Login

Bruins
GP: 82 | W: 62 | L: 19 | OTL: 1 | P: 125
GF: 322 | GA: 211 | PP%: 20.09% | PK%: 85.45%
GM : Patrick Doyon | Morale : 50 | Team Overall : 56
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Bruins
62-19-1, 125pts
4
FINAL
3 Chiefs
45-32-5, 95pts
Team Stats
L1StreakL3
32-9-0Home Record25-14-2
30-10-1Away Record20-18-3
5-4-1Last 10 Games6-4-0
3.93Goals Per Game3.41
2.57Goals Against Per Game3.18
20.09%Power Play Percentage22.26%
85.45%Penalty Kill Percentage80.71%
Caroline
23-48-11, 57pts
5
FINAL
1 Bruins
62-19-1, 125pts
Team Stats
W3StreakL1
17-19-5Home Record32-9-0
6-29-6Away Record30-10-1
5-3-2Last 10 Games5-4-1
3.44Goals Per Game3.93
4.65Goals Against Per Game2.57
24.23%Power Play Percentage20.09%
71.37%Penalty Kill Percentage85.45%
Team Leaders
Goals
Brett Kulak
0
Assists
Brett Kulak
6
Points
Brett Kulak
6
Plus/Minus
Brett Kulak
0
Wins
Callum Booth
60
Save Percentage
Cayden Primeau
0.932

Team Stats
Goals For
322
3.93 GFG
Shots For
3414
41.63 Avg
Power Play Percentage
20.1%
47 GF
Offensive Zone Start
42.2%
Goals Against
211
2.57 GAA
Shots Against
3004
36.63 Avg
Penalty Kill Percentage
85.5%
40 GA
Defensive Zone Start
40.1%
Team Info

General ManagerPatrick Doyon
DivisionAtlantique
ConferenceEst
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,896
Season Tickets300


Roster Info

Pro Team28
Farm Team20
Contract Limit48 / 50
Prospects17


Team History

This Season62-19-1 (125PTS)
History62-19-3 (0.738%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Connor DewarXX100.00797296656573676987647269624444050630213825,834$
2Matthew Boldy (R)XX100.00807395627355517050706769644444050610193880,833$
3Ross ColtonXX100.00774484657057726173608154254646050600241650,000$
4Akil Thomas (R)XX100.00726490606472756379596363604444050590204795,000$
5Sam AnasX100.00675596665565666580705661534444050590271792,500$
6Nathan WalkerXX100.008344916465655658385064652545460505702631,000,000$
7Sampo Ranta (R)XX100.00837699627653525750506067574444050570204925,000$
8Zach Gallant (R)X100.00585659677169885458455455585454050560213525,000$
9Luke Henman (R)X100.00484182716163725858545255555051050560204791,667$
10Jonathan AngX100.00646184596169735470535059484444050550221742,500$
11Nathan BeaulieuX100.008145778075705858254347782567680506502721,200,000$
12Josh BrookX100.00787879697174715728544566394444050610213795,000$
13Jacob MacDonaldX100.00774491677365696025584866755555050610271800,000$
14Nicolas MelocheX100.00807690687661645025463964374444050580232865,000$
15Paul LaDueX100.00627335727357585625455158485051050560282968,000$
Scratches
1Morgan KlimchukX100.00716985656858585549505563554444050550251925,000$
2Tyler Sheehy (R)X100.00786999546956575265544663444444050530243525,000$
3Ben ThomsonX100.007277615277555751504057605444440505202721,000,000$
4Matej Pekar (R)XX100.00626947656959625063494555434444050520204764,167$
5Jack KopackaX100.00757281637249504750454460424444050510221742,500$
6Henrik HaapalaXX100.00383592644644293235323153453532050410261925,000$
7Julius Nattinen (R)X100.00374545456634343745373745413230050400232866,000$
8Nelson Nogier (R)X100.00727272657255584725374159394444050540241725,000$
9Marc Del Gaizo (R)X100.00756599616546445425543962374444050540203850,833$
TEAM AVERAGE100.0070618064685960554951526147464605056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Callum Booth (R)100.0065435477706372747171304444050640
2Cayden Primeau100.0061637880586566696666334844050630
Scratches
1Alex D'Orio (R)100.0062546880626068716465304444050620
2Peyton Jones (R)100.0046516485434550534647304444050510
TEAM AVERAGE100.005953668158586467626231454405060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Connor DewarBruins (Bos)C/LW81435497353551322704411273519.75%30184922.8371320581882131325710360.47%250700011.0525001856
2Matthew BoldyBruins (Bos)LW/RW823658943740101081404031082888.93%30171420.91810186618311271827147.21%19700021.1024101664
3Ross ColtonBruins (Bos)C/LW82414384463001361933319223112.39%17159919.5010616531791014877554.82%209400011.05120007103
4Sampo RantaBruins (Bos)LW/RW8228447249335901082576919010.89%27139216.99381124990000486141.74%11500001.0300010154
5Akil ThomasBruins (Bos)C/RW822643693540073133289921999.00%24149118.182810421580110244154.72%30700100.9311000263
6Sam AnasBruins (Bos)C82214768218054195250781758.40%18129615.820114131012572258.00%135700001.0500000215
7Nathan WalkerBruins (Bos)LW/RW82303363433601491172896819710.38%25138816.9315618880001424234.85%13200000.9100000534
8Josh BrookBruins (Bos)D709465529102301858211534867.83%117161123.0231114571700111185110.00%100000.6800123322
9Jacob MacDonaldBruins (Bos)D801338514930011284123397610.57%128185923.24358411800001217310.00%000000.5511000132
10Paul LaDueBruins (Bos)D707182527695195328332488.43%83128918.42213201010001121010.00%000000.3900010112
11Nicolas MelocheBruins (Bos)D82420245010945147669729614.12%121171220.88213311760113199100.00%000000.2800414013
12Zach GallantBruins (Bos)C821212242042012570118358310.17%29132116.1100008000024054.84%21700000.3611000000
13Luke HenmanBruins (Bos)C6441519-12019758228504.88%3591514.31011110000061054.95%9100000.4200000000
14Nathan BeaulieuBruins (Bos)D21215171014051414621524.35%3649523.580222346011138000.00%000000.6900000201
15Jonathan AngBruins (Bos)C704812660262931143312.90%456609.440113120000260051.02%4900000.3600000001
16Morgan KlimchukBruins (Bos)LW453582180492129101210.34%163557.9000000000000036.36%1100000.4500000002
17Brett KulakBostonD8066020910121070.00%1319724.72011419000028000.00%000000.6100000000
18Nelson NogierBruins (Bos)D202359195464163912.50%3740120.08101735000051000.00%000000.2500001000
19Jack KopackaBruins (Bos)LW181230004241225.00%0442.47112240110120057.14%2100001.3500000000
20Matej PekarBruins (Bos)C/LW31123-9155301011679.09%72076.69000030000141035.29%1700000.2900100020
Team Total or Average123428751279945865011017401682302789621579.48%8382180317.67437511845416795712341607511856.52%711600140.738147510384542
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Callum BoothBruins (Bos)80601810.9312.53474512820028850120.700208021443
2Cayden PrimeauBruins (Bos)42100.9322.421980081170000.0000280000
Team Total or Average84621910.9312.53494312820830020120.7002082821443


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Akil ThomasBruins (Bos)C/RW202000-01-01Yes171 Lbs6 ft0NoNoNo4Pro & Farm795,000$79,500$0$No795,000$795,000$795,000$Link
Alex D'OrioBruins (Bos)G211999-04-27Yes209 Lbs6 ft2YesNoNo1Pro & Farm850,000$85,000$0$NoLink
Ben ThomsonBruins (Bos)LW271993-01-15No205 Lbs6 ft3NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Link
Callum BoothBruins (Bos)G231997-05-20Yes184 Lbs6 ft4YesNoNo1Pro & Farm560,000$56,000$0$NoLink
Cayden PrimeauBruins (Bos)G211999-08-11No209 Lbs6 ft2NoNoNo2Pro & Farm880,833$88,083$0$No880,833$Link
Connor DewarBruins (Bos)C/LW211999-06-26No182 Lbs5 ft10NoNoNo3Pro & Farm825,834$82,583$0$No825,834$825,834$Link
Henrik HaapalaBruins (Bos)LW/RW261994-02-28No165 Lbs5 ft9NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Jack KopackaBruins (Bos)LW221998-03-05No191 Lbs6 ft2NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Jacob MacDonaldBruins (Bos)D271993-02-26No204 Lbs6 ft0NoNoNo1Pro & Farm800,000$80,000$0$NoLink
Jonathan AngBruins (Bos)C221998-01-31No165 Lbs5 ft11NoNoNo1Pro & Farm742,500$74,250$0$NoLink
Josh BrookBruins (Bos)D211999-06-17No192 Lbs6 ft1NoNoNo3Pro & Farm795,000$79,500$0$No795,000$795,000$Link
Julius NattinenBruins (Bos)C231997-01-14Yes192 Lbs6 ft2NoNoNo2Pro & Farm866,000$86,600$0$No866,000$Link
Luke HenmanBruins (Bos)C202000-04-29Yes168 Lbs6 ft0NoNoNo4Pro & Farm791,667$79,167$0$No791,667$791,667$791,667$Link
Marc Del GaizoBruins (Bos)D201999-10-11Yes181 Lbs5 ft10NoNoNo3Pro & Farm850,833$85,083$0$No850,833$850,833$Link
Matej PekarBruins (Bos)C/LW202000-02-10Yes185 Lbs6 ft1NoNoNo4Pro & Farm764,167$76,417$0$No764,167$764,167$764,167$Link
Matthew BoldyBruins (Bos)LW/RW192001-04-04Yes196 Lbs6 ft2NoNoNo3Pro & Farm880,833$88,083$0$No880,833$880,833$Link
Morgan KlimchukBruins (Bos)LW251995-03-01No185 Lbs6 ft0NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Nathan BeaulieuBruins (Bos)D271992-12-05No200 Lbs6 ft2NoNoNo2Pro & Farm1,200,000$1,200,000$0$No1,200,000$Link
Nathan WalkerBruins (Bos)LW/RW261994-02-07No186 Lbs5 ft9NoNoNo3Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$Link
Nelson NogierBruins (Bos)D241996-05-26Yes191 Lbs6 ft2NoNoNo1Pro & Farm725,000$72,500$0$NoLink
Nicolas MelocheBruins (Bos)D231997-07-18No204 Lbs6 ft3NoNoNo2Pro & Farm865,000$86,500$0$No865,000$Link
Paul LaDueBruins (Bos)D281992-09-06No197 Lbs6 ft2NoNoNo2Pro & Farm968,000$96,800$0$No968,000$Link
Peyton JonesBruins (Bos)G241996-02-13Yes209 Lbs6 ft4NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Ross ColtonBruins (Bos)C/LW241996-09-11No191 Lbs6 ft0NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Sam AnasBruins (Bos)C271993-06-01No157 Lbs5 ft8NoNoNo1Pro & Farm792,500$79,250$0$NoLink
Sampo RantaBruins (Bos)LW/RW202000-05-31Yes205 Lbs6 ft2NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Link
Tyler SheehyBruins (Bos)C241995-11-20Yes190 Lbs5 ft11NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Zach GallantBruins (Bos)C211999-03-06Yes193 Lbs6 ft2NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2823.07190 Lbs6 ft12.21810,560$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matthew BoldyConnor DewarAkil Thomas40122
2Sampo RantaRoss ColtonNathan Walker30122
3Luke HenmanSam AnasZach Gallant20122
4Connor DewarLuke HenmanMatthew Boldy10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuJacob MacDonald40122
2Josh BrookNicolas Meloche30122
3Paul LaDueJonathan Ang20122
4Nathan BeaulieuJacob MacDonald10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matthew BoldyConnor DewarAkil Thomas60122
2Sampo RantaRoss ColtonNathan Walker40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuJacob MacDonald60122
2Josh BrookNicolas Meloche40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Connor DewarMatthew Boldy60122
2Ross ColtonSam Anas40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuJacob MacDonald60122
2Josh BrookNicolas Meloche40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Connor Dewar60122Nathan BeaulieuJacob MacDonald60122
2Matthew Boldy40122Josh BrookNicolas Meloche40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Connor DewarMatthew Boldy60122
2Ross ColtonSam Anas40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuJacob MacDonald60122
2Josh BrookNicolas Meloche40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Matthew BoldyConnor DewarAkil ThomasNathan BeaulieuJacob MacDonald
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Matthew BoldyConnor DewarAkil ThomasNathan BeaulieuJacob MacDonald
Extra Forwards
Normal PowerPlayPenalty Kill
Zach Gallant, Jonathan Ang, Akil ThomasZach Gallant, Jonathan AngAkil Thomas
Extra Defensemen
Normal PowerPlayPenalty Kill
Paul LaDue, Josh Brook, Nicolas MelochePaul LaDueJosh Brook, Nicolas Meloche
Penalty Shots
Connor Dewar, Matthew Boldy, Ross Colton, Sam Anas, Akil Thomas
Goalie
#1 : Callum Booth, #2 : Cayden Primeau


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001046110000004041100000064241.000101727011151089311911048116711784064218314250.00%3166.67%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
2Baby Hawks22000000954110000003211100000063341.000916250011510893118710481167117840922119536350.00%70100.00%11839320457.40%1631304453.58%753133756.32%1988136618925971068552
3Bears33000000161152200000012931100000042261.0001629450011510893111221048116711784013530266814321.43%13469.23%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
4Cabaret Lady Mary Ann44000000195142200000011562200000080881.0001934530211510893111911048116711784016152409911327.27%14192.86%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
5Caroline31200000610-42110000058-31010000012-120.33361117001151089311135104811671178408529157910110.00%4325.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
6Chiefs21000010972100000105411100000043141.00091524001151089311821048116711784082231449500.00%7185.71%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
7Chill22000000624110000004221100000020241.00061117011151089311841048116711784061181247300.00%6183.33%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
8Comets220000001174110000007431100000043141.0001120310011510893117610481167117840691820368225.00%9188.89%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
9Cougars41300000915-62020000059-42110000046-220.250915240011510893111271048116711784016140328410110.00%15286.67%11839320457.40%1631304453.58%753133756.32%1988136618925971068552
10Crunch4310000015872200000010372110000055060.75015284300115108931121410481167117840119474311412433.33%90100.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
11Heat21100000770110000003121010000046-220.5007132000115108931167104811671178407023649200.00%3166.67%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
12Jayhawks22000000945110000005231100000042241.000917260011510893118510481167117840712018376233.33%9277.78%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
13Las Vegas21001000963110000003121000100065141.000915240011510893119010481167117840802225515120.00%10280.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
14Manchots320000101394210000108621100000053261.000132134001151089311116104811671178401343022848225.00%11190.91%11839320457.40%1631304453.58%753133756.32%1988136618925971068552
15Marlies4220000013112211000006512110000076140.5001323360011510893111601048116711784014542537513215.38%11372.73%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
16Minnesota210000101046110000005051000001054141.00010142401115108931110210481167117840842135457114.29%9277.78%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
17Monarchs21000001660110000005411000000112-130.750612180011510893116510481167117840471316345120.00%50100.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
18Monsters3210000011742110000045-11100000072540.66711182900115108931112810481167117840992623841119.09%9188.89%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
19Monsters211000007611010000034-11100000042220.500714210011510893118410481167117840591737451000.00%10190.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
20Oceanics20200000610-41010000035-21010000035-200.000612181011510893117810481167117840992626383266.67%8187.50%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
21Oil Kings22000000945110000005411100000040441.000917260111510893119310481167117840602112547228.57%6266.67%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
22Phantoms3210000013103110000004222110000098140.667132639101151089311119104811671178401163118721100.00%9277.78%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
23Rocket4120100013130211000007612010100067-140.5001325380011510893111401048116711784017359411028225.00%17476.47%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
24Senators4310000022101222000000143112110000087160.750223658001151089311175104811671178401684636996233.33%18288.89%11839320457.40%1631304453.58%753133756.32%1988136618925971068552
25Sharks22000000523110000003121100000021141.0005914001151089311711048116711784074182047600.00%10190.00%11839320457.40%1631304453.58%753133756.32%1988136618925971068552
26Sound Tigers3210000011101110000004312110000077040.6671119300011510893111221048116711784010835227212216.67%90100.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
27Spiders321000009361010000012-12200000081740.667916250111510893119410481167117840983120735240.00%90100.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
28Stars22000000734110000003121100000042241.000712190011510893115710481167117840752112386350.00%60100.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
29Thunder4300001017892100001072522000000106481.00017294601115108931120910481167117840127474010211218.18%110100.00%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
30Wolf Pack33000000154111100000051422000000103761.00015294400115108931115010481167117840882318859111.11%8187.50%01839320457.40%1631304453.58%753133756.32%1988136618925971068552
Total8256190204132221111141299000301641046041271002011158107511250.762322573895281151089311341410481167117840300487172919462344720.09%2754085.45%51839320457.40%1631304453.58%753133756.32%1988136618925971068552
_Since Last GM Reset8256190204132221111141299000301641046041271002011158107511250.762322573895281151089311341410481167117840300487172919462344720.09%2754085.45%51839320457.40%1631304453.58%753133756.32%1988136618925971068552
_Vs Conference43319000211731076621154000208450342216500001895732670.779173307480241151089311178410481167117840156343736010111212218.18%1401887.14%31839320457.40%1631304453.58%753133756.32%1988136618925971068552
_Vs Division2874000011087038144200000603327143200001483711150.2681081902980311510893111216104811671178401054333285675711622.54%951287.37%21839320457.40%1631304453.58%753133756.32%1988136618925971068552

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82125L132257389534143004871729194628
All Games
GPWLOTWOTL SOWSOLGFGA
8256192041322211
Home Games
GPWLOTWOTL SOWSOLGFGA
412990030164104
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4127102011158107
Last 10 Games
WLOTWOTL SOWSOL
540001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2344720.09%2754085.45%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
104811671178401151089311
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1839320457.40%1631304453.58%753133756.32%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1988136618925971068552


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2021-10-1310Bruins4Stars2WBoxScore
4 - 2021-10-1526Bruins4Jayhawks2WBoxScore
7 - 2021-10-1843Bruins6Las Vegas5WXBoxScore
9 - 2021-10-2056Bruins4Monsters2WBoxScore
11 - 2021-10-2265Spiders2Bruins1LBoxScore
13 - 2021-10-2478Admirals0Bruins4WBoxScore
16 - 2021-10-2798Thunder2Bruins3WXXBoxScore
18 - 2021-10-29116Bruins5Marlies3WBoxScore
21 - 2021-11-01133Marlies4Bruins3LBoxScore
25 - 2021-11-05162Chiefs4Bruins5WXXBoxScore
26 - 2021-11-06175Bruins6Wolf Pack1WBoxScore
28 - 2021-11-08179Sharks1Bruins3WBoxScore
32 - 2021-11-12207Senators1Bruins8WBoxScore
34 - 2021-11-14220Manchots4Bruins5WXXBoxScore
35 - 2021-11-15224Bruins2Rocket4LBoxScore
38 - 2021-11-18249Bruins0Cougars3LBoxScore
40 - 2021-11-20268Phantoms2Bruins4WBoxScore
42 - 2021-11-22272Cabaret Lady Mary Ann3Bruins8WBoxScore
45 - 2021-11-25294Bruins2Marlies3LBoxScore
46 - 2021-11-26303Bears5Bruins6WBoxScore
49 - 2021-11-29320Bruins5Spiders0WBoxScore
51 - 2021-12-01333Crunch1Bruins6WBoxScore
53 - 2021-12-03353Minnesota0Bruins5WBoxScore
56 - 2021-12-06374Bruins4Rocket3WXBoxScore
57 - 2021-12-07378Bruins6Senators3WBoxScore
59 - 2021-12-09391Wolf Pack1Bruins5WBoxScore
61 - 2021-12-11417Rocket3Bruins6WBoxScore
63 - 2021-12-13424Caroline3Bruins4WBoxScore
65 - 2021-12-15438Baby Hawks2Bruins3WBoxScore
67 - 2021-12-17455Monsters4Bruins3LBoxScore
69 - 2021-12-19470Bruins2Senators4LBoxScore
71 - 2021-12-21484Bruins4Bears2WBoxScore
72 - 2021-12-22488Bruins3Thunder2WBoxScore
74 - 2021-12-24510Bruins3Cabaret Lady Mary Ann0WBoxScore
77 - 2021-12-27524Monarchs4Bruins5WBoxScore
79 - 2021-12-29538Sound Tigers3Bruins4WBoxScore
81 - 2021-12-31556Chill2Bruins4WBoxScore
83 - 2022-01-02571Bears4Bruins6WBoxScore
87 - 2022-01-06582Bruins0Crunch4LBoxScore
89 - 2022-01-08606Crunch2Bruins4WBoxScore
91 - 2022-01-10613Bruins3Spiders1WBoxScore
93 - 2022-01-12627Monsters2Bruins3WBoxScore
95 - 2022-01-14641Oil Kings4Bruins5WBoxScore
98 - 2022-01-17671Bruins2Chill0WBoxScore
100 - 2022-01-19678Oceanics5Bruins3LBoxScore
102 - 2022-01-21694Bruins3Sound Tigers4LBoxScore
104 - 2022-01-23711Bruins3Phantoms5LBoxScore
105 - 2022-01-24719Bruins7Monsters2WBoxScore
107 - 2022-01-26727Manchots2Bruins3WBoxScore
110 - 2022-01-29755Bruins5Manchots3WBoxScore
112 - 2022-01-31761Las Vegas1Bruins3WBoxScore
122 - 2022-02-10789Bruins3Oceanics5LBoxScore
123 - 2022-02-11802Bruins5Minnesota4WXXBoxScore
126 - 2022-02-14812Comets4Bruins7WBoxScore
127 - 2022-02-15826Bruins6Baby Hawks3WBoxScore
130 - 2022-02-18844Jayhawks2Bruins5WBoxScore
131 - 2022-02-19855Bruins4Cougars3WBoxScore
134 - 2022-02-22877Rocket3Bruins1LBoxScore
137 - 2022-02-25895Cougars4Bruins3LBoxScore
138 - 2022-02-26907Bruins4Wolf Pack2WBoxScore
141 - 2022-03-01928Bruins4Oil Kings0WBoxScore
143 - 2022-03-03945Bruins4Heat6LBoxScore
144 - 2022-03-04956Bruins4Comets3WBoxScore
147 - 2022-03-07968Heat1Bruins3WBoxScore
149 - 2022-03-09984Stars1Bruins3WBoxScore
151 - 2022-03-11999Bruins4Sound Tigers3WBoxScore
154 - 2022-03-141019Bruins7Thunder4WBoxScore
156 - 2022-03-161035Bruins5Cabaret Lady Mary Ann0WBoxScore
158 - 2022-03-181054Thunder0Bruins4WBoxScore
161 - 2022-03-211073Bruins6Phantoms3WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
164 - 2022-03-241093Bruins5Crunch1WBoxScore
165 - 2022-03-251101Marlies1Bruins3WBoxScore
167 - 2022-03-271118Monsters3Bruins1LBoxScore
169 - 2022-03-291136Bruins6Admirals4WBoxScore
170 - 2022-03-301144Bruins1Monarchs2LXXBoxScore
172 - 2022-04-011163Bruins2Sharks1WBoxScore
175 - 2022-04-041176Cougars5Bruins2LBoxScore
177 - 2022-04-061191Senators2Bruins6WBoxScore
179 - 2022-04-081207Cabaret Lady Mary Ann2Bruins3WBoxScore
182 - 2022-04-111232Bruins1Caroline2LBoxScore
184 - 2022-04-131250Bruins4Chiefs3WBoxScore
186 - 2022-04-151260Caroline5Bruins1LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,96939,760
Attendance PCT96.30%96.98%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2896 - 96.53% 81,959$3,360,315$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,733,315$ 3,349,566$ 3,349,566$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
17,912$ 2,733,315$ 28 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 17,912$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT