Connexion

Heat
GP: 82 | W: 50 | L: 26 | OTL: 6 | P: 106
GF: 320 | GA: 270 | PP%: 20.68% | PK%: 81.60%
DG: Martin Bétit | Morale : 50 | Moyenne d’équipe : 52
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Las Vegas
25-47-10, 60pts
4
FINAL
5 Heat
50-26-6, 106pts
Team Stats
L2StreakW3
12-24-5Home Record30-8-3
13-23-5Away Record20-18-3
1-5-4Last 10 Games6-4-0
3.72Goals Per Game3.90
4.73Goals Against Per Game3.29
19.83%Power Play Percentage20.68%
77.59%Penalty Kill Percentage81.60%
Oil Kings
47-31-4, 98pts
4
FINAL
6 Heat
50-26-6, 106pts
Team Stats
L1StreakW3
26-14-1Home Record30-8-3
21-17-3Away Record20-18-3
6-4-0Last 10 Games6-4-0
3.32Goals Per Game3.90
3.27Goals Against Per Game3.29
21.31%Power Play Percentage20.68%
77.73%Penalty Kill Percentage81.60%
Meneurs d'équipe
Buts
Matthew Nieto
38
Passes
Matthew Nieto
45
Points
Matthew Nieto
83
Plus/Moins
Mikhail Maltsev
20
Victoires
Michael DiPietro
50
Pourcentage d’arrêts
Colton Point
0.957

Statistiques d’équipe
Buts pour
320
3.90 GFG
Tirs pour
3272
39.90 Avg
Pourcentage en avantage numérique
20.7%
55 GF
Début de zone offensive
42.1%
Buts contre
270
3.29 GAA
Tirs contre
2878
35.10 Avg
Pourcentage en désavantage numérique
81.6%
39 GA
Début de la zone défensive
38.7%
Information d’équipe

Directeur généralMartin Bétit
DivisionWest
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,870
Billets de saison300


Information formation

Équipe Pro23
Équipe Mineure19
Limite contact 42 / 50
Espoirs13


Historique d'équipe

Saison actuelle50-26-6 (106PTS)
Historique50-26-5 (0.617%)
Apparitions séries éliminatoires
Historique séries éliminatoires (W-L)-


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Andreas JohnssonXX100.00714291806866757038615961756162050630251842,500$
2Dylan Cozens (R)XX100.00694288807167737262675964254747050630193894,167$
3Adam GaudetteXXX100.006341907765587767506264572560610506102421,800,000$
4Boo NievesX100.00756888757959655665594871475959050600262850,000$
5Charles HudonXX100.00794994736656596033535456725959050570262750,000$
6Eric CornelXX100.00757392637273805066445267535151050570242850,000$
7Hudson FaschingX100.00777485657455555650624466425353050570251850,000$
8Grigory Denisenko (R)XX100.00756795586756556150546364604444050570203925,000$
9Ryan MacInnisXX100.00774499647755586056505569254646050570242850,000$
10Grigori Denisenko (R)XX100.00776799786749514450384461424444050520204925,000$
11Jonathan Dahlen (R)X100.00394545455536363945393945423230050400221925,000$
12Aapeli Rasanen (R)X100.00323737376731313237323237343230050350221525,000$
13Ville HeinolaX100.00777091806464586428545867504545050620193925,002$
14Nicolas BeaudinX100.00764699666369686928615667254545050610203894,168$
15Jacob Moverare (R)X100.00827499627461635425534066384444050590221720,000$
16Julius Honka (R)X100.00736689676655574925424160394444050550242950,000$
17Anthony Florentino (R)X100.00303737377627273037303037323230050360252560,000$
Rayé
1Sergey TolchinskyXX100.00433591744843273135313065413734050430253625,000$
2Cole Ully (R)XX100.00303737374627273037303037323230050330251650,000$
3Ryan Pilon (R)X100.00313737376829293137313137333230050360231560,000$
MOYENNE D’ÉQUIPE100.0063537963675254514348465842454405052
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael DiPietro (R)100.0059577273616155635958334844050590
2Colton Point (R)100.0050536695495050554949304444050540
Rayé
1Dylan Garand (R)100.0045536667404350524445304444050490
MOYENNE D’ÉQUIPE100.005154687850515257515131454405054
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dylan CozensHeat (Cal)C/RW8236629831180130180399992449.02%26175121.3589175421900081032056.27%54200031.1226000653
2Andreas JohnssonHeat (Cal)LW/RW6835508524160701462766719112.68%18135619.9491019521780003957237.89%9500011.2513000278
3Matthew NietoCalgaryLW/RW62384583151801161833911242829.72%39143323.12712197117820251517450.41%48600101.16150001043
4Adam GaudetteHeat (Cal)C/LW/RW823049792110079128335892248.96%12151418.4761218482080000220240.71%14000001.0400000535
5Mikhail MaltsevCalgaryC/LW59313768202809616130710426410.10%25133622.654484814900071325154.83%159400021.0227000556
6Boo NievesHeat (Cal)C82173047-429580196205741688.29%24131015.980116280000512254.14%129300000.7200001302
7Ville HeinolaHeat (Cal)D6683745164101477712742976.30%102156123.663811511810222134300.00%000000.5800101113
8Jacob MoverareHeat (Cal)D821329421455512658110284711.82%108168520.565813402020000144300.00%000000.5000001141
9Ryan MacInnisHeat (Cal)C/LW8211283994201129613736988.03%75133016.22022618000021156.52%2300000.5900000510
10Grigory DenisenkoHeat (Cal)LW/RW82172037-1181069671575915710.83%14115914.141126330001835133.33%10500000.6411001300
11Nicolas BeaudinHeat (Cal)D5362935-324064537935557.59%101126623.90268311380112104000.00%000000.5500000022
12Hudson FaschingHeat (Cal)RW82111930-522085102141301027.80%1597311.8700019000032143.06%7200000.6200000121
13Eric CornelHeat (Cal)C/RW8210172703401168591257210.99%75132816.2000019000141054.42%35100000.4100000020
14Julius HonkaHeat (Cal)D8281927152801083772263511.11%106167520.44257201960001151200.00%000000.3200000002
15Charles HudonHeat (Cal)LW/RW826915-13200614010936665.50%86147.4900017000090036.36%4400000.4901000000
16Grigori DenisenkoHeat (Cal)LW/RW82145-110055403311163.03%265937.240008350000430040.83%38700000.1700000000
17Aapeli RasanenHeat (Cal)C10000-4401320000.00%716016.0400000000000050.00%800000.0000000000
18Anthony FlorentinoHeat (Cal)D10000100801000.00%519219.21000116000018000.00%100000.0000000000
19Jonathan DahlenHeat (Cal)LW10000-61552801010.00%615715.720000100000000.00%000000.0000001000
Statistiques d’équipe totales ou en moyenne12402784847621144553515631651297188521199.36%7922140117.2647781254451815235301257401451.84%514100160.71723105423636
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael DiPietroHeat (Cal)82502560.9063.26475510125827340330.88025820254
2Colton PointHeat (Cal)60100.9571.682140061400010.0000082000
Statistiques d’équipe totales ou en moyenne88502660.9083.19496910126428740340.880258282254


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Aapeli RasanenHeat (Cal)C221998-06-01Yes196 Lbs6 ft0NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Adam GaudetteHeat (Cal)C/LW/RW241996-10-02No170 Lbs6 ft1NoNoNo2Pro & Farm1,800,000$180,000$0$No1,800,000$Lien
Andreas JohnssonHeat (Cal)LW/RW251994-11-20No194 Lbs5 ft10NoNoNo1Pro & Farm842,500$84,250$0$NoLien
Anthony FlorentinoHeat (Cal)D251995-01-30Yes227 Lbs6 ft1NoNoNo2Pro & Farm560,000$56,000$0$No560,000$Lien
Boo NievesHeat (Cal)C261994-01-23No212 Lbs6 ft3NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Lien
Charles HudonHeat (Cal)LW/RW261994-06-23No188 Lbs5 ft10NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Lien
Cole UllyHeat (Cal)LW/RW251995-02-20Yes164 Lbs5 ft10NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Colton PointHeat (Cal)G221998-03-04Yes230 Lbs6 ft5NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Dylan CozensHeat (Cal)C/RW192001-02-09Yes188 Lbs6 ft3NoNoNo3Pro & Farm894,167$89,417$0$No894,167$894,167$Lien
Dylan GarandHeat (Cal)G182002-06-07Yes179 Lbs6 ft1NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Lien
Eric CornelHeat (Cal)C/RW241996-04-11No194 Lbs6 ft2NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Lien
Grigori DenisenkoHeat (Cal)LW/RW202000-06-24Yes186 Lbs5 ft11NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Lien
Grigory DenisenkoHeat (Cal)LW/RW202000-06-23Yes186 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Hudson FaschingHeat (Cal)RW251995-07-28No204 Lbs6 ft1NoNoNo1Pro & Farm850,000$85,000$0$NoLien
Jacob MoverareHeat (Cal)D221998-08-31Yes198 Lbs6 ft3NoNoNo1Pro & Farm720,000$72,000$0$NoLien
Jonathan DahlenHeat (Cal)LW221997-12-20Yes180 Lbs5 ft11NoNoNo1Pro & Farm925,000$92,500$0$NoLien
Julius HonkaHeat (Cal)D241995-12-03Yes180 Lbs5 ft11NoNoNo2Pro & Farm950,000$95,000$0$No950,000$Lien
Michael DiPietroHeat (Cal)G211999-06-08Yes200 Lbs6 ft0NoNoNo2Pro & Farm792,500$79,250$0$No792,500$Lien
Nicolas BeaudinHeat (Cal)D201999-10-07No174 Lbs5 ft11NoNoNo3Pro & Farm894,168$89,417$0$No894,168$894,168$Lien
Ryan MacInnisHeat (Cal)C/LW241996-02-14No201 Lbs6 ft4NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Lien
Ryan PilonHeat (Cal)D231996-10-10Yes206 Lbs6 ft2NoNoNo1Pro & Farm560,000$56,000$0$NoLien
Sergey TolchinskyHeat (Cal)LW/RW251995-02-03No170 Lbs5 ft8NoNoNo3Pro & Farm625,000$62,500$0$No625,000$625,000$Lien
Ville HeinolaHeat (Cal)D192001-03-02No178 Lbs5 ft11NoNoNo3Pro & Farm925,002$92,500$0$No925,002$925,002$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2322.65192 Lbs6 ft02.04819,058$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Andreas JohnssonDylan CozensAdam Gaudette40122
2Ryan MacInnisBoo NievesGrigory Denisenko30122
3Charles HudonEric CornelHudson Fasching20122
4Grigori DenisenkoAapeli RasanenDylan Cozens10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob MoverareJulius Honka40122
2Anthony FlorentinoGrigori Denisenko30122
3Jonathan DahlenAapeli Rasanen20122
4Jacob MoverareJulius Honka10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Andreas JohnssonDylan CozensAdam Gaudette60122
2Ryan MacInnisBoo NievesGrigory Denisenko40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob MoverareJulius Honka60122
2Anthony FlorentinoGrigori Denisenko40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Dylan CozensAndreas Johnsson60122
2Adam GaudetteBoo Nieves40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob MoverareJulius Honka60122
2Anthony Florentino40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Dylan Cozens60122Jacob MoverareJulius Honka60122
2Andreas Johnsson40122Anthony Florentino40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Dylan CozensAndreas Johnsson60122
2Adam GaudetteBoo Nieves40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob MoverareJulius Honka60122
2Anthony Florentino40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Andreas JohnssonDylan CozensAdam GaudetteJacob MoverareJulius Honka
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Andreas JohnssonDylan CozensAdam GaudetteJacob MoverareJulius Honka
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Hudson Fasching, Eric Cornel, Charles HudonHudson Fasching, Eric CornelCharles Hudon
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Anthony Florentino, Jacob Moverare, Julius HonkaAnthony FlorentinoJacob Moverare, Julius Honka
Tirs de pénalité
Dylan Cozens, Andreas Johnsson, Adam Gaudette, Boo Nieves, Ryan MacInnis
Gardien
#1 : Michael DiPietro, #2 : Colton Point


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals42101000161332010100067-122000000106460.7501625411011911974111471032115510516015050229115533.33%11190.91%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
2Baby Hawks31200000911-22110000056-11010000045-120.333916250011911974111361032115510516010432306216212.50%15286.67%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
3Bears21100000770110000004221010000035-220.50071320001191197411721032115510516069208348112.50%4250.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
4Bruins21100000770110000006421010000013-220.50071219001191197411701032115510516067184463133.33%20100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
5Cabaret Lady Mary Ann200010101082100010006511000001043141.000101525001191197411108103211551051608929642800.00%3166.67%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
6Caroline220000001266110000005321100000073441.0001221330011911974118510321155105160612014355240.00%7271.43%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
7Chiefs32100000121022200000012751010000003-340.667121830001191197411131103211551051609931286010220.00%14564.29%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
8Chill31200000710-3110000004312020000037-420.3337121910119119741198103211551051607923177610220.00%60100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
9Comets4210000114140210000019722110000057-250.6251428420011911974111451032115510516015042317811218.18%7185.71%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
10Cougars20200000511-61010000026-41010000035-200.000591410119119741178103211551051607912659700.00%30100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
11Crunch2200000012210110000006241100000060641.0001221330111911974111311032115510516052188539666.67%30100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
12Jayhawks420001102013721000100141042100001063370.875203353001191197411148103211551051601565029788112.50%10280.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
13Las Vegas4400000018126220000009632200000096381.000183250001191197411195103211551051601263316781000.00%80100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
14Manchots220000001037110000006151100000042241.0001018280011911974111001032115510516066126406233.33%3166.67%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
15Marlies21000010963100000104311100000053241.000913220011911974119510321155105160581312567228.57%4175.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
16Minnesota32100000121111010000025-322000000106440.6671221330011911974111151032115510516011226206613215.38%80100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
17Monarchs42100100171432200000011652010010068-250.6251729460011911974111501032115510516014338187317423.53%9366.67%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
18Monsters21100000871110000005231010000035-220.500813211011911974117910321155105160731510386116.67%50100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
19Monsters3120000089-11010000034-12110000055020.3338132100119119741184103211551051601063718531000.00%9188.89%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
20Oceanics32100000121022200000010731010000023-140.6671220320011911974111061032115510516014233185712325.00%9188.89%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
21Oil Kings5320000021201312000001013-322000000117460.60021396000119119741120710321155105160176605810123521.74%17382.35%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
22Phantoms210000015321000000112-11100000041330.7505914001191197411741032115510516061211045500.00%4175.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
23Rocket21100000981110000006241010000036-320.500916250011911974117910321155105160882214419444.44%6183.33%11596305952.17%1461281551.90%720140051.43%2047143418595991071544
24Senators22000000862110000003211100000054141.000813210011911974117110321155105160632814456233.33%70100.00%11596305952.17%1461281551.90%720140051.43%2047143418595991071544
25Sharks41101100141042100100011472010010036-350.625142337001191197411127103211551051601225145856116.67%11281.82%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
26Sound Tigers20100010770100000105411010000023-120.50079160011911974117510321155105160822415304125.00%7442.86%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
27Spiders2020000049-51010000024-21010000025-300.00048120011911974118010321155105160681914339111.11%6266.67%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
28Stars311000101213-11100000032120100010911-240.66712193100119119741111410321155105160993218819333.33%8362.50%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
29Thunder21000100853110000005141000010034-130.75081523001191197411100103211551051607827853200.00%40100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
30Wolf Pack21100000752110000005231010000023-120.5007142100119119741172103211551051606014439200.00%20100.00%01596305952.17%1461281551.90%720140051.43%2047143418595991071544
Total82422603452320270504125803122180132484117180033014013821060.646320547867411191197411327210321155105160287885052117282665520.68%2123981.60%21596305952.17%1461281551.90%720140051.43%2047143418595991071544
_Since Last GM Reset82422603452320270504125803122180132484117180033014013821060.646320547867411191197411327210321155105160287885052117282665520.68%2123981.60%21596305952.17%1461281551.90%720140051.43%2047143418595991071544
_Vs Conference422313011311741482621126011019278142111700030827012560.66717430147511119119741117561032115510516014974442968871482919.59%1182182.20%11596305952.17%1461281551.90%720140051.43%2047143418595991071544

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
82106W332054786732722878850521172841
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8242263452320270
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412583122180132
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4117180330140138
Derniers 10 matchs
WLOTWOTL SOWSOL
640000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2665520.68%2123981.60%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
103211551051601191197411
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1596305952.17%1461281551.90%720140051.43%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2047143418595991071544


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2021-10-1311Heat3Monsters2WSommaire du match
4 - 2021-10-1529Comets3Heat6WSommaire du match
7 - 2021-10-1842Monarchs2Heat4WSommaire du match
9 - 2021-10-2055Heat5Stars4WXXSommaire du match
11 - 2021-10-2274Heat4Las Vegas2WSommaire du match
12 - 2021-10-2377Heat1Sharks3LSommaire du match
14 - 2021-10-2588Phantoms2Heat1LXXSommaire du match
16 - 2021-10-27103Cougars6Heat2LSommaire du match
18 - 2021-10-29122Heat3Monarchs4LSommaire du match
19 - 2021-10-30128Heat5Admirals4WSommaire du match
21 - 2021-11-01142Bears2Heat4WSommaire du match
23 - 2021-11-03153Cabaret Lady Mary Ann5Heat6WXSommaire du match
25 - 2021-11-05169Heat2Oceanics3LSommaire du match
28 - 2021-11-08183Heat7Caroline3WSommaire du match
30 - 2021-11-10194Heat1Chill3LSommaire du match
32 - 2021-11-12212Heat3Monsters5LSommaire du match
33 - 2021-11-13218Heat3Bears5LSommaire du match
35 - 2021-11-15231Jayhawks6Heat5LXSommaire du match
37 - 2021-11-17245Spiders4Heat2LSommaire du match
39 - 2021-11-19261Chiefs4Heat7WSommaire du match
43 - 2021-11-23284Stars2Heat3WSommaire du match
46 - 2021-11-26301Heat3Jayhawks1WSommaire du match
47 - 2021-11-27315Heat5Las Vegas4WSommaire du match
49 - 2021-11-29328Monsters4Heat3LSommaire du match
51 - 2021-12-01338Heat0Chiefs3LSommaire du match
53 - 2021-12-03349Heat4Phantoms1WSommaire du match
55 - 2021-12-05368Heat4Manchots2WSommaire du match
57 - 2021-12-07377Heat6Crunch0WSommaire du match
60 - 2021-12-10405Senators2Heat3WSommaire du match
65 - 2021-12-15446Crunch2Heat6WSommaire du match
67 - 2021-12-17462Monarchs4Heat7WSommaire du match
69 - 2021-12-19471Heat2Monsters3LSommaire du match
70 - 2021-12-20480Heat3Jayhawks2WXXSommaire du match
72 - 2021-12-22494Marlies3Heat4WXXSommaire du match
74 - 2021-12-24504Caroline3Heat5WSommaire du match
77 - 2021-12-27531Manchots1Heat6WSommaire du match
79 - 2021-12-29545Rocket2Heat6WSommaire du match
82 - 2022-01-01566Heat4Stars7LSommaire du match
83 - 2022-01-02570Heat6Minnesota3WSommaire du match
87 - 2022-01-06590Heat5Oil Kings3WSommaire du match
89 - 2022-01-08611Comets4Heat3LXXSommaire du match
91 - 2022-01-10623Baby Hawks3Heat5WSommaire du match
93 - 2022-01-12635Wolf Pack2Heat5WSommaire du match
96 - 2022-01-15656Heat4Minnesota3WSommaire du match
98 - 2022-01-17672Heat4Baby Hawks5LSommaire du match
100 - 2022-01-19685Minnesota5Heat2LSommaire du match
102 - 2022-01-21701Oil Kings5Heat2LSommaire du match
104 - 2022-01-23709Heat3Rocket6LSommaire du match
107 - 2022-01-26728Heat5Marlies3WSommaire du match
109 - 2022-01-28746Heat5Senators4WSommaire du match
119 - 2022-02-07775Chiefs3Heat5WSommaire du match
120 - 2022-02-08780Heat6Oil Kings4WSommaire du match
123 - 2022-02-11803Oil Kings4Heat2LSommaire du match
126 - 2022-02-14823Sharks1Heat7WSommaire du match
128 - 2022-02-16836Chill3Heat4WSommaire du match
130 - 2022-02-18853Heat3Comets2WSommaire du match
132 - 2022-02-20865Heat2Sharks3LXSommaire du match
134 - 2022-02-22878Heat3Monarchs4LXSommaire du match
135 - 2022-02-23890Heat5Admirals2WSommaire du match
137 - 2022-02-25903Baby Hawks3Heat0LSommaire du match
139 - 2022-02-27916Admirals3Heat1LSommaire du match
143 - 2022-03-03945Bruins4Heat6WSommaire du match
145 - 2022-03-05963Heat3Cougars5LSommaire du match
147 - 2022-03-07968Heat1Bruins3LSommaire du match
149 - 2022-03-09991Heat2Chill4LSommaire du match
151 - 2022-03-111001Heat3Thunder4LXSommaire du match
152 - 2022-03-121012Heat4Cabaret Lady Mary Ann3WXXSommaire du match
155 - 2022-03-151030Monsters2Heat5WSommaire du match
157 - 2022-03-171046Jayhawks4Heat9WSommaire du match
159 - 2022-03-191061Las Vegas2Heat4WSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
163 - 2022-03-231091Sound Tigers4Heat5WXXSommaire du match
165 - 2022-03-251108Oceanics3Heat5WSommaire du match
167 - 2022-03-271119Heat2Wolf Pack3LSommaire du match
168 - 2022-03-281124Heat2Sound Tigers3LSommaire du match
170 - 2022-03-301139Heat2Spiders5LSommaire du match
172 - 2022-04-011162Thunder1Heat5WSommaire du match
174 - 2022-04-031173Sharks3Heat4WXSommaire du match
176 - 2022-04-051187Admirals4Heat5WXSommaire du match
178 - 2022-04-071204Heat2Comets5LSommaire du match
182 - 2022-04-111236Oceanics4Heat5WSommaire du match
184 - 2022-04-131252Las Vegas4Heat5WSommaire du match
186 - 2022-04-151269Oil Kings4Heat6WSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance78,07739,580
Assistance PCT95.22%96.54%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2870 - 95.66% 81,132$3,326,395$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,092,818$ 1,883,834$ 1,883,834$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
10,074$ 2,092,818$ 23 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 10,074$ 0$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT