Login

Phantoms
GP: 82 | W: 43 | L: 28 | OTL: 11 | P: 97
GF: 319 | GA: 275 | PP%: 24.47% | PK%: 81.49%
GM : Richard Duguay | Morale : 50 | Team Overall : 56
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Chill
29-49-4, 62pts
2
FINAL
4 Phantoms
43-28-11, 97pts
Team Stats
SOL1StreakW3
16-23-2Home Record18-16-7
13-26-2Away Record25-12-4
1-8-1Last 10 Games6-4-0
2.98Goals Per Game3.89
3.62Goals Against Per Game3.35
16.67%Power Play Percentage24.47%
75.38%Penalty Kill Percentage81.49%
Phantoms
43-28-11, 97pts
7
FINAL
2 Crunch
31-46-5, 67pts
Team Stats
W3StreakL1
18-16-7Home Record19-21-1
25-12-4Away Record12-25-4
6-4-0Last 10 Games2-7-1
3.89Goals Per Game3.13
3.35Goals Against Per Game3.89
24.47%Power Play Percentage20.26%
81.49%Penalty Kill Percentage73.62%
Team Leaders
Goals
Connor Bunnaman
41
Assists
Connor Bunnaman
48
Points
Connor Bunnaman
89
Plus/Minus
Connor Bunnaman
16
Wins
Beck Warm
36
Save Percentage
Arvid Holm
0.928

Team Stats
Goals For
319
3.89 GFG
Shots For
3442
41.98 Avg
Power Play Percentage
24.5%
69 GF
Offensive Zone Start
41.4%
Goals Against
275
3.35 GAA
Shots Against
3109
37.91 Avg
Penalty Kill Percentage
81.5%
52 GA
Defensive Zone Start
40.3%
Team Info

General ManagerRichard Duguay
DivisionNord-Est
ConferenceEst
CaptainChris Bigras
Assistant #1
Assistant #2Gavin Bayreuther


Arena Info

Capacity3,000
Attendance2,874
Season Tickets300


Roster Info

Pro Team23
Farm Team23
Contract Limit46 / 50
Prospects10


Team History

This Season43-28-11 (97PTS)
History43-28-5 (0.566%)
Playoff Appearances
Playoff Record (W-L)-


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Tyler BensonX100.0072707771707071675068636460444405062X0221792,500$
2Morgan Barron (R)XXX100.00808372728357556780626968664444050620213925,000$
3Jonah GadjovichX100.00757674667656556250477464704444050590212783,333$
4Morgan GeekieXX100.00714390627355746666635856254748050580221763,333$
5Austin PoganskiX100.00767186657569545748565463254444050570243750,000$
6Antti SuomelaXX100.00736786746755555670604663444949050570262700,000$
7Kurtis GabrielX100.00999930638048575625505571254747050560273560,000$
8Tyler KelleherX100.00413485735469845954525445586464050560253525,000$
9Skyler McKenzieX100.00655490665462655450465757544444050540221741,666$
10Logan Hutsko (R)X100.00514475696248515055474347455454050500214867,000$
11Jordy Stallard (R)X100.00323737375831313237323237343230050350231525,000$
12Juuso Valimaki (R)X100.00674385757867566125524870254848050610212925,000$
13Matt BartkowskiX100.00777289657260635225464068386465050600322655,000$
14Chris Bigras (C)X100.00767188637155565325464266405757050580255560,000$
15Mac HollowellX100.00776896676266635528504565394444050580224799,766$
16Gavin Bayreuther (A)X100.00784478637267646025395158534646050570262650,000$
17Sebastian AhoDX100.00675984636567515224523957254646050550241750,000$
Scratches
TEAM AVERAGE100.0069617866695959564351516043484805056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Beck Warm (R)100.0060627866626853636462304444050600
2Hunter Jones (R)100.0051688581465750565352304444050560
Scratches
1Arvid Holm (R)100.0054706679565659575253535858050590
2Hunter Miska100.0058507065606053625857304444050560
3Felix Sandstrom (R)100.0052536675535350575252304444050540
4Landon Bow100.0050517390475150554949304444050540
TEAM AVERAGE100.005459737654585358555434464605057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Connor BunnamanPhiladelphieC/LW8141488916195902313459824811.88%35157819.491915348221600051355062.43%138400001.1327010456
2Radim ZohornaPhiladelphieC/LW/RW7739468513120642333729123110.48%19172622.42511165819912362145050.96%259200110.98310000665
3Dominic ToninatoPhiladelphieC/LW81353974104915103177395992418.86%18140417.3471118641710001491258.80%128400001.0514201144
4Juuso ValimakiPhantoms (Phi)D7614567025195111103140449810.00%131180723.7851520672001343201510.00%000100.7700010513
5Jonah GadjovichPhantoms (Phi)LW82402262555151509632110226112.46%13144717.666915421530001565253.13%12800000.8644003416
6Tyler BensonPhantoms (Phi)LW46213859178048110236501778.90%21104222.6748123911821371383347.83%11500001.1306000452
7Mac HollowellPhantoms (Phi)D8274754250014483130371015.38%127179221.8601414542050004214000.00%100000.6000000004
8Tyler KelleherPhantoms (Phi)RW78163551-36403198249501936.43%14126116.1751318561750001441147.62%16800000.8117000011
9Chris BigrasPhantoms (Phi)D7810374797551835092426110.87%119164821.1441418392090001181200.00%000000.5700010022
10Ryan ReavesPhiladelphieRW75123547546026999184391306.52%19145619.4158133420900041243240.11%18700000.65210000313
11Austin PoganskiPhantoms (Phi)RW78103040-216010296212781394.72%14117715.090226370000150041.13%14100000.6800000012
12Morgan GeekiePhantoms (Phi)C/RW82142539-219546108189681447.41%10120514.700228550111392158.04%33600000.6500001211
13Matt BartkowskiPhantoms (Phi)D57132437-2034012874111348611.71%126133023.35538521220000119000.00%000000.5600000230
14Antti SuomelaPhantoms (Phi)C/LW781124351012044160176441216.25%25110914.230002120002741048.93%60700000.6300000101
15Kurtis GabrielPhantoms (Phi)RW71121325-157511062103177711.65%155077.15000150001191041.67%3600000.9900100021
16Gavin BayreutherPhantoms (Phi)D82101323206202434284304911.90%97147618.0022423920002106110.00%200000.3100000211
17Sebastian AhoDPhantoms (Phi)D70419237480914132133112.50%72110915.86112528000049000.00%100000.4100000000
18Gustav OlofssonPhiladelphieD192111311804825347125.88%3046224.321121347011159000.00%000000.5600000111
19Morgan BarronPhantoms (Phi)C/LW/RW11549-44024266618477.58%523421.3013412270002270059.76%16400000.7702000000
20Skyler McKenziePhantoms (Phi)LW28145-1401111328203.13%92298.2100000000000036.36%1100000.4400000000
21Trey Fix-WolanskyPhiladelphieRW1011100028150.00%02323.4300013000010050.00%600000.8500000000
22Logan HutskoPhantoms (Phi)RW11000000201010.00%0312.8400001000000027.27%1100000.0000000000
Team Total or Average1344317571888756115520421927351297024739.03%9192406317.907013220265822934812421874351354.24%717400210.741350335353543
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Beck WarmPhantoms (Phi)59361930.9113.2434856118821060010.833305920522
2Arvid HolmPhantoms (Phi)197640.9282.88108220527180020.50041749241
3Felix SandstromPhantoms (Phi)40130.9043.4122900131350000.714737000
Team Total or Average824326100.9143.1647988125329590030.780417976763


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Antti SuomelaPhantoms (Phi)C/LW261994-03-16No180 Lbs6 ft0NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Arvid HolmPhantoms (Phi)G211998-11-03Yes214 Lbs6 ft4NoNoNo3Pro & Farm845,833$84,583$0$No845,833$845,833$Link
Austin PoganskiPhantoms (Phi)RW241996-02-16No201 Lbs6 ft2NoNoNo3Pro & Farm750,000$75,000$0$No750,000$750,000$Link
Beck WarmPhantoms (Phi)G211999-04-21Yes181 Lbs6 ft0YesNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Link
Chris BigrasPhantoms (Phi)D251995-02-21No191 Lbs6 ft1NoNoNo5Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$560,000$Link
Felix SandstromPhantoms (Phi)G231997-01-12Yes191 Lbs6 ft2NoNoNo5Pro & Farm600,000$60,000$0$No600,000$600,000$600,000$600,000$Link
Gavin BayreutherPhantoms (Phi)D261994-05-12No195 Lbs6 ft1NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Hunter JonesPhantoms (Phi)G202000-09-21Yes194 Lbs6 ft4NoNoNo3Pro & Farm825,833$82,583$0$No825,833$825,833$Link
Hunter MiskaPhantoms (Phi)G251995-07-06No175 Lbs6 ft1NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Jonah GadjovichPhantoms (Phi)LW211998-10-12No209 Lbs6 ft2NoNoNo2Pro & Farm783,333$78,333$0$No783,333$Link
Jordy StallardPhantoms (Phi)C231997-09-18Yes185 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Juuso ValimakiPhantoms (Phi)D211998-10-06Yes212 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Kurtis GabrielPhantoms (Phi)RW271993-04-20No200 Lbs6 ft4YesNoNo3Pro & Farm560,000$56,000$0$No560,000$560,000$Link
Landon BowPhantoms (Phi)G251995-08-23No220 Lbs6 ft5NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Logan HutskoPhantoms (Phi)RW211999-02-11Yes172 Lbs5 ft11NoNoNo4Pro & Farm867,000$86,700$0$No867,000$867,000$867,000$Link
Mac HollowellPhantoms (Phi)D221998-09-26No170 Lbs5 ft10NoNoNo4Pro & Farm799,766$79,977$0$No799,766$799,766$799,766$Link
Matt BartkowskiPhantoms (Phi)D321988-06-04No196 Lbs6 ft1NoNoNo2Pro & Farm600,000$65,500$0$No575,000$Link
Morgan BarronPhantoms (Phi)C/LW/RW211998-12-02Yes220 Lbs6 ft4NoNoNo3Pro & Farm925,000$925,000$0$No925,000$925,000$Link
Morgan GeekiePhantoms (Phi)C/RW221998-07-20No192 Lbs6 ft3NoNoNo1Pro & Farm763,333$76,333$0$NoLink
Sebastian AhoDPhantoms (Phi)D241996-02-16No184 Lbs5 ft10NoNoNo1Pro & Farm750,000$75,000$0$NoLink
Skyler McKenziePhantoms (Phi)LW221998-01-20No154 Lbs5 ft8NoNoNo1Pro & Farm741,666$74,167$0$NoLink
Tyler BensonPhantoms (Phi)LW221998-03-15No192 Lbs6 ft0NoYesNo1Pro & Farm792,500$79,250$0$NoLink
Tyler KelleherPhantoms (Phi)RW251995-01-02No161 Lbs5 ft6NoNoNo3Pro & Farm525,000$52,500$0$No525,000$525,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2323.43191 Lbs6 ft12.52728,881$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler Benson40050
2Jonah GadjovichAustin Poganski30050
3Antti SuomelaKurtis Gabriel20122
4Tyler BensonMorgan GeekieTyler Kelleher10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Gavin Bayreuther40122
2Mac HollowellMatt Bartkowski30122
3Chris Bigras20122
4Matt Bartkowski10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler Benson60122
2Jonah Gadjovich40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski60122
2Chris Bigras40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Antti SuomelaTyler Benson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski60122
2Chris BigrasMac Hollowell40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Matt Bartkowski60122
240122Chris BigrasMac Hollowell40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Morgan Geekie60122
2Antti Suomela40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski60122
2Mac Hollowell40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tyler BensonMac Hollowell
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kurtis GabrielMatt Bartkowski
Extra Forwards
Normal PowerPlayPenalty Kill
Antti Suomela, Austin Poganski, , Jonah GadjovichKurtis Gabriel
Extra Defensemen
Normal PowerPlayPenalty Kill
Chris Bigras, Gavin Bayreuther, Mac HollowellGavin Bayreuther, Chris Bigras
Penalty Shots
, Jonah Gadjovich, , Tyler Benson,
Goalie
#1 : Beck Warm, #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals210001004311000010001-11100000042230.75047110011711481129811291164110491822316686116.67%8187.50%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
2Baby Hawks210000019811000000134-11100000064230.750917260011711481128311291164110491872516416233.33%80100.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
3Bears40300001814-62020000037-42010000157-210.125815230011711481121401129116411049115256379918211.11%16381.25%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
4Bruins312000001013-32110000089-11010000024-220.333101929001171148112116112911641104911194422819222.22%110100.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
5Cabaret Lady Mary Ann33000000191181100000074322000000127561.0001932510011711481121431129116411049112328248311545.45%12558.33%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
6Caroline430000102011922000000103721000010108281.0002035550011711481121951129116411049116143368417317.65%18572.22%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
7Chiefs20200000710-31010000035-21010000045-100.0007142110117114811278112911641104914516144010330.00%7357.14%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
8Chill22000000844110000004221100000042241.000815230011711481127811291164110491601822514250.00%100100.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
9Comets2020000068-21010000034-11010000034-100.000610160011711481128511291164110491812317499222.22%6266.67%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
10Cougars30300000610-41010000034-12020000036-300.000612180011711481121121129116411049111732188213215.38%8187.50%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
11Crunch33000000177102200000010551100000072561.000173148001171148112141112911641104911193710809333.33%50100.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
12Heat2010001035-21010000014-31000001021120.5003360011711481126111291164110491743112534125.00%50100.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
13Jayhawks211000001082110000006331010000045-120.50010162600117114811210511291164110491852825459444.44%9455.56%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
14Las Vegas220000001147110000007251100000042241.000112031001171148112971129116411049173172355200.00%5180.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
15Manchots42100001171522010000169-322000000116550.62517284500117114811216611291164110491140442011911327.27%8187.50%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
16Marlies3120000079-22020000049-51100000030320.3337111811117114811293112911641104911242320641000.00%10190.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
17Minnesota22000000853110000005321100000032141.0008152300117114811297112911641104917519852500.00%40100.00%11679318852.67%1622310052.32%773140455.06%2001138119156061073545
18Monarchs200000119901000000134-11000001065130.7509162500117114811292112911641104917523354013323.08%8362.50%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
19Monsters413000001117-6211000008802020000039-620.2501121320011711481121581129116411049116437349014321.43%17570.59%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
20Monsters2010010058-31010000024-21000010034-110.25058130011711481128111291164110491572414498112.50%7271.43%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
21Oceanics20000011880100000105411000000134-130.75081321001171148112701129116411049185216615120.00%3166.67%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
22Oil Kings211000007701010000034-11100000043120.500713200011711481128411291164110491672412489444.44%6183.33%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
23Rocket311001001412220100100911-21100000051430.500142539001171148112991129116411049111830285815320.00%13376.92%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
24Senators321000001082110000003212110000076140.6671019290011711481121051129116411049112328206812433.33%10190.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
25Sharks20100100611-51010000026-41000010045-110.25061117001171148112701129116411049189212352500.00%9277.78%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
26Sound Tigers42000020191362000002010822200000095481.0001927460011711481121831129116411049113339538514321.43%18383.33%11679318852.67%1622310052.32%773140455.06%2001138119156061073545
27Spiders412001001818020100100912-32110000096330.37518345210117114811216611291164110491143375010415746.67%12283.33%11679318852.67%1622310052.32%773140455.06%2001138119156061073545
28Stars220000001028110000003121100000071641.00010152500117114811273112911641104917218164722100.00%80100.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
29Thunder330000002161511000000633220000001531261.000213859001171148112180112911641104911143610885120.00%5180.00%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
30Wolf Pack4110011011110200001106602110000055050.62511182910117114811219311291164110491152563012712216.67%15193.33%01679318852.67%1622310052.32%773140455.06%2001138119156061073545
Total82362800675319275444114160044315215114122120023216712443970.591319558877411171148112344211291164110491310990167120632826924.47%2815281.49%31679318852.67%1622310052.32%773140455.06%2001138119156061073545
_Since Last GM Reset82362800675319275444114160044315215114122120023216712443970.591319558877411171148112344211291164110491310990167120632826924.47%2815281.49%31679318852.67%1622310052.32%773140455.06%2001138119156061073545
_Vs Conference4617160045416715982359003427790-132312700112906921520.565167292459311171148112190811291164110491175550639811971533422.22%1602584.38%21679318852.67%1622310052.32%773140455.06%2001138119156061073545
_Vs Division2856002301049951412002305253-114440000052466180.32110417828220117114811212011129116411049110453122607081012322.77%1042080.77%21679318852.67%1622310052.32%773140455.06%2001138119156061073545

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8297W331955887734423109901671206341
All Games
GPWLOTWOTL SOWSOLGFGA
8236280675319275
Home Games
GPWLOTWOTL SOWSOLGFGA
4114160443152151
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4122120232167124
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2826924.47%2815281.49%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
112911641104911171148112
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1679318852.67%1622310052.32%773140455.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2001138119156061073545


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2021-10-1413Baby Hawks4Phantoms3LXXBoxScore
8 - 2021-10-1945Spiders7Phantoms5LBoxScore
11 - 2021-10-2273Phantoms3Comets4LBoxScore
14 - 2021-10-2588Phantoms2Heat1WXXBoxScore
15 - 2021-10-2695Phantoms4Oil Kings3WBoxScore
18 - 2021-10-29118Stars1Phantoms3WBoxScore
20 - 2021-10-31130Las Vegas2Phantoms7WBoxScore
23 - 2021-11-03151Phantoms6Baby Hawks4WBoxScore
25 - 2021-11-05165Monsters4Phantoms3LBoxScore
26 - 2021-11-06174Phantoms5Sound Tigers2WBoxScore
28 - 2021-11-08182Phantoms6Manchots3WBoxScore
31 - 2021-11-11196Phantoms6Spiders1WBoxScore
32 - 2021-11-12210Marlies4Phantoms1LBoxScore
35 - 2021-11-15226Caroline2Phantoms4WBoxScore
37 - 2021-11-17240Rocket5Phantoms4LXBoxScore
39 - 2021-11-19254Phantoms3Marlies0WBoxScore
40 - 2021-11-20268Phantoms2Bruins4LBoxScore
43 - 2021-11-23283Bears4Phantoms1LBoxScore
45 - 2021-11-25298Phantoms2Senators3LBoxScore
46 - 2021-11-26307Sound Tigers4Phantoms5WXXBoxScore
49 - 2021-11-29319Phantoms6Cabaret Lady Mary Ann3WBoxScore
51 - 2021-12-01336Phantoms5Caroline4WBoxScore
53 - 2021-12-03349Heat4Phantoms1LBoxScore
55 - 2021-12-05367Comets4Phantoms3LBoxScore
57 - 2021-12-07384Phantoms2Monsters5LBoxScore
59 - 2021-12-09397Cougars4Phantoms3LBoxScore
60 - 2021-12-10404Phantoms5Rocket1WBoxScore
63 - 2021-12-13428Marlies5Phantoms3LBoxScore
65 - 2021-12-15442Jayhawks3Phantoms6WBoxScore
67 - 2021-12-17452Senators2Phantoms3WBoxScore
71 - 2021-12-21486Phantoms3Monsters4LXBoxScore
74 - 2021-12-24507Phantoms3Minnesota2WBoxScore
75 - 2021-12-25515Phantoms3Oceanics4LXXBoxScore
77 - 2021-12-27528Admirals1Phantoms0LXBoxScore
79 - 2021-12-29540Crunch3Phantoms7WBoxScore
81 - 2021-12-31558Phantoms5Senators3WBoxScore
83 - 2022-01-02574Wolf Pack3Phantoms4WXXBoxScore
88 - 2022-01-07601Phantoms4Sharks5LXBoxScore
89 - 2022-01-08610Phantoms4Admirals2WBoxScore
91 - 2022-01-10622Phantoms6Monarchs5WXXBoxScore
93 - 2022-01-12638Phantoms4Las Vegas2WBoxScore
95 - 2022-01-14650Phantoms4Jayhawks5LBoxScore
98 - 2022-01-17668Phantoms5Caroline4WXXBoxScore
99 - 2022-01-18676Bears3Phantoms2LBoxScore
102 - 2022-01-21695Thunder3Phantoms6WBoxScore
104 - 2022-01-23711Bruins3Phantoms5WBoxScore
106 - 2022-01-25726Phantoms4Chiefs5LBoxScore
107 - 2022-01-26731Rocket6Phantoms5LBoxScore
109 - 2022-01-28750Monarchs4Phantoms3LXXBoxScore
112 - 2022-01-31763Manchots4Phantoms3LXXBoxScore
122 - 2022-02-10786Phantoms5Manchots3WBoxScore
123 - 2022-02-11799Monsters4Phantoms2LBoxScore
125 - 2022-02-13811Phantoms2Cougars3LBoxScore
128 - 2022-02-16832Spiders5Phantoms4LXBoxScore
130 - 2022-02-18850Phantoms3Bears4LBoxScore
132 - 2022-02-20861Cabaret Lady Mary Ann4Phantoms7WBoxScore
133 - 2022-02-21869Phantoms4Sound Tigers3WBoxScore
135 - 2022-02-23883Phantoms6Cabaret Lady Mary Ann4WBoxScore
137 - 2022-02-25897Phantoms8Thunder1WBoxScore
140 - 2022-02-28920Monsters4Phantoms5WBoxScore
142 - 2022-03-02936Phantoms1Monsters4LBoxScore
144 - 2022-03-04949Oceanics4Phantoms5WXXBoxScore
147 - 2022-03-07972Sharks6Phantoms2LBoxScore
150 - 2022-03-10994Wolf Pack3Phantoms2LXBoxScore
152 - 2022-03-121011Phantoms1Wolf Pack3LBoxScore
155 - 2022-03-151029Phantoms2Bears3LXXBoxScore
156 - 2022-03-161037Caroline1Phantoms6WBoxScore
158 - 2022-03-181057Crunch2Phantoms3WBoxScore
161 - 2022-03-211073Bruins6Phantoms3LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
163 - 2022-03-231085Phantoms7Thunder2WBoxScore
165 - 2022-03-251098Minnesota3Phantoms5WBoxScore
166 - 2022-03-261109Oil Kings4Phantoms3LBoxScore
168 - 2022-03-281125Chiefs5Phantoms3LBoxScore
171 - 2022-03-311149Phantoms7Stars1WBoxScore
172 - 2022-04-011159Phantoms4Chill2WBoxScore
175 - 2022-04-041179Sound Tigers4Phantoms5WXXBoxScore
177 - 2022-04-061196Phantoms1Cougars3LBoxScore
179 - 2022-04-081206Phantoms3Spiders5LBoxScore
180 - 2022-04-091216Manchots5Phantoms3LBoxScore
183 - 2022-04-121239Phantoms4Wolf Pack2WBoxScore
184 - 2022-04-131246Chill2Phantoms4WBoxScore
186 - 2022-04-151261Phantoms7Crunch2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance78,37339,456
Attendance PCT95.58%96.23%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2874 - 95.80% 81,339$3,334,895$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,144,211$ 2,508,926$ 2,514,426$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,446$ 2,145,032$ 23 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 13,417$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT