby Hawks3120000010911010000034-12110000075220.333101929001189697893104411211139331003010537228.57%50100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
3Bears2110000056-1110000003211010000024-220.50059140011896978661044112111393377251047200.00%5180.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
4Bruins2020000025-31010000012-11010000013-200.000246001189697874104411211139337119123610110.00%60100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
5Cabaret Lady Mary Ann21000100880110000004311000010045-130.750814220011896978851044112111393386278455240.00%3166.67%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
6Caroline220000001275110000006421100000063341.0001218300011896978901044112111393365311840200.00%8187.50%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
7Chiefs3210000013103110000005322110000087140.667132538101189697813410441121113933842985714535.71%40100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
8Chill321000001192110000004222110000077040.66711172800118969781021044112111393383231660500.00%7442.86%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
9Comets5320000021147312000001110122000000104660.600213859011189697819010441121113933166602910616318.75%9188.89%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
10Cougars2110000036-3110000003211010000004-420.5003580011896978641044112111393357218444250.00%40100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
11Crunch220000001183110000005411100000064241.00011203100118969789510441121113933862616425360.00%70100.00%11700313054.31%1413265153.30%710138151.41%2145152417455671066558
12Heat411011001014-42100100063320100100411-750.62510172700118969781221044112111393312724356911218.18%6183.33%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
13Jayhawks4310000016115211000007612200000095460.75016284400118969781721044112111393316857269215426.67%13376.92%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
14Las Vegas420010012215721000001131122100100094570.8752238600011896978226104411211139331665820871417.14%9366.67%21700313054.31%1413265153.30%710138151.41%2145152417455671066558
15Manchots22000000734110000004131100000032141.000712190011896978811044112111393338176419222.22%3233.33%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
16Marlies2020000047-31010000013-21010000034-100.00046100011896978851044112111393361124358225.00%10100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
17Minnesota330000001138220000006241100000051461.00011193001118969781391044112111393383268621417.14%30100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
18Monarchs4210100013112210010008622110000055060.7501324370011896978168104411211139331044221831119.09%8187.50%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
19Monsters2110000068-21010000025-31100000043120.500612180011896978801044112111393367208409111.11%4250.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
20Monsters31000011981110000004312000001155050.833914230011896978871044112111393399408473133.33%330.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
21Oceanics311010001091210010008531010000024-240.667101828001189697812810441121113933106328658112.50%4250.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
22Oil Kings43100000188102200000012392110000065160.75018325000118969781461044112111393311225168316637.50%80100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
23Phantoms210010001165100010005411100000062441.00011213200118969788910441121113933701615459222.22%50100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
24Rocket210000101055110000007341000001032141.0001016260011896978661044112111393369291230200.00%50100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
25Senators211000001192110000006331010000056-120.5001120310011896978901044112111393360158494375.00%3166.67%11700313054.31%1413265153.30%710138151.41%2145152417455671066558
26Sound Tigers2110000056-1110000004311010000013-220.50058130011896978631044112111393377152739500.00%6266.67%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
27Spiders21100000752110000004131010000034-120.500713200011896978691044112111393372216375240.00%30100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
28Stars3300000013942200000010731100000032161.0001323360011896978129104411211139331081810649444.44%2150.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
29Thunder22000000927110000005141100000041341.000916250011896978115104411211139335296574125.00%30100.00%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
30Wolf Pack220000001248110000008171100000043141.000122133001189697811010441121113933539123612433.33%6266.67%01700313054.31%1413265153.30%710138151.41%2145152417455671066558
Total825021052223182388041297040011741146041211401221144124201180.7203185618791211896978332210441121113933268080741816812576023.35%1633479.14%41700313054.31%1413265153.30%710138151.41%2145152417455671066558
_Since Last GM Reset825021052223182388041297040011741146041211401221144124201180.7203185618791211896978332210441121113933268080741816812576023.35%1633479.14%41700313054.31%1413265153.30%710138151.41%2145152417455671066558
_Vs Conference3621120300013110328181230300072462618990000059572480.667131235366001189697814841044112111393311043061867601202420.00%742072.97%11700313054.31%1413265153.30%710138151.41%2145152417455671066558
_Vs Division1657020005850883202000322111825000002629-3140.4385810115900118969786741044112111393354215874338421433.33%32293.75%21700313054.31%1413265153.30%710138151.41%2145152417455671066558

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82118W631856187933222680807418168112
All Games
GPWLOTWOTL SOWSOLGFGA
8250215222318238
Home Games
GPWLOTWOTL SOWSOLGFGA
412974001174114
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4121141221144124
Last 10 Games
WLOTWOTL SOWSOL
810100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2576023.35%1633479.14%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1044112111393311896978
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1700313054.31%1413265153.30%710138151.41%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2145152417455671066558


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Day
Game
Visitor Team
Score
Home Team
Score
ST
OT
SO
RI
Link
1 - 2021-10-124Sharks5Las Vegas1WBoxScore
3 - 2021-10-1417Las Vegas5Sharks4LXXBoxScore
4 - 2021-10-1528Sharks5Admirals3WBoxScore
7 - 2021-10-1841Sharks6Chill5WBoxScore
9 - 2021-10-2054Sharks1Baby Hawks2LBoxScore
12 - 2021-10-2377Heat1Sharks3WBoxScore
15 - 2021-10-2697Caroline4Sharks6WBoxScore
18 - 2021-10-29123Crunch4Sharks5WBoxScore
21 - 2021-11-01134Sharks6Crunch4WBoxScore
23 - 2021-11-03145Sharks3Rocket2WXXBoxScore
24 - 2021-11-04156Sharks3Marlies4LBoxScore
26 - 2021-11-06173Sharks5Senators6LBoxScore
28 - 2021-11-08179Sharks1Bruins3LBoxScore
31 - 2021-11-11203Oceanics4Sharks5WXBoxScore
32 - 2021-11-12216Comets4Sharks3LBoxScore
35 - 2021-11-15234Baby Hawks4Sharks3LBoxScore
37 - 2021-11-17247Minnesota0Sharks2WBoxScore
39 - 2021-11-19262Chill2Sharks4WBoxScore
42 - 2021-11-22280Oil Kings1Sharks7WBoxScore
44 - 2021-11-24292Sharks4Admirals3WBoxScore
46 - 2021-11-26313Cougars2Sharks3WBoxScore
49 - 2021-11-29330Oil Kings2Sharks5WBoxScore
51 - 2021-12-01344Sharks4Las Vegas3WXBoxScore
53 - 2021-12-03361Sound Tigers3Sharks4WBoxScore
55 - 2021-12-05373Sharks2Monarchs4LBoxScore
57 - 2021-12-07389Oceanics1Sharks3WBoxScore
59 - 2021-12-09393Monarchs3Sharks4WXBoxScore
60 - 2021-12-10411Sharks5Jayhawks3WBoxScore
63 - 2021-12-13433Bears2Sharks3WBoxScore
65 - 2021-12-15443Sharks6Caroline3WBoxScore
67 - 2021-12-17457Sharks4Thunder1WBoxScore
68 - 2021-12-18464Sharks4Cabaret Lady Mary Ann5LXBoxScore
70 - 2021-12-20475Sharks1Chill2LBoxScore
72 - 2021-12-22498Wolf Pack1Sharks8WBoxScore
74 - 2021-12-24514Comets1Sharks4WBoxScore
77 - 2021-12-27534Jayhawks4Sharks3LBoxScore
81 - 2021-12-31564Chiefs3Sharks5WBoxScore
82 - 2022-01-01568Las Vegas6Sharks9WBoxScore
87 - 2022-01-06592Monarchs3Sharks4WBoxScore
88 - 2022-01-07601Phantoms4Sharks5WXBoxScore
91 - 2022-01-10620Sharks0Cougars4LBoxScore
93 - 2022-01-12631Sharks3Manchots2WBoxScore
95 - 2022-01-14642Sharks4Monsters3WBoxScore
96 - 2022-01-15653Sharks2Bears4LBoxScore
98 - 2022-01-17670Sharks5Chiefs2WBoxScore
100 - 2022-01-19688Monsters5Sharks2LBoxScore
102 - 2022-01-21702Stars3Sharks5WBoxScore
105 - 2022-01-24724Sharks4Jayhawks2WBoxScore
107 - 2022-01-26738Sharks1Monsters2LXXBoxScore
109 - 2022-01-28754Sharks6Comets4WBoxScore
118 - 2022-02-06773Admirals3Sharks4WBoxScore
120 - 2022-02-08781Comets5Sharks4LBoxScore
123 - 2022-02-11805Thunder1Sharks5WBoxScore
126 - 2022-02-14823Sharks1Heat7LBoxScore
128 - 2022-02-16837Sharks3Oil Kings4LBoxScore
132 - 2022-02-20865Heat2Sharks3WXBoxScore
136 - 2022-02-24891Sharks2Oceanics4LBoxScore
137 - 2022-02-25899Sharks5Minnesota1WBoxScore
139 - 2022-02-27915Cabaret Lady Mary Ann3Sharks4WBoxScore
142 - 2022-03-02934Sharks3Spiders4LBoxScore
144 - 2022-03-04953Sharks4Wolf Pack3WBoxScore
145 - 2022-03-05962Sharks1Sound Tigers3LBoxScore
147 - 2022-03-07972Sharks6Phantoms2WBoxScore
149 - 2022-03-09993Spiders1Sharks4WBoxScore
151 - 2022-03-111010Manchots1Sharks4WBoxScore
154 - 2022-03-141028Marlies3Sharks1LBoxScore
156 - 2022-03-161042Minnesota2Sharks4WBoxScore
158 - 2022-03-181053Senators3Sharks6WBoxScore
159 - 2022-03-191065Monsters3Sharks4WBoxScore
162 - 2022-03-221079Sharks6Baby Hawks3WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
164 - 2022-03-241094Sharks3Chiefs5LBoxScore
165 - 2022-03-251106Sharks3Stars2WBoxScore
168 - 2022-03-281129Sharks4Monsters3WXXBoxScore
170 - 2022-03-301145Rocket3Sharks7WBoxScore
172 - 2022-04-011163Bruins2Sharks1LBoxScore
174 - 2022-04-031173Sharks3Heat4LXBoxScore
176 - 2022-04-051189Sharks4Comets0WBoxScore
178 - 2022-04-071203Sharks3Oil Kings1WBoxScore
180 - 2022-04-091223Jayhawks2Sharks4WBoxScore
182 - 2022-04-111238Sharks3Monarchs1WBoxScore
184 - 2022-04-131254Stars4Sharks5WBoxScore
186 - 2022-04-151271Admirals4Sharks5WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity17501250
Ticket Price5020
Attendance44,77934,023
Attendance PCT62.41%66.39%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 1922 - 64.07% 71,205$2,919,410$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,547,485$ 2,515,032$ 2,515,032$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,449$ 2,547,485$ 29 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 13,449$ 0$




Overall
Home
Visitor
Year
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT