Login

Bears
GP: 82 | W: 47 | L: 29 | OTL: 6 | P: 100
GF: 311 | GA: 271 | PP%: 20.97% | PK%: 79.47%
GM : JF Langlais | Morale : 50 | Team Overall : 57
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Minnesota
26-48-8, 60pts
3
FINAL
10 Bears
47-29-6, 100pts
Team Stats
W1StreakW3
12-25-4Home Record28-8-5
14-23-4Away Record19-21-1
3-6-1Last 10 Games7-2-1
3.30Goals Per Game3.79
4.38Goals Against Per Game3.30
24.50%Power Play Percentage20.97%
77.60%Penalty Kill Percentage79.47%
Bears
47-29-6, 100pts
4
FINAL
3 Cabaret Lady Mary Ann
19-56-7, 45pts
Team Stats
W3StreakSOL1
28-8-5Home Record10-28-3
19-21-1Away Record9-28-4
7-2-1Last 10 Games3-6-1
3.79Goals Per Game3.51
3.30Goals Against Per Game5.01
20.97%Power Play Percentage22.42%
79.47%Penalty Kill Percentage70.93%
Team Leaders
Goals
Philippe Myers
0
Assists
Philippe Myers
1
Points
Philippe Myers
1
Plus/Minus
Philippe Myers
1
Wins
Kaden Fulcher
47
Save Percentage
Alex Lyon
0.927

Team Stats
Goals For
311
3.79 GFG
Shots For
3415
41.65 Avg
Power Play Percentage
21.0%
52 GF
Offensive Zone Start
42.8%
Goals Against
271
3.30 GAA
Shots Against
2894
35.29 Avg
Penalty Kill Percentage
79.5%
62 GA
Defensive Zone Start
38.5%
Team Info

General ManagerJF Langlais
DivisionEst
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,207
Season Tickets300


Roster Info

Pro Team25
Farm Team19
Contract Limit44 / 50
Prospects18


Team History

This Season47-29-6 (100PTS)
History47-29-6 (0.573%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Joseph Veleno (R)X100.00817987747264576987686770584444050640204894,167$
2Tim SchallerXX100.008078867878687061505362715962630506302951,000,000$
3Nathan BastianX100.00984885627863786238635881254848050630221742,500$
4Boris KatchoukX100.00787682617668686950696567624444050620221742,500$
5Antoine MorandX100.00777387676677746378625966514444050610213778,334$
6John HaydenXX100.00944765738255615535605870636161050610251850,000$
7Nick ShoreX100.006943887671496256785254832451510506002841,300,000$
8Dylan SikuraXX100.00686379616369716450596562624848050590251925,000$
9Byron FroeseXX100.00797489627458595670436269596060050580293850,000$
10Mark Kastelic (R)X100.00817984587964675468505365504444050560213821,667$
11Otto Kivenmaki (R)X100.00474082706059695456514745495050050520204560,000$
12Sam Miletich (R)X100.00555077617034403150203643386060050420234894,167$
13Jakub ZborilX100.00804487667371776325554762755555050620232900,000$
14Mikko LehtonenX100.00774490687168666125574768254646050610264925,000$
15Jaycob MegnaX100.00848582608568744725374167395252050600272969,006$
16Jack Rathbone (R)X100.00656369716353506525615660534444050570213925,000$
17Sean DayX100.00768065538061645325504262404444050560221742,500$
18Evan McEnenyX100.007374796275525544253341643951510505502621,154,888$
Scratches
1Dakota MermisX100.00814283677173556224484871795555050620263655,000$
2Kaedan Korczak (R)X100.00767479597455584625383961374444050540193795,000$
3Layton Ahac (R)X100.00767090617049514625373961374444050530193897,500$
4Igor OzhiganovX100.00583586616944393835354162463532050500272925,000$
TEAM AVERAGE100.0075628265736062554450516549494905058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kaden Fulcher (R)100.0052435480555852576058304444050560
2Alex Lyon100.0053537575505352575152304646050540
Scratches
1Gilles Senn (R)100.0051556983485151555151334844050540
TEAM AVERAGE100.005250667951545256545431464505055
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tim SchallerBears (Was)LW/RW82465710322321010020642611829810.80%32197124.0412122458208011102697146.85%33300011.04211101848
2Nathan BastianBears (Was)RW77404888197602491463568726711.24%47167721.79810185820201191778238.69%39800001.0579000458
3Antoine MorandBears (Was)C80304171010038212312641959.62%17145318.177132060208000085158.34%196100020.9800000552
4Nick ShoreBears (Was)C8223436678031235321792117.17%37139917.073710371140002362057.92%175600000.9400000243
5Dylan SikuraBears (Was)LW/RW822634601818062842477820510.53%11129915.852136250002494242.11%9500010.9200000423
6Boris KatchoukBears (Was)LW772134551239591129320932116.56%29139218.09000206801181511152.87%8700000.7902001142
7Byron FroeseBears (Was)C/RW82272451186810941552195616112.33%16121114.770005150000276058.06%106100010.8400011324
8Mikko LehtonenBears (Was)D8264450334801079311238795.36%111177921.703811562020222213020.00%000000.5600000013
9John HaydenBears (Was)LW/RW8218304810895317111248841917.26%20148218.0835848193000083339.09%11000000.6501010172
10Jakub ZborilBears (Was)D8254348206201876811229664.46%148196123.9221113462181013239000.00%000000.4911000013
11Joseph VelenoBears (Was)C251625412729152789141359311.35%1258323.3514522651014900058.22%83300011.4026021360
12Dakota MermisBears (Was)D57622282320112619630526.25%83126922.283912391350001145110.00%000000.4400000000
13Jack RathboneBears (Was)D8242428228068547624465.26%64131616.0612310691011107000.00%000000.4300000002
14Jaycob MegnaBears (Was)D82718251812135182377520399.33%104151418.47213291560000154200.00%000000.3300232011
15Sean DayBears (Was)D823121511475145273615208.33%74109313.33000112000050100.00%000000.2700001000
16Mark KastelicBears (Was)C82210129202843479404.26%53884.73000370003750054.69%38400000.6200000000
17Evan McEnenyBears (Was)D31471114140308173923.53%3146314.9400006000039000.00%200000.4800000000
18Philippe MyersWashingtonD1011100131030.00%22424.450111200002000.00%000000.8200000000
19Otto KivenmakiBears (Was)C28000-100026020.00%2541.95000214000000045.24%4200000.0000000000
20Sam MiletichBears (Was)C26000000101000.00%0180.7100006000000066.67%300000.0000000000
Team Total or Average13042845178012427238518701763316986221888.96%8452235517.1447841315011932358451849401355.65%706500060.721230377314241
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kaden FulcherBears (Was)82472760.9073.2346640425127020110.618348201041
2Alex LyonBears (Was)90200.9272.7430700141910000.0000082000
Team Total or Average91472960.9083.2049720426528930110.6183482821041


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alex LyonBears (Was)G271992-12-08No201 Lbs6 ft1NoNoNo1Pro & Farm874,125$87,412$0$NoLink
Antoine MorandBears (Was)C211999-02-18No184 Lbs5 ft11NoNoNo3Pro & Farm778,334$77,833$0$No778,334$778,334$Link
Boris KatchoukBears (Was)LW221998-06-17No206 Lbs6 ft2NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Byron FroeseBears (Was)C/RW291991-03-11No202 Lbs6 ft1NoNoNo3Pro & Farm850,000$85,000$0$No850,000$850,000$Link
Dakota MermisBears (Was)D261994-01-05No196 Lbs6 ft0NoNoNo3Pro & Farm655,000$65,500$0$No655,000$655,000$Link
Dylan SikuraBears (Was)LW/RW251995-06-01No170 Lbs5 ft11NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Evan McEnenyBears (Was)D261994-05-22No203 Lbs6 ft2NoNoNo2Pro & Farm1,154,888$115,489$0$No1,154,888$Link
Gilles SennBears (Was)G241996-03-01Yes191 Lbs6 ft5NoNoNo1Pro & Farm817,500$81,750$0$NoLink
Igor OzhiganovBears (Was)D271992-10-13No210 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Jack RathboneBears (Was)D211999-05-20Yes177 Lbs5 ft10NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Jakub ZborilBears (Was)D231997-02-21No200 Lbs6 ft0NoNoNo2Pro & Farm900,000$90,000$0$No900,000$Link
Jaycob MegnaBears (Was)D271992-12-10No221 Lbs6 ft6NoNoNo2Pro & Farm969,006$96,901$0$No969,006$Link
John HaydenBears (Was)LW/RW251995-02-14No223 Lbs6 ft3NoNoNo1Pro & Farm850,000$85,000$0$NoLink
Joseph VelenoBears (Was)C202000-01-13Yes198 Lbs6 ft1NoNoNo4Pro & Farm894,167$894,167$0$No894,167$894,167$894,167$Link
Kaden FulcherBears (Was)G221998-09-23Yes201 Lbs6 ft3NoNoNo1Pro & Farm1,200,000$120,000$0$NoLink
Kaedan KorczakBears (Was)D192001-01-29Yes192 Lbs6 ft4NoNoNo3Pro & Farm795,000$79,500$0$No795,000$795,000$Link
Layton AhacBears (Was)D192001-02-22Yes187 Lbs6 ft2NoNoNo3Pro & Farm897,500$89,750$0$No897,500$897,500$Link
Mark KastelicBears (Was)C211999-03-10Yes210 Lbs6 ft3NoNoNo3Pro & Farm821,667$82,167$0$No821,667$821,667$Link
Mikko LehtonenBears (Was)D261994-01-16No196 Lbs6 ft0NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Link
Nathan BastianBears (Was)RW221997-12-06No205 Lbs6 ft4NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Nick ShoreBears (Was)C281992-09-26No194 Lbs6 ft1NoNoNo4Pro & Farm1,300,000$130,000$0$No1,300,000$1,300,000$1,300,000$Link
Otto KivenmakiBears (Was)C202000-03-24Yes172 Lbs5 ft9NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Sam MiletichBears (Was)C231997-05-04Yes194 Lbs6 ft1NoNoNo4Pro & Farm894,167$89,417$0$No894,167$894,167$894,167$Link
Sean DayBears (Was)D221998-01-09No218 Lbs6 ft3NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Tim SchallerBears (Was)LW/RW291990-11-16No210 Lbs6 ft2NoNoNo5Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$1,000,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2523.76198 Lbs6 ft22.48885,554$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tim SchallerJoseph VelenoNathan Bastian40122
2Boris KatchoukAntoine MorandJohn Hayden30122
3Dylan SikuraNick ShoreByron Froese20122
4Joseph VelenoMark KastelicTim Schaller10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jakub ZborilMikko Lehtonen40122
2Jaycob MegnaJack Rathbone30122
3Sean DayEvan McEneny20122
4Jakub ZborilMikko Lehtonen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tim SchallerJoseph VelenoNathan Bastian60122
2Boris KatchoukAntoine MorandJohn Hayden40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jakub ZborilMikko Lehtonen60122
2Jaycob MegnaJack Rathbone40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joseph VelenoTim Schaller60122
2Nathan BastianBoris Katchouk40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jakub ZborilMikko Lehtonen60122
2Jaycob MegnaJack Rathbone40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joseph Veleno60122Jakub ZborilMikko Lehtonen60122
2Tim Schaller40122Jaycob MegnaJack Rathbone40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joseph VelenoTim Schaller60122
2Nathan BastianBoris Katchouk40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jakub ZborilMikko Lehtonen60122
2Jaycob MegnaJack Rathbone40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tim SchallerJoseph VelenoNathan BastianJakub ZborilMikko Lehtonen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tim SchallerJoseph VelenoNathan BastianJakub ZborilMikko Lehtonen
Extra Forwards
Normal PowerPlayPenalty Kill
Otto Kivenmaki, Sam Miletich, Nick ShoreOtto Kivenmaki, Sam MiletichNick Shore
Extra Defensemen
Normal PowerPlayPenalty Kill
Sean Day, Evan McEneny, Jaycob MegnaSean DayEvan McEneny, Jaycob Megna
Penalty Shots
Joseph Veleno, Tim Schaller, Nathan Bastian, Boris Katchouk, John Hayden
Goalie
#1 : Kaden Fulcher, #2 : Alex Lyon


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21001000642110000003211000100032141.00069150012210973146811481140110160561914397114.29%70100.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
2Baby Hawks2110000079-2110000007431010000005-520.50071320001221097314761148114011016075241841300.00%9277.78%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
3Bruins303000001116-51010000024-220200000912-300.0001120310012210973141351148114011016012233286413430.77%14378.57%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
4Cabaret Lady Mary Ann32000010171251100000064221000010118361.0001729460012210973141941148114011016010631286612433.33%8450.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
5Caroline44000000171072200000074322000000106481.000173350001221097314182114811401101601376024841119.09%12191.67%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
6Chiefs2010010046-21000010012-11010000034-110.250481200122109731472114811401101606117123610220.00%5260.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
7Chill2010001089-1100000105411010000035-220.500812200012210973148011481140110160742017626233.33%6183.33%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
8Comets2110000069-31010000026-41100000043120.500610160012210973145811481140110160842330566233.33%14471.43%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
9Cougars312000001012-21100000021120200000811-320.333101525001221097314104114811401101609831465813215.38%12191.67%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
10Crunch30300000815-71010000034-120200000511-600.00081422001221097314156114811401101601002326779111.11%13653.85%11738317754.71%1536285953.73%771138855.55%2076144818316011068549
11Heat21100000770110000005321010000024-220.500714210012210973146911481140110160722216604250.00%8187.50%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
12Jayhawks22000000853110000004311100000042241.000816240012210973149211481140110160812119487228.57%6183.33%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
13Las Vegas22000000945110000004221100000052341.00091726001221097314921148114011016081252459200.00%7185.71%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
14Manchots41100020151322010001067-12100001096360.7501523380012210973141571148114011016016350349412325.00%16568.75%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
15Marlies31100001981211000007521000000123-130.50091423001221097314911148114011016011537276111218.18%11281.82%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
16Minnesota22000000183151100000010371100000080841.0001832500112210973141371148114011016057181651100.00%8275.00%11738317754.71%1536285953.73%771138855.55%2076144818316011068549
17Monarchs210000015321000000112-11100000041330.7505813001221097314811148114011016055201240400.00%6183.33%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
18Monsters412000011416-220100001810-22110000066030.3751425390012210973141411148114011016014746379815533.33%16568.75%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
19Monsters2110000045-1110000002021010000025-320.5004812011221097314721148114011016059181859500.00%8275.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
20Oceanics20100001810-21000000134-11010000056-110.250816240012210973149711481140110160741825379111.11%10280.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
21Oil Kings21100000770110000004221010000035-220.500712190012210973147711481140110160671814394250.00%70100.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
22Phantoms430000101486210000107522200000073481.0001425390012210973141521148114011016014053419016318.75%18288.89%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
23Rocket3210000013121220000009631010000046-240.6671324370012210973141471148114011016010527187511327.27%8275.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
24Senators31100010810-2210000105321010000037-440.6678142200122109731410011481140110160994031651218.33%12191.67%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
25Sharks21100000651110000004221010000023-120.50061117001221097314771148114011016066194525120.00%20100.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
26Sound Tigers403000011119-82010000168-220200000511-610.12511203100122109731414811481140110160157344683500.00%17476.47%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
27Spiders43100000191272110000096322000000106460.7501935541012210973141421148114011016014941257713323.08%9277.78%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
28Stars21100000770110000004221010000035-220.500713200012210973146311481140110160621312376116.67%5180.00%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
29Thunder3300000018992200000013671100000053261.000183149001221097314157114811401101601123327835120.00%11281.82%01738317754.71%1536285953.73%771138855.55%2076144818316011068549
30Wolf Pack43100000176112200000010192110000075260.7501731480212210973141981148114011016012036348311327.27%17288.24%11738317754.71%1536285953.73%771138855.55%2076144818316011068549
Total824029011653112714041248001441591154441162101021152156-41000.610311552863141221097314341511481140110160289487072318742485220.97%3026279.47%31738317754.71%1536285953.73%771138855.55%2076144818316011068549
_Since Last GM Reset824029011653112714041248001441591154441162101021152156-41000.610311552863141221097314341511481140110160289487072318742485220.97%3026279.47%31738317754.71%1536285953.73%771138855.55%2076144818316011068549
_Vs Conference46191601055169148212410600044896920229100101180791550.598169294463121221097314182411481140110160164949940210281443020.83%1723281.40%11738317754.71%1536285953.73%771138855.55%2076144818316011068549

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82100W331155286334152894870723187414
All Games
GPWLOTWOTL SOWSOLGFGA
8240291165311271
Home Games
GPWLOTWOTL SOWSOLGFGA
412480144159115
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4116211021152156
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2485220.97%3026279.47%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
114811401101601221097314
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1738317754.71%1536285953.73%771138855.55%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2076144818316011068549


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-10-122Bears3Chiefs4LBoxScore
3 - 2021-10-1415Bears2Sound Tigers4LBoxScore
4 - 2021-10-1523Caroline1Bears3WBoxScore
7 - 2021-10-1839Stars2Bears4WBoxScore
9 - 2021-10-2052Bears3Chill5LBoxScore
11 - 2021-10-2270Bears3Stars5LBoxScore
13 - 2021-10-2483Monsters0Bears2WBoxScore
15 - 2021-10-2693Marlies4Bears2LBoxScore
17 - 2021-10-28109Wolf Pack0Bears5WBoxScore
19 - 2021-10-30126Bears0Baby Hawks5LBoxScore
21 - 2021-11-01142Bears2Heat4LBoxScore
23 - 2021-11-03154Bears3Oil Kings5LBoxScore
24 - 2021-11-04160Bears4Comets3WBoxScore
28 - 2021-11-08180Bears2Marlies3LXXBoxScore
31 - 2021-11-11198Crunch4Bears3LBoxScore
33 - 2021-11-13218Heat3Bears5WBoxScore
37 - 2021-11-17238Bears7Cabaret Lady Mary Ann5WBoxScore
39 - 2021-11-19258Las Vegas2Bears4WBoxScore
41 - 2021-11-21270Jayhawks3Bears4WBoxScore
43 - 2021-11-23283Bears4Phantoms1WBoxScore
45 - 2021-11-25296Rocket4Bears5WBoxScore
46 - 2021-11-26303Bears5Bruins6LBoxScore
48 - 2021-11-28316Admirals2Bears3WBoxScore
50 - 2021-11-30332Bears5Wolf Pack0WBoxScore
53 - 2021-12-03348Comets6Bears2LBoxScore
57 - 2021-12-07383Cabaret Lady Mary Ann4Bears6WBoxScore
59 - 2021-12-09398Thunder5Bears7WBoxScore
60 - 2021-12-10407Bears5Cougars7LBoxScore
63 - 2021-12-13433Bears2Sharks3LBoxScore
64 - 2021-12-14437Bears4Monarchs1WBoxScore
66 - 2021-12-16451Bears3Admirals2WXBoxScore
69 - 2021-12-19469Monsters4Bears3LXXBoxScore
71 - 2021-12-21484Bruins4Bears2LBoxScore
74 - 2021-12-24509Bears5Thunder3WBoxScore
76 - 2021-12-26521Bears3Monsters4LBoxScore
80 - 2021-12-30549Bears5Spiders2WBoxScore
81 - 2021-12-31559Thunder1Bears6WBoxScore
83 - 2022-01-02571Bears4Bruins6LBoxScore
87 - 2022-01-06585Monsters6Bears5LBoxScore
88 - 2022-01-07598Bears5Caroline3WBoxScore
91 - 2022-01-10614Sound Tigers4Bears3LBoxScore
94 - 2022-01-13639Bears5Caroline3WBoxScore
96 - 2022-01-15653Sharks2Bears4WBoxScore
98 - 2022-01-17667Senators1Bears2WBoxScore
99 - 2022-01-18676Bears3Phantoms2WBoxScore
102 - 2022-01-21696Spiders1Bears6WBoxScore
104 - 2022-01-23712Caroline3Bears4WBoxScore
107 - 2022-01-26732Spiders5Bears3LBoxScore
109 - 2022-01-28743Bears3Sound Tigers7LBoxScore
118 - 2022-02-06768Bears4Rocket6LBoxScore
120 - 2022-02-08777Chill4Bears5WXXBoxScore
122 - 2022-02-10787Bears3Senators7LBoxScore
124 - 2022-02-12806Manchots5Bears3LBoxScore
126 - 2022-02-14817Monarchs2Bears1LXXBoxScore
130 - 2022-02-18850Phantoms3Bears4WBoxScore
132 - 2022-02-20862Sound Tigers4Bears3LXXBoxScore
135 - 2022-02-23888Bears2Monsters5LBoxScore
137 - 2022-02-25904Bears4Jayhawks2WBoxScore
139 - 2022-02-27918Bears5Las Vegas2WBoxScore
142 - 2022-03-02935Rocket2Bears4WBoxScore
144 - 2022-03-04948Bears5Spiders4WBoxScore
145 - 2022-03-05959Manchots2Bears3WXXBoxScore
147 - 2022-03-07973Oceanics4Bears3LXXBoxScore
149 - 2022-03-09992Bears5Oceanics6LBoxScore
152 - 2022-03-121014Bears8Minnesota0WBoxScore
155 - 2022-03-151029Phantoms2Bears3WXXBoxScore
156 - 2022-03-161036Bears2Wolf Pack5LBoxScore
158 - 2022-03-181050Bears5Manchots4WXXBoxScore
160 - 2022-03-201066Bears2Crunch6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
163 - 2022-03-231087Cougars1Bears2WBoxScore
165 - 2022-03-251103Baby Hawks4Bears7WBoxScore
167 - 2022-03-271120Oil Kings2Bears4WBoxScore
170 - 2022-03-301141Bears3Monsters2WBoxScore
171 - 2022-03-311147Senators2Bears3WXXBoxScore
173 - 2022-04-021164Bears4Manchots2WBoxScore
175 - 2022-04-041181Chiefs2Bears1LXBoxScore
177 - 2022-04-061194Wolf Pack1Bears5WBoxScore
179 - 2022-04-081210Bears3Cougars4LBoxScore
181 - 2022-04-101224Bears3Crunch5LBoxScore
182 - 2022-04-111231Marlies1Bears5WBoxScore
184 - 2022-04-131248Minnesota3Bears10WBoxScore
186 - 2022-04-151265Bears4Cabaret Lady Mary Ann3WXXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price4020
Attendance63,36927,133
Attendance PCT77.28%66.18%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2207 - 73.58% 75,059$3,077,420$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,441,770$ 3,018,636$ 3,018,636$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
16,142$ 2,441,770$ 25 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,142$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT