Connexion

Monsters
GP: 82 | W: 46 | L: 29 | OTL: 7 | P: 99
GF: 320 | GA: 295 | PP%: 22.82% | PK%: 79.21%
DG: Benoit Toupin | Morale : 50 | Moyenne d’équipe : 55
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Thunder
12-61-9, 33pts
1
FINAL
7 Monsters
46-29-7, 99pts
Team Stats
L7StreakSOL1
4-34-3Home Record23-14-4
8-27-6Away Record23-15-3
0-8-2Last 10 Games5-4-1
2.85Goals Per Game3.90
5.04Goals Against Per Game3.60
19.20%Power Play Percentage22.82%
77.78%Penalty Kill Percentage79.21%
Monsters
46-29-7, 99pts
2
FINAL
3 Caroline
23-48-11, 57pts
Team Stats
SOL1StreakW3
23-14-4Home Record17-19-5
23-15-3Away Record6-29-6
5-4-1Last 10 Games5-3-2
3.90Goals Per Game3.44
3.60Goals Against Per Game4.65
22.82%Power Play Percentage24.23%
79.21%Penalty Kill Percentage71.37%
Meneurs d'équipe
Buts
Colin Blackwell
13
Passes
Kurtis MacDermid
27
Points
Kurtis MacDermid
38
Plus/Moins
Colin Blackwell
2
Victoires
Braden Holtby
46
Pourcentage d’arrêts
Jean-Francois Berube
0.957

Statistiques d’équipe
Buts pour
320
3.90 GFG
Tirs pour
3394
41.39 Avg
Pourcentage en avantage numérique
22.8%
55 GF
Début de zone offensive
41.1%
Buts contre
295
3.60 GAA
Tirs contre
3208
39.12 Avg
Pourcentage en désavantage numérique
79.2%
58 GA
Début de la zone défensive
40.6%
Information d’équipe

Directeur généralBenoit Toupin
DivisionNord-Est
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,865
Billets de saison300


Information formation

Équipe Pro30
Équipe Mineure18
Limite contact 48 / 50
Espoirs14


Historique d'équipe

Saison actuelle46-29-7 (99PTS)
Historique46-29-8 (0.554%)
Apparitions séries éliminatoires
Historique séries éliminatoires (W-L)-


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Melker KarlssonXX100.006543887765588155495557757266690506203021,425,000$
2Benoit-Olivier Groulx (R)X100.00767383677373766278616065574444050610204822,500$
3Cole Caufield (R)X100.00614093805666517025608054254444050610193880,833$
4Tom KuhnhacklXX100.00787388777355546250605770546063050610281600,000$
5Julien GauthierX100.00844686698454705945655862255152050600221925,000$
6Sheldon DriesXX100.00706483746461626176556362604849050590264700,000$
7Dominik Bokk (R)XX100.00756989676961626150566264594444050580204863,333$
8Chad Yetman (R)XX100.00756499646460615670565163484444050560204560,000$
9Tim SoderlundXX100.00766499655857535555554864424444050550223825,834$
10Brandon Coe (R)X100.00797489637459615150524663444444050540184650,000$
11Griffen MolinoXX100.00676488596350484964474462445151050510262900,000$
12Kasper Bjorkqvist (R)XX100.00737288497246464749365362514444050500231700,000$
13Johnathan KovacevicX100.00868686637866625828554569394444050610232792,500$
14Jimmy SchuldtX100.00868097617374715828445669484444050610251825,000$
15Brian LashoffX100.00817986687955584925374169396364050600301775,000$
16Keaton MiddletonX100.00898891618857594925443968374444050590221715,000$
17Connor Mackey (R)X100.00757283607259615525524362414444050570244925,000$
18Adam Ginning (R)X100.00615871627763904025353767395052050570204825,000$
Rayé
1Adam Tambellini (R)XX100.00334343435131313343333343383230050360251560,000$
2Todd Burgess (R)X100.00344040405533333440343440373230050360241650,000$
3Wyatte Wylie (R)X100.00757085617061645125464161394444050560204820,833$
4Nils Lundkvist (R)X100.00484183696169925125464748495050050550204925,000$
5Reece ScarlettX100.00706985606946464725384060394444050520271650,000$
6Jake Christiansen (R)X100.00757198577150543925273761364444050520213925,000$
7Matt Kiersted (R)X100.00776799646745474125283960374444050520222858,750$
8Sergei Boikov (R)X100.00323737376631313237323237343230050360241705,000$
MOYENNE D’ÉQUIPE100.0069638362695559514147486144464605055
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Braden Holtby100.0059677581595957616459787175050630
2Jean-Francois Berube100.0052648066475352575151335247050540
Rayé
1Cory Schneider100.0047455880474551535148306969050540
2Jakub Skarek (R)100.0048536681464750544747334844050520
MOYENNE D’ÉQUIPE100.005257707750515356535144605905056
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cole CaufieldMonsters (Clb)RW8247479415403516944711933110.51%6151618.507121971201000018231.79%15100011.2402000864
2Tom KuhnhacklMonsters (Clb)LW/RW8230639317580182163375912638.00%35177521.666101650192011122033146.67%16500011.054100001041
3Benoit-Olivier GroulxMonsters (Clb)C82305383284751112152987921610.07%22153918.78215174518511271155159.35%208100101.0805100374
4Sheldon DriesMonsters (Clb)C/LW8225568123315100219307742268.14%18170020.746131955192123132063157.42%198200000.95612100257
5Julien GauthierMonsters (Clb)RW82294776216001761372788222310.43%11154218.818917371730002126344.07%11800000.9901000642
6Dominik BokkMonsters (Clb)LW/RW82244266-1538095125327742277.34%24141817.305914431390004911043.16%9500010.9349000433
7Melker KarlssonMonsters (Clb)C/RW592525501560411462046614912.25%2499416.8611214570002712245.86%68900101.0104000333
8Chad YetmanMonsters (Clb)C/RW82202848-1014070190220591179.09%13123615.080003260002530354.44%153000000.7811000211
9Jimmy SchuldtMonsters (Clb)D761434483106201467116252818.64%120170322.4161016571961122116100.00%000100.5600112003
10Brian LashoffMonsters (Clb)D8213253834601019160110308011.82%139167520.436612371680001173110.00%000100.4500101413
11Kurtis MacDermidColumbusD51112738-24201606112439628.87%97121223.7821012421250002130200.00%000000.6300000014
12Keaton MiddletonMonsters (Clb)D8262531-1011020210436215469.68%105137616.781235320002129100.00%000000.4500301000
13Johnathan KovacevicMonsters (Clb)D5262329136610127657931667.59%94113321.81426381150221123200.00%000000.5100101011
14Tim SoderlundMonsters (Clb)LW/RW82111526-15240808616441926.71%19109813.40011213000101551045.16%12400000.4711000012
15Colin BlackwellColumbusC/LW/RW20131225220126789297414.61%948724.38471119620002672047.07%69900011.0316000300
16Connor MackeyMonsters (Clb)D6171724-145201395059224711.86%9094415.483251350000034100.00%000000.5100000012
17Nils LundkvistMonsters (Clb)D403161915004132681311.54%2676919.24123874000050000.00%000000.4900000031
18Adam GinningMonsters (Clb)D82710170180713649243614.29%139145717.780114131013166020.00%000000.2300000001
19Kasper BjorkqvistMonsters (Clb)LW/RW4975121120412249174614.29%665813.4400000000061244.44%5400000.3600000001
20Griffen MolinoMonsters (Clb)C/LW80189-54024744518372.22%74695.8700001000030054.50%57800000.3800000000
21Brandon CoeMonsters (Clb)RW44268-617535315111343.92%53427.79000020000140045.83%2400000.4700001000
22Jake ChristiansenMonsters (Clb)D5011-240501120.00%511022.0801109000011000.00%000000.1800000000
23Wyatte WylieMonsters (Clb)D1401121001849660.00%1323716.9800012300007000.00%000000.0800000000
24Adam TambelliniMonsters (Clb)C/LW6000000000000.00%0508.3900001000050028.57%700000.0000000000
Statistiques d’équipe totales ou en moyenne14593315869171107857520732047353598824749.36%10272545417.456211317554420584711651952401853.96%829700440.721751816454143
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Braden HoltbyMonsters (Clb)82462770.9103.4148534027630810270.77845820425
2Cory SchneiderMonsters (Clb)30200.9383.43105006970000.0000061010
3Jean-Francois BerubeMonsters (Clb)10000.9571.9431001230000.0000020000
Statistiques d’équipe totales ou en moyenne86462970.9123.4049904028332010270.778458281435


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Adam GinningMonsters (Clb)D202000-01-13Yes206 Lbs6 ft4NoNoNo4Pro & Farm825,000$82,500$0$No825,000$825,000$825,000$
Adam TambelliniMonsters (Clb)C/LW251994-11-01Yes169 Lbs6 ft2NoNoNo1Pro & Farm560,000$56,000$0$NoLien
Benoit-Olivier GroulxMonsters (Clb)C202000-02-05Yes195 Lbs6 ft2NoNoNo4Pro & Farm822,500$82,250$0$No822,500$822,500$822,500$Lien
Braden HoltbyMonsters (Clb)G311989-09-16No214 Lbs6 ft2NoNoNo4Pro & Farm4,875,000$487,500$0$No4,875,000$4,875,000$4,875,000$Lien
Brandon CoeMonsters (Clb)RW182001-12-01Yes190 Lbs6 ft4NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Lien
Brian LashoffMonsters (Clb)D301990-07-15No213 Lbs6 ft3NoNoNo1Pro & Farm775,000$77,500$0$NoLien
Chad YetmanMonsters (Clb)C/RW202000-02-18Yes179 Lbs5 ft11NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Lien
Cole CaufieldMonsters (Clb)RW192001-01-02Yes162 Lbs5 ft7NoNoNo3Pro & Farm880,833$88,083$0$No880,833$880,833$Lien
Connor MackeyMonsters (Clb)D241996-09-12Yes190 Lbs6 ft2NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Cory SchneiderMonsters (Clb)G341986-03-17No200 Lbs6 ft3NoNoNo2Pro & Farm5,250,000$525,000$0$No5,250,000$Lien
Dominik BokkMonsters (Clb)LW/RW202000-02-03Yes181 Lbs6 ft2NoNoNo4Pro & Farm863,333$86,333$0$No863,333$863,333$863,333$Lien
Griffen MolinoMonsters (Clb)C/LW261994-01-21No171 Lbs5 ft11NoNoNo2Pro & Farm900,000$90,000$0$No900,000$Lien
Jake ChristiansenMonsters (Clb)D211999-09-12Yes194 Lbs6 ft1NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$
Jakub SkarekMonsters (Clb)G201999-11-10Yes202 Lbs6 ft3NoNoNo4Pro & Farm764,167$76,417$0$No764,167$764,167$764,167$Lien
Jean-Francois BerubeMonsters (Clb)G291991-07-13No177 Lbs6 ft1NoNoNo1Pro & Farm999,999$100,000$0$NoLien
Jimmy SchuldtMonsters (Clb)D251995-05-11No203 Lbs6 ft0NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Johnathan KovacevicMonsters (Clb)D231997-07-12No207 Lbs6 ft4NoNoNo2Pro & Farm792,500$79,250$0$No792,500$Lien
Julien GauthierMonsters (Clb)RW221997-10-15No227 Lbs6 ft4NoNoNo1Pro & Farm925,000$92,500$0$NoLien
Kasper BjorkqvistMonsters (Clb)LW/RW231997-07-10Yes198 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Keaton MiddletonMonsters (Clb)D221998-02-10No233 Lbs6 ft6NoNoNo1Pro & Farm715,000$71,500$0$NoLien
Matt KierstedMonsters (Clb)D221998-04-14Yes181 Lbs6 ft0NoNoNo2Pro & Farm858,750$85,875$0$No858,750$Lien
Melker KarlssonMonsters (Clb)C/RW301990-07-18No182 Lbs5 ft10NoNoNo2Pro & Farm1,425,000$142,500$0$No1,425,000$Lien
Nils LundkvistMonsters (Clb)D202000-07-27Yes174 Lbs5 ft10NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Reece ScarlettMonsters (Clb)D271993-05-31No185 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Sergei BoikovMonsters (Clb)D241996-01-24Yes200 Lbs6 ft2NoNoNo1Pro & Farm705,000$70,500$0$NoLien
Sheldon DriesMonsters (Clb)C/LW261994-04-23No180 Lbs5 ft9NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Lien
Tim SoderlundMonsters (Clb)LW/RW221998-01-23No163 Lbs5 ft9NoNoNo3Pro & Farm825,834$82,583$0$No825,834$825,834$Lien
Todd BurgessMonsters (Clb)RW241996-04-03Yes178 Lbs6 ft2NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Tom KuhnhacklMonsters (Clb)LW/RW281992-01-21No196 Lbs6 ft2NoNoNo1Pro & Farm600,000$60,000$0$NoLien
Wyatte WylieMonsters (Clb)D201999-11-02Yes190 Lbs6 ft0NoNoNo4Pro & Farm820,833$82,083$0$No820,833$820,833$820,833$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3023.83191 Lbs6 ft12.471,089,792$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Tom KuhnhacklBenoit-Olivier GroulxCole Caufield40014
2Sheldon DriesMelker KarlssonJulien Gauthier34023
3Dominik BokkChad YetmanBrandon Coe20032
4Tim SoderlundGriffen MolinoKasper Bjorkqvist6122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Johnathan KovacevicBrian Lashoff40122
2Jimmy SchuldtConnor Mackey30032
3Adam GinningKeaton Middleton20023
4Johnathan KovacevicJimmy Schuldt10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Tom KuhnhacklBenoit-Olivier GroulxCole Caufield60005
2Dominik BokkSheldon DriesJulien Gauthier40005
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jimmy SchuldtBrian Lashoff60005
2Johnathan KovacevicConnor Mackey40014
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Benoit-Olivier GroulxMelker Karlsson60050
2Benoit-Olivier GroulxTom Kuhnhackl40050
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jimmy SchuldtBrian Lashoff60050
2Keaton MiddletonJohnathan Kovacevic40050
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Benoit-Olivier Groulx60050Jimmy SchuldtBrian Lashoff60050
2Cole Caufield40050Keaton MiddletonJohnathan Kovacevic40050
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Benoit-Olivier GroulxCole Caufield60122
2Tom KuhnhacklJulien Gauthier40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jimmy SchuldtBrian Lashoff60122
2Keaton MiddletonJohnathan Kovacevic40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Tom KuhnhacklBenoit-Olivier GroulxCole CaufieldJimmy SchuldtJohnathan Kovacevic
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Tom KuhnhacklBenoit-Olivier GroulxMelker KarlssonJohnathan KovacevicBrian Lashoff
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Chad Yetman, Tim Soderlund, Brandon CoeDominik Bokk, Tim SoderlundBrandon Coe
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Adam Ginning, Johnathan Kovacevic, Brian LashoffAdam GinningJimmy Schuldt, Adam Ginning
Tirs de pénalité
Benoit-Olivier Groulx, Cole Caufield, Tom Kuhnhackl, Julien Gauthier, Sheldon Dries
Gardien
#1 : Braden Holtby, #2 : Jean-Francois Berube


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals20200000410-61010000013-21010000037-400.00047111011497981999107711191142101682164711218.18%3166.67%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
2Baby Hawks210010001293110000006421000100065141.000121830001149798196810771119114210192251852100.00%9366.67%11799312757.53%1612308952.19%743140053.07%1992137519236061081540
3Bears42100010161422110000066021000010108260.75016274300114979819147107711191142101141363510816531.25%15566.67%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
4Bruins31200000711-41010000027-52110000054120.3337121900114979819991077111911421011284027719111.11%11190.91%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
5Cabaret Lady Mary Ann3300000017892200000012661100000052361.0001731480011497981916610771119114210110228107411218.18%4175.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
6Caroline43000001231582200000015872100000187170.8752342650011497981918310771119114210115343517311436.36%16756.25%11799312757.53%1612308952.19%743140053.07%1992137519236061081540
7Chiefs210001005501000010034-11100000021130.75058130011497981969107711191142101531516486116.67%7185.71%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
8Chill211000007701010000035-21100000042220.50071219101149798199010771119114210175271244800.00%6266.67%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
9Comets2020000028-61010000014-31010000014-300.0002350011497981973107711191142101782723456116.67%4175.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
10Cougars30300000813-52020000069-31010000024-200.0008162420114979819861077111911421011354024646350.00%7185.71%11799312757.53%1612308952.19%743140053.07%1992137519236061081540
11Crunch330000001367110000004222200000094561.000132437001149798191421077111911421011292545887342.86%140100.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
12Heat2110000078-1110000005321010000025-320.50071421001149798197310771119114210179321246500.00%6183.33%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
13Jayhawks200010019901000000145-11000100054130.750914230011497981980107711191142101802427558112.50%6266.67%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
14Las Vegas220000001183110000005321100000065141.00011203100114979819911077111911421011013551547114.29%5180.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
15Manchots402000111114-32020000025-32000001199030.3751117280011497981915310771119114210117358581087114.29%13284.62%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
16Marlies31100010862110000004132010001045-140.667811191011497981910210771119114210110436277310220.00%11190.91%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
17Minnesota22000000954110000003211100000063341.00091524001149798199710771119114210174201764500.00%6266.67%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
18Monarchs21100000972110000005141010000046-220.500917260011497981910210771119114210174241047500.00%50100.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
19Monsters20200000311-81010000025-31010000016-500.000369001149798196310771119114210188321845400.00%9366.67%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
20Oceanics200001109901000010045-11000001054130.750915240011497981976107711191142101991720476233.33%10190.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
21Oil Kings2010000168-21010000023-11000000145-110.25061117001149798196410771119114210165151450800.00%70100.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
22Phantoms4310000017116220000009362110000088060.7501731480011497981916410771119114210115835287917529.41%14378.57%11799312757.53%1612308952.19%743140053.07%1992137519236061081540
23Rocket302000101015-51010000026-42010001089-120.33310152510114979819971077111911421011304432666116.67%16381.25%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
24Senators321000001394211000009721100000042240.6671324370011497981913710771119114210110132225611436.36%11372.73%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
25Sharks211000008621010000034-11100000052320.500813210011497981967107711191142101802918404250.00%9188.89%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
26Sound Tigers4110101022184210000101284201010001010060.7502239610011497981917310771119114210116239348611763.64%16568.75%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
27Spiders412000101417-32100001097220200000510-540.5001425391011497981914310771119114210115746289411327.27%13561.54%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
28Stars2010000169-31000000134-11010000035-210.250612180011497981987107711191142101811810404125.00%5180.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
29Thunder330000002161522000000144101100000072561.000213859001149798191981077111911421011063516906116.67%8187.50%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
30Wolf Pack4210001013130220000008532010001058-360.7501322350011497981920510771119114210114243268214214.29%130100.00%01799312757.53%1612308952.19%743140053.07%1992137519236061081540
Total82352903285320295254121140022216413925411415030631561560990.604320559879701149798193394107711191142101320894173519362415522.82%2795879.21%41799312757.53%1612308952.19%743140053.07%1992137519236061081540
_Since Last GM Reset82352903285320295254121140022216413925411415030631561560990.604320559879701149798193394107711191142101320894173519362415522.82%2795879.21%41799312757.53%1612308952.19%743140053.07%1992137519236061081540
_Vs Conference4619170117117915821231280012091712023790105188871560.609179310489401149798191955107711191142101176851836710721463725.34%1583180.38%11799312757.53%1612308952.19%743140053.07%1992137519236061081540
_Vs Division287501030116102141460000206142191415010105560-5220.3931162033191011497981911681077111911421011086300260630872731.03%1002773.00%21799312757.53%1612308952.19%743140053.07%1992137519236061081540

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8299SOL132055987933943208941735193670
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8235293285320295
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4121140222164139
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4114153063156156
Derniers 10 matchs
WLOTWOTL SOWSOL
540001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2415522.82%2795879.21%4
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
107711191142101114979819
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1799312757.53%1612308952.19%743140053.07%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1992137519236061081540


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2021-10-1416Marlies1Monsters4WSommaire du match
4 - 2021-10-1522Monsters5Manchots6LXXSommaire du match
6 - 2021-10-1735Crunch2Monsters4WSommaire du match
10 - 2021-10-2159Admirals3Monsters1LSommaire du match
11 - 2021-10-2269Monsters6Caroline4WSommaire du match
15 - 2021-10-2694Stars4Monsters3LXXSommaire du match
17 - 2021-10-28110Monsters6Baby Hawks5WXSommaire du match
18 - 2021-10-29120Sound Tigers4Monsters5WXXSommaire du match
20 - 2021-10-31129Monsters2Marlies4LSommaire du match
23 - 2021-11-03148Caroline2Monsters6WSommaire du match
25 - 2021-11-05165Monsters4Phantoms3WSommaire du match
29 - 2021-11-09189Oil Kings3Monsters2LSommaire du match
31 - 2021-11-11200Monsters2Chiefs1WSommaire du match
32 - 2021-11-12212Heat3Monsters5WSommaire du match
35 - 2021-11-15227Las Vegas3Monsters5WSommaire du match
37 - 2021-11-17246Monsters5Jayhawks4WXSommaire du match
39 - 2021-11-19260Monsters1Monsters6LSommaire du match
42 - 2021-11-22273Monsters5Rocket4WXXSommaire du match
45 - 2021-11-25297Chiefs4Monsters3LXSommaire du match
49 - 2021-11-29322Rocket6Monsters2LSommaire du match
51 - 2021-12-01337Cougars4Monsters3LSommaire du match
53 - 2021-12-03352Monsters5Oceanics4WXXSommaire du match
55 - 2021-12-05369Senators3Monsters2LSommaire du match
57 - 2021-12-07384Phantoms2Monsters5WSommaire du match
59 - 2021-12-09400Manchots2Monsters1LSommaire du match
60 - 2021-12-10410Monsters5Sound Tigers6LSommaire du match
63 - 2021-12-13429Jayhawks5Monsters4LXXSommaire du match
65 - 2021-12-15444Wolf Pack2Monsters3WSommaire du match
67 - 2021-12-17458Monsters5Cabaret Lady Mary Ann2WSommaire du match
69 - 2021-12-19469Monsters4Bears3WXXSommaire du match
72 - 2021-12-22490Monsters4Manchots3WXXSommaire du match
74 - 2021-12-24501Monsters4Senators2WSommaire du match
76 - 2021-12-26521Bears3Monsters4WSommaire du match
77 - 2021-12-27529Monsters2Cougars4LSommaire du match
79 - 2021-12-29541Monarchs1Monsters5WSommaire du match
81 - 2021-12-31561Spiders2Monsters3WXXSommaire du match
83 - 2022-01-02573Monsters5Sound Tigers4WXSommaire du match
87 - 2022-01-06585Monsters6Bears5WSommaire du match
89 - 2022-01-08604Baby Hawks4Monsters6WSommaire du match
91 - 2022-01-10619Cabaret Lady Mary Ann4Monsters6WSommaire du match
93 - 2022-01-12627Monsters2Bruins3LSommaire du match
95 - 2022-01-14642Sharks4Monsters3LSommaire du match
97 - 2022-01-16662Monsters4Monarchs6LSommaire du match
98 - 2022-01-17674Monsters3Admirals7LSommaire du match
100 - 2022-01-19688Monsters5Sharks2WSommaire du match
102 - 2022-01-21700Monsters6Las Vegas5WSommaire du match
105 - 2022-01-24719Bruins7Monsters2LSommaire du match
107 - 2022-01-26733Caroline6Monsters9WSommaire du match
109 - 2022-01-28751Spiders5Monsters6WSommaire du match
110 - 2022-01-29758Monsters4Wolf Pack3WXXSommaire du match
113 - 2022-02-01766Oceanics5Monsters4LXSommaire du match
123 - 2022-02-11792Monsters3Crunch2WSommaire du match
124 - 2022-02-12807Monsters3Rocket5LSommaire du match
126 - 2022-02-14818Cabaret Lady Mary Ann2Monsters6WSommaire du match
129 - 2022-02-17841Cougars5Monsters3LSommaire du match
130 - 2022-02-18851Monsters5Monsters2LSommaire du match
132 - 2022-02-20863Thunder3Monsters7WSommaire du match
135 - 2022-02-23880Monsters6Crunch2WSommaire du match
136 - 2022-02-24893Wolf Pack3Monsters5WSommaire du match
138 - 2022-02-26912Monsters2Spiders5LSommaire du match
140 - 2022-02-28920Monsters4Phantoms5LSommaire du match
142 - 2022-03-02936Phantoms1Monsters4WSommaire du match
144 - 2022-03-04955Monsters4Chill2WSommaire du match
146 - 2022-03-06967Senators4Monsters7WSommaire du match
147 - 2022-03-07978Monsters6Minnesota3WSommaire du match
150 - 2022-03-10995Minnesota2Monsters3WSommaire du match
152 - 2022-03-121013Comets4Monsters1LSommaire du match
155 - 2022-03-151030Monsters2Heat5LSommaire du match
158 - 2022-03-181058Monsters4Oil Kings5LXXSommaire du match
159 - 2022-03-191064Monsters1Comets4LSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
163 - 2022-03-231088Manchots3Monsters1LSommaire du match
165 - 2022-03-251105Chill5Monsters3LSommaire du match
167 - 2022-03-271118Monsters3Bruins1WSommaire du match
170 - 2022-03-301141Bears3Monsters2LSommaire du match
172 - 2022-04-011155Monsters2Marlies1WXXSommaire du match
174 - 2022-04-031171Monsters3Spiders5LSommaire du match
175 - 2022-04-041178Monsters1Wolf Pack5LSommaire du match
178 - 2022-04-071199Monsters7Thunder2WSommaire du match
179 - 2022-04-081212Monsters3Stars5LSommaire du match
181 - 2022-04-101226Sound Tigers4Monsters7WSommaire du match
184 - 2022-04-131249Thunder1Monsters7WSommaire du match
185 - 2022-04-141255Monsters2Caroline3LXXSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance78,19939,270
Assistance PCT95.36%95.78%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2865 - 95.50% 81,122$3,326,015$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
3,134,039$ 3,269,374$ 3,269,374$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
17,483$ 3,134,039$ 30 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 17,483$ 0$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT