Login

Stars
GP: 82 | W: 43 | L: 36 | OTL: 3 | P: 89
GF: 285 | GA: 278 | PP%: 25.62% | PK%: 74.35%
GM : Julien Desrosiers | Morale : 50 | Team Overall : 55
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Stars
43-36-3, 89pts
4
FINAL
5 Sharks
57-21-4, 118pts
Team Stats
W1StreakW6
28-11-2Home Record33-7-1
15-25-1Away Record24-14-3
6-4-0Last 10 Games8-1-1
3.48Goals Per Game3.88
3.39Goals Against Per Game2.90
25.62%Power Play Percentage23.35%
74.35%Penalty Kill Percentage79.14%
Stars
43-36-3, 89pts
7
FINAL
6 Monarchs
36-38-8, 80pts
Team Stats
W1StreakL3
28-11-2Home Record20-17-4
15-25-1Away Record16-21-4
6-4-0Last 10 Games6-4-0
3.48Goals Per Game3.38
3.39Goals Against Per Game3.62
25.62%Power Play Percentage20.08%
74.35%Penalty Kill Percentage77.65%
Team Leaders
Goals
Ty Smith
6
Assists
Ty Smith
42
Points
Ty Smith
48
Plus/Minus
Ty Smith
-13
Wins
Scott Wedgewood
42
Save Percentage
Magnus Chrona
0.941

Team Stats
Goals For
285
3.48 GFG
Shots For
2975
36.28 Avg
Power Play Percentage
25.6%
62 GF
Offensive Zone Start
40.4%
Goals Against
278
3.39 GAA
Shots Against
3068
37.41 Avg
Penalty Kill Percentage
74.3%
59 GA
Defensive Zone Start
40.3%
Team Info

General ManagerJulien Desrosiers
DivisionNord
ConferenceOuest
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,998
Season Tickets300


Roster Info

Pro Team27
Farm Team18
Contract Limit45 / 50
Prospects14


Team History

This Season43-36-3 (89PTS)
History43-36-5 (0.512%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Jordan MartinookXXX100.008545838271637259566559732567680506402831,500,000$
2Kailer YamamotoX100.00754285835473806525706865255657050640221925,000$
3Tobias RiederXXX100.006541988467627758295560842569700506402721,700,000$
4Sam SteelXX100.00754393816768816788626666255959050640221925,000$
5Taylor RaddyshXX100.00828088638068686880656869654444050630221742,500$
6Alexander VolkovX100.00754394777259725736637167255960050620232864,167$
7Ondrej KaseX100.005639868670703469317161597559600506202433,000,000$
8Michael McCarronXX100.00748450658858555670485963255050050570251620,000$
9Liam Hawel (R)X100.00777290637253545265564463424444050540213525,000$
10Linus Karlsson (R)X100.00504482686569925056464455465456050540204700,000$
11Hudson ElynuikX100.00737568637558605063474860464444050530221700,000$
12Martin FehervaryX100.00787974727270666328595167444445050620203805,835$
13Thomas Harley (R)X100.00747377667371755925515363504445050600193894,167$
14Zachary Jones (R)X100.00714293706765476625684768754444050600193925,000$
15Jake BeanX100.00634191676965786425604759754848050590221925,000$
16Alec Regula (R)X100.00827891647858615025325265494444050570204866,667$
17Louie Belpedio (R)X100.00697067667062655025404658444444050550241925,000$
Scratches
1Alexander Holtz (R)X100.00766699636650505050494762454444050530183925,000$
2Antonio Stranges (R)XX100.00726099636055584759454459424444050510184560,000$
3Nathan Smith (R)X100.00534883667055684657444049425858050510214650,000$
4Niklas Nordgren (R)X100.00504381656339423950373443365050050440204700,000$
5Joni Ikonen (R)X100.00423798646231303549283639395454050410213825,000$
6Jesse Gabrielle (R)X100.00344040407133333440343440373230050370231742,500$
7Connor Hall (R)X100.00374343436335353743373743403230050400221700,000$
TEAM AVERAGE100.0066558168695861544651516043495005055
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Scott Wedgewood100.0059566979625556616058755555050600
2Magnus Chrona (R)100.0046585689404551484445455050050510
Scratches
1Spencer Knight (R)100.0042526578404340464040304444050470
TEAM AVERAGE100.004955638247484952484850505005053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jordan MartinookStars (Dal)C/LW/RW763961100826018629637510825510.40%48177623.38514195320310151767351.41%223900001.1328000965
2Alexander VolkovStars (Dal)RW8255429741405417149412434811.13%21156119.041015255714701127814338.43%22900031.2436000775
3Zachary JonesStars (Dal)D828657314260989913038836.15%142171320.9041721691850001162010.00%000000.8501000125
4Taylor RaddyshStars (Dal)C/RW74343771-15152052004011173128.48%18164722.26713205417001151444360.09%156600010.8637100544
5Michael McCarronStars (Dal)C/RW82264369191152921962518719510.36%17153618.7481119251430000624058.08%185100020.9001030566
6Martin FehervaryStars (Dal)D79125567-442020380156421127.69%126172021.7861723701900000161230.00%000010.7800000334
7Ondrej KaseStars (Dal)RW82342458310035196360892169.44%17139016.9512315660001742245.00%10000000.8325000432
8Thomas HarleyStars (Dal)D82144155752020048118357911.86%136167720.466915451811011150120.00%000000.6600000213
9Ty SmithDallasD4764248-1316041899029606.67%87118825.292111351114000196000.00%000000.8100000032
10Kailer YamamotoStars (Dal)RW35232144108064862025013711.39%1382223.5045928980002851226.86%24200021.0713000531
11Liam HawelStars (Dal)C8242731-236014913712837923.13%18128915.73033846000190052.17%115200000.4800000001
12Jake BeanStars (Dal)D8242226412055685324497.55%90137716.792021477000077000.00%000000.3811000010
13Antonio StrangesStars (Dal)C/LW731113243140495011735669.40%12139119.07538241620002391249.49%9900000.3400000000
14Linus KarlssonStars (Dal)C82131023-14602570117286811.11%13125215.2800027000072145.47%49700000.3700000111
15Alec RegulaStars (Dal)D8251520-16410128427726546.49%85116614.2300007000034200.00%000000.3400002200
16Sam SteelStars (Dal)C/LW1781018-1120265973206410.96%336421.4324611370000390162.80%42200000.9901000011
17Tobias RiederStars (Dal)C/LW/RW145611-2204386115348.20%531922.832138400001360034.55%33000000.6912000001
18Louie BelpedioStars (Dal)D8201010-332075203213210.00%627679.3500038000135000.00%000000.2600000000
19Hudson ElynuikStars (Dal)C77448-9120392736153811.11%53134.082136250000100060.00%8000000.5100000000
20Alexander HoltzStars (Dal)RW143255005382537.50%0553.9500010000030066.67%300001.8100000000
21Jesse GabrielleStars (Dal)LW21000220711240.00%135717.04000046000010043.33%3000000.0000000000
Team Total or Average1347308550858115283019401976328093622929.39%9192369117.59661261925441962224231490402352.98%884000090.721335132444141
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Scott WedgewoodStars (Dal)82423630.9103.3247796126429300430.72733820752
2Magnus ChronaStars (Dal)61000.9412.581860081350000.0000082000
Team Total or Average88433630.9113.2949666127230650430.727338282752


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alec RegulaStars (Dal)D202000-08-05Yes208 Lbs6 ft4NoNoNo4Pro & Farm866,667$86,667$0$No866,667$866,667$866,667$Link
Alexander HoltzStars (Dal)RW182002-01-23Yes181 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Alexander VolkovStars (Dal)RW231997-08-01No195 Lbs6 ft1NoNoNo2Pro & Farm864,167$86,417$0$No864,167$Link
Antonio StrangesStars (Dal)C/LW182002-02-05Yes168 Lbs5 ft10NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Connor HallStars (Dal)D221998-02-21Yes192 Lbs6 ft4NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Hudson ElynuikStars (Dal)C221997-10-12No194 Lbs6 ft5NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Jake BeanStars (Dal)D221998-06-09No186 Lbs6 ft1NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Jesse GabrielleStars (Dal)LW231997-06-17Yes205 Lbs6 ft0NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Joni IkonenStars (Dal)C211999-04-14Yes172 Lbs5 ft11NoNoNo3Pro & Farm825,000$82,500$0$No825,000$825,000$Link
Jordan MartinookStars (Dal)C/LW/RW281992-07-25No196 Lbs6 ft0NoNoNo3Pro & Farm1,500,000$150,000$0$No1,500,000$1,500,000$Link
Kailer YamamotoStars (Dal)RW221998-09-29No153 Lbs5 ft8NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Liam HawelStars (Dal)C211999-04-18Yes183 Lbs6 ft5NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Linus KarlssonStars (Dal)C201999-11-16Yes179 Lbs6 ft1NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Link
Louie BelpedioStars (Dal)D241996-05-14Yes196 Lbs5 ft11NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Magnus ChronaStars (Dal)G202000-08-28Yes216 Lbs6 ft6NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Martin FehervaryStars (Dal)D201999-10-06No194 Lbs6 ft2NoNoNo3Pro & Farm805,835$80,584$0$No805,835$805,835$Link
Michael McCarronStars (Dal)C/RW251995-03-07No232 Lbs6 ft6NoNoNo1Pro & Farm620,000$62,000$0$NoLink
Nathan SmithStars (Dal)C211998-10-18Yes190 Lbs6 ft1NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Link
Niklas NordgrenStars (Dal)RW202000-05-04Yes183 Lbs5 ft9NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Link
Ondrej KaseStars (Dal)RW241995-11-08No190 Lbs6 ft0NoNoNo3Pro & Farm3,000,000$300,000$0$No3,000,000$3,000,000$Link
Sam SteelStars (Dal)C/LW221998-02-03No189 Lbs5 ft11NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Scott WedgewoodStars (Dal)G281992-08-13No207 Lbs6 ft2NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Spencer KnightStars (Dal)G192001-04-18Yes192 Lbs6 ft3NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Taylor RaddyshStars (Dal)C/RW221998-02-18No216 Lbs6 ft3NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Thomas HarleyStars (Dal)D192001-08-18Yes190 Lbs6 ft3NoNoNo3Pro & Farm894,167$89,417$0$No894,167$894,167$Link
Tobias RiederStars (Dal)C/LW/RW271993-01-09No186 Lbs5 ft11NoNoNo2Pro & Farm1,700,000$1,700,000$0$No1,700,000$Link
Zachary JonesStars (Dal)D192000-10-18Yes185 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2721.85192 Lbs6 ft12.48919,661$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan MartinookTobias RiederKailer Yamamoto40122
2Ondrej KaseSam SteelTaylor Raddysh30122
3Liam HawelMichael McCarronAlexander Volkov20122
4Tobias RiederLiam HawelOndrej Kase10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin FehervaryZachary Jones40122
2Thomas HarleyJake Bean30122
3Alec RegulaLouie Belpedio20122
4Martin FehervaryZachary Jones10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan MartinookTobias RiederKailer Yamamoto60122
2Ondrej KaseSam SteelTaylor Raddysh40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin FehervaryZachary Jones60122
2Thomas HarleyJake Bean40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tobias RiederJordan Martinook60122
2Sam SteelKailer Yamamoto40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin FehervaryZachary Jones60122
2Thomas HarleyJake Bean40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tobias Rieder60122Martin FehervaryZachary Jones60122
2Jordan Martinook40122Thomas HarleyJake Bean40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tobias RiederJordan Martinook60122
2Sam SteelKailer Yamamoto40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin FehervaryZachary Jones60122
2Thomas HarleyJake Bean40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jordan MartinookTobias RiederKailer YamamotoMartin FehervaryZachary Jones
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jordan MartinookTobias RiederKailer YamamotoMartin FehervaryZachary Jones
Extra Forwards
Normal PowerPlayPenalty Kill
Linus Karlsson, Hudson Elynuik, Alexander VolkovLinus Karlsson, Hudson ElynuikAlexander Volkov
Extra Defensemen
Normal PowerPlayPenalty Kill
Alec Regula, Louie Belpedio, Thomas HarleyAlec RegulaLouie Belpedio, Thomas Harley
Penalty Shots
Tobias Rieder, Jordan Martinook, Sam Steel, Kailer Yamamoto, Taylor Raddysh
Goalie
#1 : Scott Wedgewood, #2 : Magnus Chrona


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals30200001712-51000000112-120200000610-410.16771320101051007115110952101199054115381261900.00%5260.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
2Baby Hawks41300000814-6211000005502020000039-620.2508152300105100711512695210119905416139287720315.00%14378.57%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
3Bears21100000770110000005321010000024-220.5007111800105100711562952101199054631014465120.00%6183.33%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
4Bruins2020000037-41010000024-21010000013-200.0003581010510071157595210119905457231250600.00%6350.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
5Cabaret Lady Mary Ann211000001073110000007161010000036-320.50010152500105100711510095210119905488348484125.00%4175.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
6Caroline21000010954110000004131000001054141.0009162500105100711590952101199054551214465120.00%7185.71%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
7Chiefs53200000161332110000066032100000107360.60016294501105100711517795210119905417154249912433.33%12466.67%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
8Chill42200000131302200000010552020000038-540.5001325380010510071151539521011990541454322791317.69%9277.78%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
9Comets3110001012111201000108801100000043140.667122032001051007115979521011990549331146611545.45%7357.14%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
10Cougars2110000047-31010000015-41100000032120.500471100105100711567952101199054833312375120.00%6266.67%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
11Crunch21100000532110000004131010000012-120.5005914001051007115789521011990548325252300.00%10100.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
12Heat31100001131212100000111921010000023-130.500132437001051007115999521011990541144020578337.50%9366.67%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
13Jayhawks30200010914-51010000024-220100010710-320.333913220010510071159495210119905413043315911436.36%12283.33%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
14Las Vegas3100200015114210010009631000100065161.00015274200105100711514495210119905412337267313538.46%13192.31%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
15Manchots2110000058-31010000015-41100000043120.5005101500105100711561952101199054872335457114.29%10370.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
16Marlies220000001037110000005231100000051441.00010203000105100711568952101199054711314386466.67%7271.43%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
17Minnesota4210001017116210000108532110000096360.7501727440010510071151549521011990541343736839444.44%17288.24%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
18Monarchs321000001413111000000431211000001010040.66714233700105100711512795210119905410729175512325.00%6266.67%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
19Monsters21000010963110000005321000001043141.000914230010510071158195210119905487228405120.00%4175.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
20Monsters4120001012120211000008622010001046-240.50012193100105100711513395210119905413233168516425.00%7271.43%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
21Oceanics522000011418-432100000111012010000138-550.500142539001051007115146952101199054195622610715426.67%11554.55%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
22Oil Kings3210000078-1220000006331010000015-440.667713200010510071158695210119905496312568900.00%8275.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
23Phantoms20200000210-81010000017-61010000013-200.000246001051007115729521011990547321454800.00%220.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
24Rocket2110000078-1110000004311010000035-220.500714210010510071155695210119905491251445500.00%7357.14%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
25Senators2010001079-2100000105411010000025-320.5007111800105100711568952101199054922322574250.00%11190.91%11564289254.08%1433288749.64%750138554.15%2040143218795771056541
26Sharks30300000913-41010000023-120200000710-300.000915240010510071151089521011990541293324692150.00%9455.56%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
27Sound Tigers220000001046110000005231100000052341.00010142400105100711569952101199054662110475120.00%50100.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
28Spiders21100000990110000005321010000046-220.500917261010510071156595210119905485238666233.33%4175.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
29Thunder220000001257110000007431100000051441.00012223400105100711511995210119905468128587571.43%4175.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
30Wolf Pack211000001055110000007161010000034-120.500101727001051007115909521011990547424143711100.00%70100.00%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
Total823436020732852787412411010321591243541102501041126154-28890.5432854947793110510071152975952101199054306889452018042426225.62%2305974.35%11564289254.08%1433288749.64%750138554.15%2040143218795771056541
_Since Last GM Reset823436020732852787412411010321591243541102501041126154-28890.5432854947793110510071152975952101199054306889452018042426225.62%2305974.35%11564289254.08%1433288749.64%750138554.15%2040143218795771056541
_Vs Conference421717020511441368221260102183632020511010306173-12490.583144248392011051007115150195210119905415544742708951313526.72%1242976.61%01564289254.08%1433288749.64%750138554.15%2040143218795771056541
_Vs Division2645000208081-11332000104837111313000103244-12120.23180140220011051007115889952101199054938268152530852023.53%701874.29%01564289254.08%1433288749.64%750138554.15%2040143218795771056541

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8289W128549477929753068894520180431
All Games
GPWLOTWOTL SOWSOLGFGA
8234362073285278
Home Games
GPWLOTWOTL SOWSOLGFGA
4124111032159124
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4110251041126154
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2426225.62%2305974.35%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9521011990541051007115
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1564289254.08%1433288749.64%750138554.15%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2040143218795771056541


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2021-10-1310Bruins4Stars2LBoxScore
4 - 2021-10-1524Stars2Chiefs0WBoxScore
5 - 2021-10-1632Stars3Cougars2WBoxScore
7 - 2021-10-1839Stars2Bears4LBoxScore
9 - 2021-10-2055Heat5Stars4LXXBoxScore
11 - 2021-10-2270Bears3Stars5WBoxScore
13 - 2021-10-2482Stars1Crunch2LBoxScore
15 - 2021-10-2694Stars4Monsters3WXXBoxScore
17 - 2021-10-28108Stars4Manchots3WBoxScore
18 - 2021-10-29118Stars1Phantoms3LBoxScore
20 - 2021-10-31132Senators4Stars5WXXBoxScore
23 - 2021-11-03152Admirals2Stars1LXXBoxScore
25 - 2021-11-05166Manchots5Stars1LBoxScore
28 - 2021-11-08186Minnesota2Stars4WBoxScore
31 - 2021-11-11201Stars0Monsters3LBoxScore
32 - 2021-11-12206Rocket3Stars4WBoxScore
35 - 2021-11-15230Monsters2Stars6WBoxScore
40 - 2021-11-20264Stars2Oceanics3LXXBoxScore
43 - 2021-11-23284Stars2Heat3LBoxScore
44 - 2021-11-24291Stars4Comets3WBoxScore
46 - 2021-11-26300Stars1Oil Kings5LBoxScore
49 - 2021-11-29327Comets6Stars5LBoxScore
51 - 2021-12-01342Oceanics3Stars2LBoxScore
53 - 2021-12-03359Baby Hawks2Stars3WBoxScore
55 - 2021-12-05371Las Vegas4Stars5WXBoxScore
56 - 2021-12-06376Stars1Baby Hawks6LBoxScore
59 - 2021-12-09402Chiefs3Stars4WBoxScore
61 - 2021-12-11416Stars3Minnesota4LBoxScore
63 - 2021-12-13431Stars1Oceanics5LBoxScore
65 - 2021-12-15445Oceanics4Stars5WBoxScore
67 - 2021-12-17461Sound Tigers2Stars5WBoxScore
70 - 2021-12-20478Spiders3Stars5WBoxScore
73 - 2021-12-23499Las Vegas2Stars4WBoxScore
74 - 2021-12-24505Stars1Chill5LBoxScore
76 - 2021-12-26523Oil Kings2Stars3WBoxScore
79 - 2021-12-29539Stars5Thunder1WBoxScore
80 - 2021-12-30548Stars3Cabaret Lady Mary Ann6LBoxScore
82 - 2022-01-01566Heat4Stars7WBoxScore
88 - 2022-01-07593Monsters4Stars2LBoxScore
89 - 2022-01-08609Stars2Jayhawks6LBoxScore
92 - 2022-01-11626Chill1Stars4WBoxScore
94 - 2022-01-13640Cougars5Stars1LBoxScore
99 - 2022-01-18677Stars3Monarchs4LBoxScore
100 - 2022-01-19687Stars3Admirals5LBoxScore
102 - 2022-01-21702Stars3Sharks5LBoxScore
105 - 2022-01-24722Stars4Monsters3WXXBoxScore
107 - 2022-01-26737Crunch1Stars4WBoxScore
109 - 2022-01-28753Stars6Minnesota2WBoxScore
118 - 2022-02-06771Thunder4Stars7WBoxScore
120 - 2022-02-08776Marlies2Stars5WBoxScore
123 - 2022-02-11798Stars4Spiders6LBoxScore
125 - 2022-02-13810Stars3Wolf Pack4LBoxScore
126 - 2022-02-14816Stars5Sound Tigers2WBoxScore
129 - 2022-02-17842Minnesota3Stars4WXXBoxScore
130 - 2022-02-18852Stars4Chiefs2WBoxScore
133 - 2022-02-21873Caroline1Stars4WBoxScore
135 - 2022-02-23881Stars5Marlies1WBoxScore
137 - 2022-02-25900Stars3Rocket5LBoxScore
138 - 2022-02-26911Stars2Senators5LBoxScore
141 - 2022-03-01929Jayhawks4Stars2LBoxScore
143 - 2022-03-03944Chiefs3Stars2LBoxScore
145 - 2022-03-05960Baby Hawks3Stars2LBoxScore
147 - 2022-03-07974Stars5Caroline4WXXBoxScore
149 - 2022-03-09984Stars1Bruins3LBoxScore
151 - 2022-03-111007Stars4Chiefs5LBoxScore
154 - 2022-03-141026Oil Kings1Stars3WBoxScore
156 - 2022-03-161039Stars2Chill3LBoxScore
158 - 2022-03-181051Chill4Stars6WBoxScore
161 - 2022-03-211076Wolf Pack1Stars7WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
163 - 2022-03-231090Cabaret Lady Mary Ann1Stars7WBoxScore
165 - 2022-03-251106Sharks3Stars2LBoxScore
167 - 2022-03-271122Stars5Jayhawks4WXXBoxScore
168 - 2022-03-281130Stars6Las Vegas5WXBoxScore
171 - 2022-03-311149Phantoms7Stars1LBoxScore
173 - 2022-04-021168Oceanics3Stars4WBoxScore
175 - 2022-04-041184Monarchs3Stars4WBoxScore
178 - 2022-04-071202Stars2Baby Hawks3LBoxScore
179 - 2022-04-081212Monsters3Stars5WBoxScore
181 - 2022-04-101227Comets2Stars3WXXBoxScore
183 - 2022-04-121241Stars3Admirals5LBoxScore
184 - 2022-04-131254Stars4Sharks5LBoxScore
186 - 2022-04-151270Stars7Monarchs6WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price205
Attendance81,93540,984
Attendance PCT99.92%99.96%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2998 - 99.93% 44,966$1,843,620$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,547,217$ 4,013,085$ 4,013,085$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
21,460$ 2,547,217$ 27 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 21,460$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT