Admirals

GP: 82 | W: 50 | L: 24 | OTL: 8 | P: 108
GF: 301 | GA: 260 | PP%: 18.53% | PK%: 80.00%
GM : Marc Simard | Morale : 50 | Team Overall : 53
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Garrett PilonX100.00716390686378836176566162584444050600212742,500$
2Dominic TurgeonXX100.00797293637380875468495368535353050590232750,000$
3Joshua Ho-Sang (R)X100.006959937764636262505956655444440505902321,000,000$
4Patrick RussellXX100.00795388627564685746585576254949050590262925,000$
5Tomas JurcoXX100.00644787777056515945625656256263050580262750,000$
6Tanner MacMasterX100.00727078656868735872555463554444050580231560,000$
7Ryan SpoonerXX100.004835936762626658785758514848450505602722,400,000$
8Joona Luoto (R)XX100.00674295737046645225505572254545050560221560,000$
9D'Artagnan Joly (R)X100.00524784676960755062543747395454050520204650,000$
10Jack Badini (R)X100.00534989647256714456394146435858050500214805,000$
11Dillon HeatheringtonX100.00787775668177864825403966385354050610242700,000$
12Cal FooteX100.00838382618378855225484266404444050610202925,000$
13Trevor CarrickX100.00757470667476795425455065504444050600251560,000$
14Joey Keane (R)X100.00726782616775795925535162484444050590204809,166$
15Gustav Olofsson (R)X100.00787389727352544925433962374444050560242750,000$
16Bode Wilde (R)X100.00777385607356604525353961374444050540194778,333$
17Benjamin Mirageas (R)X100.00514584626747663125282944305454050480204525,000$
Scratches
1Dennis EverbergXX100.00463588627243333836383866443532050460273600,000$
2Malte Stromwall (R)XX100.00414545455439394145414145433230050410252742,500$
3Brendan Warren (R)X100.00374343436435353743373743403230050390221700,000$
4Matt HunwickX100.004843846162654446354745624765570505403422,800,000$
5James Greenway (R)X100.00394343436837373943393943413230050410212700,000$
6Linus Hultstrom (R)X100.00414545455539394145414145433230050410262825,000$
7Lukas Bengtsson (R)X100.00414545454839394145414145433230050410252742,500$
TEAM AVERAGE100.0061557761685861494446465842454405053
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Christopher Gibson100.0058638072596353626058304545050590
2Spencer Martin100.0053587583505450585251304444050550
Scratches
1Ales Stezka (R)100.0036403871353434343434333230050390
TEAM AVERAGE100.004954647548504651494831404005051
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Garrett PilonAdmirals (Ana)C813666102302001263153961172989.09%26201824.92713205019901162247257.62%281000011.01213000864
2Tomas JurcoAdmirals (Ana)LW/RW8238569432180641773258423211.69%21152018.553710401820000578145.26%9500011.24110000133
3Joshua Ho-SangAdmirals (Ana)RW7930487823260681893521052538.52%37146318.5231215531920112945250.00%17800001.0715000126
4Dominic TurgeonAdmirals (Ana)C/LW5523315422400146118257711968.95%31127723.223584213911291163058.13%48000200.8526000533
5Tanner MacMasterAdmirals (Ana)C7915395425160110164181701398.29%1498512.471451798000177157.04%129900001.1000000252
6Joona LuotoAdmirals (Ana)LW/RW792231531710040136265731878.30%16120315.2443721920000120140.00%7000010.8800000132
7Patrick RussellAdmirals (Ana)LW/RW4327255213100104892075714713.04%689120.7465113410000051043151.35%7400001.1707000554
8Dillon HeatheringtonAdmirals (Ana)D7983846885152789111455967.02%153195724.783912292030000178210.00%000000.4700111213
9Gustav OlofssonAdmirals (Ana)D798354330315126469131588.79%126146518.56347261380001115310.00%000000.5900100101
10Trevor CarrickAdmirals (Ana)D799303987001966412946926.98%114170321.563811581840003142010.00%000000.4600000205
11Andy AndreoffAnaheimC/LW3720173712340110901374410914.60%1676120.571347831011543343.62%61900000.9726000412
12Joey KeaneAdmirals (Ana)D49726332628078577526519.33%72104521.34246301070001108110.00%000000.6300000221
13Ryan SpoonerAdmirals (Ana)C/LW46131427-100662100197713.00%265714.30011130110590159.88%17200000.8211000022
14Trent FredericAnaheimC36913228300967689205610.11%752714.65000311000080054.77%61900000.8300000111
15Bode WildeAdmirals (Ana)D8231619-54610193586826534.41%120122714.97000524000149000.00%000000.3100101011
16D'Artagnan JolyAdmirals (Ana)RW6910818-19806211816841855.95%1389112.92000123000011060.32%6300000.4000000021
17Cal FooteAdmirals (Ana)D1951217521541223282415.63%2245223.83235939101246110.00%000010.7500010200
18Matt HunwickAdmirals (Ana)D35381196013162951510.34%3452915.1310135000015000.00%000000.4200000100
19Dennis EverbergAdmirals (Ana)LW/RW14224-1240319256178.00%421515.42000040002170134.78%2300000.3700000000
20Linus HultstromAdmirals (Ana)D3044420210100.00%44715.940000001102000.00%000001.6700000001
21Benjamin MirageasAdmirals (Ana)D13022-820411000.00%816913.0400000000014000.00%000000.2400000000
22James GreenwayAdmirals (Ana)D14011520801000.00%5866.190000300009000.00%000000.2300000000
23Jack BadiniAdmirals (Ana)C22011-12601117152120.00%026412.0400005000070049.13%23000000.0800000000
24Malte StromwallAdmirals (Ana)LW/RW3000-100426200.00%03812.960000000000000.00%300000.0000000000
25Brendan WarrenAdmirals (Ana)LW14000000312000.00%1785.6300000000010033.33%300000.0000000000
Team Total or Average11912885238112195153518921929306590921979.40%8522148318.0442811234291844358341449441855.05%673800240.75939322374742
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Christopher GibsonAdmirals (Ana)76472170.9222.91445012121627530030.75833760974
2Ales StezkaAdmirals (Ana)50010.9352.701780081230100.6673054000
Team Total or Average81472180.9222.90462912122428760130.750367654974


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Ales StezkaAdmirals (Ana)G221997-01-06Yes192 Lbs6 ft4NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Benjamin MirageasAdmirals (Ana)D201999-05-08Yes181 Lbs6 ft1NoNoNo4Pro & Farm525,000$52,500$0$No525,000$525,000$525,000$Link
Bode WildeAdmirals (Ana)D192000-01-24Yes192 Lbs6 ft3NoNoNo4Pro & Farm778,333$77,833$0$No778,333$778,333$778,333$Link
Brendan WarrenAdmirals (Ana)LW221997-05-07Yes191 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Cal FooteAdmirals (Ana)D201998-12-13No220 Lbs6 ft4NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Christopher GibsonAdmirals (Ana)G261992-12-27No188 Lbs6 ft1NoNoNo2Pro & Farm800,000$80,000$0$No800,000$Link
D'Artagnan JolyAdmirals (Ana)RW201999-04-07Yes181 Lbs6 ft3NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Link
Dennis EverbergAdmirals (Ana)LW/RW271991-12-31No205 Lbs6 ft4NoNoNo3Pro & Farm600,000$60,000$0$No600,000$600,000$Link
Dillon HeatheringtonAdmirals (Ana)D241995-05-08No215 Lbs6 ft4NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Dominic TurgeonAdmirals (Ana)C/LW231996-02-24No196 Lbs6 ft2NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Link
Garrett PilonAdmirals (Ana)C211998-04-13No175 Lbs5 ft10NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Gustav OlofssonAdmirals (Ana)D241994-12-01Yes194 Lbs6 ft3NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Link
Jack BadiniAdmirals (Ana)C211998-01-19Yes203 Lbs6 ft0NoNoNo4Pro & Farm805,000$80,500$0$No805,000$805,000$805,000$Link
James GreenwayAdmirals (Ana)D211998-04-27Yes205 Lbs6 ft4NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Joey KeaneAdmirals (Ana)D201999-07-02Yes183 Lbs6 ft0NoNoNo4Pro & Farm809,166$80,917$0$No809,166$809,166$809,166$Link
Joona LuotoAdmirals (Ana)LW/RW221997-09-26Yes185 Lbs6 ft2YesNoNo1Pro & Farm560,000$56,000$0$NoLink
Joshua Ho-SangAdmirals (Ana)RW231996-01-22Yes173 Lbs6 ft0NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Link
Linus HultstromAdmirals (Ana)D261992-12-09Yes181 Lbs5 ft10NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Lukas BengtssonAdmirals (Ana)D251994-04-14Yes168 Lbs5 ft9NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Malte StromwallAdmirals (Ana)LW/RW251994-08-24Yes180 Lbs5 ft10NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Matt HunwickAdmirals (Ana)D341985-05-21No194 Lbs5 ft11NoNoNo2Pro & Farm2,800,000$280,000$0$No2,800,000$Link
Patrick RussellAdmirals (Ana)LW/RW261993-01-03No205 Lbs6 ft1NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Ryan SpoonerAdmirals (Ana)C/LW271992-01-30No191 Lbs5 ft11NoNoNo2Pro & Farm2,400,000$240,000$0$No2,400,000$Link
Spencer MartinAdmirals (Ana)G241995-06-07No210 Lbs6 ft3NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Link
Tanner MacMasterAdmirals (Ana)C231996-01-08No185 Lbs6 ft0YesNoNo1Pro & Farm560,000$56,000$0$NoLink
Tomas JurcoAdmirals (Ana)LW/RW261992-12-27No188 Lbs6 ft2NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Link
Trevor CarrickAdmirals (Ana)D251994-07-04No186 Lbs6 ft2YesNoNo1Pro & Farm560,000$56,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2723.56191 Lbs6 ft12.30870,370$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dominic TurgeonGarrett PilonJoshua Ho-Sang40122
2Patrick RussellTanner MacMasterTomas Jurco30122
3Joona LuotoRyan SpoonerD'Artagnan Joly20122
4Garrett PilonJack BadiniDominic Turgeon10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonCal Foote40122
2Trevor CarrickJoey Keane30122
3Gustav OlofssonBode Wilde20122
4Benjamin MirageasDillon Heatherington10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dominic TurgeonGarrett PilonJoshua Ho-Sang60122
2Patrick RussellTanner MacMasterTomas Jurco40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonCal Foote60122
2Trevor CarrickJoey Keane40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Garrett PilonDominic Turgeon60122
2Joshua Ho-SangPatrick Russell40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonCal Foote60122
2Trevor CarrickJoey Keane40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Garrett Pilon60122Dillon HeatheringtonCal Foote60122
2Dominic Turgeon40122Trevor CarrickJoey Keane40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Garrett PilonDominic Turgeon60122
2Joshua Ho-SangPatrick Russell40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dillon HeatheringtonCal Foote60122
2Trevor CarrickJoey Keane40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Dominic TurgeonGarrett PilonJoshua Ho-SangDillon HeatheringtonCal Foote
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Dominic TurgeonGarrett PilonJoshua Ho-SangDillon HeatheringtonCal Foote
Extra Forwards
Normal PowerPlayPenalty Kill
Joona Luoto, Ryan Spooner, D'Artagnan JolyJoona Luoto, Ryan SpoonerD'Artagnan Joly
Extra Defensemen
Normal PowerPlayPenalty Kill
Gustav Olofsson, Bode Wilde, Benjamin MirageasGustav OlofssonBode Wilde, Benjamin Mirageas
Penalty Shots
Garrett Pilon, Dominic Turgeon, Joshua Ho-Sang, Patrick Russell, Tomas Jurco
Goalie
#1 : Christopher Gibson, #2 : Spencer Martin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Baby Hawks31200000610-4110000004222020000028-620.3336101600126917512115104210479811051284510841616.25%5180.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
2Bears21000001550110000003211000000123-130.750591400126917512781042104798110589201152300.00%30100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
3Bruins21100000633110000005141010000012-120.5006111700126917512701042104798110592121552300.00%50100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
4Cabaret Lady Mary Ann2200000013310110000006241100000071641.000132437001269175121211042104798110556211050300.00%40100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
5Caroline22000000743110000003211100000042241.00071320001269175126410421047981105742614384250.00%60100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
6Chiefs30200001711-41000000123-12020000058-310.16771118001269175121081042104798110511735246111218.18%11281.82%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
7Chill30100101812-41000000134-12010010058-320.33381523101269175129910421047981105118353168600.00%13284.62%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
8Comets440000001376220000007432200000063381.000132437001269175121401042104798110512424189418527.78%9188.89%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
9Cougars2020000068-21010000034-11010000034-100.00061117001269175124910421047981105842418416233.33%9366.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
10Crunch2110000047-3110000003121010000016-520.500471100126917512721042104798110583211847500.00%8187.50%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
11Heat4300000116115220000008532100000186270.87516304600126917512151104210479811051545020847228.57%9277.78%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
12Jayhawks402010101821-3201000101011-120101000810-240.5001830481012691751216210421047981105152453010413323.08%15753.33%11550293352.85%1631303753.70%722136552.89%2003140219246091071534
13Las Vegas4100101113112210000016602000101075270.875132235001269175121461042104798110514042209017423.53%9188.89%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
14Manchots21001000963100010003211100000064241.000915240012691751259104210479811057421643400.00%3166.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
15Marlies21000001541110000004221000000112-130.750591400126917512531042104798110574181232200.00%6266.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
16Minnesota330000001841422000000153121100000031261.0001835530012691751220310421047981105972312958112.50%60100.00%11550293352.85%1631303753.70%722136552.89%2003140219246091071534
17Monarchs530000202014631000020128422000000862101.000203252001269175122501042104798110524056371491500.00%16193.75%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
18Monsters2110000079-2110000005231010000027-520.50071219001269175126810421047981105671310409111.11%50100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
19Monsters311000011316-31000000178-12110000068-230.50013233600126917512118104210479811051254222649111.11%11463.64%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
20Oceanics32100000911-2220000006331010000038-540.6679182700126917512761042104798110512526185610330.00%8362.50%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
21Oil Kings422000001716121100000910-12110000086240.500173047101269175121571042104798110516241291006116.67%11190.91%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
22Phantoms20200000311-81010000017-61010000024-200.00035800126917512591042104798110581282042500.00%9277.78%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
23Rocket21000010972110000006511000001032141.000916250012691751273104210479811056228143616425.00%7442.86%11550293352.85%1631303753.70%722136552.89%2003140219246091071534
24Senators201000108801010000045-11000001043120.50081321001269175127510421047981105812514526233.33%50100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
25Sharks42200000171612200000012752020000059-440.50017314800126917512151104210479811051694936100600.00%12558.33%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
26Sound Tigers2020000057-21010000034-11010000023-100.0005914001269175126010421047981105802512664125.00%5180.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
27Spiders22000000725110000004221100000030341.00071118011269175125210421047981105712512458450.00%5180.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
28Stars321000001192220000008531010000034-140.6671120310012691751213710421047981105943728607228.57%11190.91%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
29Thunder220000001349110000008171100000053241.00013253800126917512911042104798110554116503133.33%3166.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
Total824124031673012604141276010341751235241141802133126137-111080.65930153583631126917512313510421047981105312689153919352324318.53%2354780.00%31550293352.85%1631303753.70%722136552.89%2003140219246091071534
30Wolf Pack22000000835110000005231100000031241.00081422001269175127810421047981105592312402150.00%60100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
_Since Last GM Reset824124031673012604141276010341751235241141802133126137-111080.65930153583631126917512313510421047981105312689153919352324318.53%2354780.00%31550293352.85%1631303753.70%722136552.89%2003140219246091071534
_Vs Conference371811011331301151519123010217852261868001125263-11480.649130229359111269175121319104210479811051474387252887861315.12%1041981.73%01550293352.85%1631303753.70%722136552.89%2003140219246091071534

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82108L130153583631353126891539193531
All Games
GPWLOTWOTL SOWSOLGFGA
8241243167301260
Home Games
GPWLOTWOTL SOWSOLGFGA
412761034175123
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4114182133126137
Last 10 Games
WLOTWOTL SOWSOL
720001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2324318.53%2354780.00%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
10421047981105126917512
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1550293352.85%1631303753.70%722136552.89%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2003140219246091071534


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-10-2312Jayhawks5Admirals6WXXBoxScore
4 - 2020-10-2528Sharks4Admirals8WBoxScore
7 - 2020-10-2840Admirals3Cougars4LBoxScore
9 - 2020-10-3050Admirals6Manchots4WBoxScore
10 - 2020-10-3159Admirals2Monsters7LBoxScore
13 - 2020-11-0378Admirals1Bruins2LBoxScore
15 - 2020-11-0596Crunch1Admirals3WBoxScore
17 - 2020-11-07112Caroline2Admirals3WBoxScore
19 - 2020-11-09128Heat2Admirals3WBoxScore
21 - 2020-11-11138Admirals2Chill4LBoxScore
23 - 2020-11-13152Admirals3Stars4LBoxScore
25 - 2020-11-15168Admirals2Monsters5LBoxScore
26 - 2020-11-16176Admirals3Las Vegas2WXXBoxScore
28 - 2020-11-18187Oceanics2Admirals4WBoxScore
31 - 2020-11-21202Comets2Admirals3WBoxScore
33 - 2020-11-23219Baby Hawks2Admirals4WBoxScore
35 - 2020-11-25233Minnesota1Admirals7WBoxScore
40 - 2020-11-30269Oil Kings6Admirals4LBoxScore
42 - 2020-12-02278Cougars4Admirals3LBoxScore
44 - 2020-12-04292Sharks3Admirals4WBoxScore
46 - 2020-12-06309Admirals2Chiefs4LBoxScore
48 - 2020-12-08316Admirals2Bears3LXXBoxScore
51 - 2020-12-11334Admirals7Cabaret Lady Mary Ann1WBoxScore
53 - 2020-12-13355Admirals5Thunder3WBoxScore
55 - 2020-12-15372Sound Tigers4Admirals3LBoxScore
57 - 2020-12-17386Admirals7Jayhawks6WXBoxScore
59 - 2020-12-19392Oceanics1Admirals2WBoxScore
62 - 2020-12-22423Monarchs1Admirals3WBoxScore
66 - 2020-12-26451Bears2Admirals3WBoxScore
68 - 2020-12-28463Admirals3Oceanics8LBoxScore
70 - 2020-12-30476Admirals3Minnesota1WBoxScore
72 - 2021-01-01497Monarchs2Admirals3WXXBoxScore
74 - 2021-01-03503Wolf Pack2Admirals5WBoxScore
77 - 2021-01-06528Admirals2Phantoms4LBoxScore
78 - 2021-01-07535Admirals3Spiders0WBoxScore
81 - 2021-01-10553Admirals2Sound Tigers3LBoxScore
82 - 2021-01-11565Admirals3Wolf Pack1WBoxScore
87 - 2021-01-16591Las Vegas4Admirals3LXXBoxScore
89 - 2021-01-18610Phantoms7Admirals1LBoxScore
91 - 2021-01-20615Admirals4Las Vegas3WXBoxScore
93 - 2021-01-22636Admirals1Jayhawks4LBoxScore
96 - 2021-01-25658Chill4Admirals3LXXBoxScore
98 - 2021-01-27674Monsters2Admirals5WBoxScore
100 - 2021-01-29687Stars2Admirals3WBoxScore
102 - 2021-01-31699Admirals1Baby Hawks4LBoxScore
104 - 2021-02-02713Admirals3Chiefs4LBoxScore
107 - 2021-02-05735Admirals3Chill4LXBoxScore
108 - 2021-02-06741Admirals4Caroline2WBoxScore
118 - 2021-02-16773Admirals2Sharks4LBoxScore
120 - 2021-02-18778Jayhawks6Admirals4LBoxScore
122 - 2021-02-20791Thunder1Admirals8WBoxScore
123 - 2021-02-21804Admirals4Monarchs3WBoxScore
126 - 2021-02-24819Admirals4Senators3WXXBoxScore
128 - 2021-02-26828Admirals3Rocket2WXXBoxScore
129 - 2021-02-27839Admirals1Marlies2LXXBoxScore
131 - 2021-03-01856Admirals1Crunch6LBoxScore
133 - 2021-03-03876Chiefs3Admirals2LXXBoxScore
135 - 2021-03-05890Heat3Admirals5WBoxScore
138 - 2021-03-08909Admirals3Comets1WBoxScore
139 - 2021-03-09916Admirals5Heat2WBoxScore
141 - 2021-03-11930Cabaret Lady Mary Ann2Admirals6WBoxScore
143 - 2021-03-13947Monsters8Admirals7LXXBoxScore
145 - 2021-03-15965Las Vegas2Admirals3WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17980Oil Kings4Admirals5WBoxScore
150 - 2021-03-20998Manchots2Admirals3WXBoxScore
152 - 2021-03-221015Spiders2Admirals4WBoxScore
154 - 2021-03-241025Admirals1Baby Hawks4LBoxScore
155 - 2021-03-251031Admirals4Monsters3WBoxScore
157 - 2021-03-271048Marlies2Admirals4WBoxScore
159 - 2021-03-291063Minnesota2Admirals8WBoxScore
161 - 2021-03-311078Senators5Admirals4LBoxScore
165 - 2021-04-041099Admirals4Monarchs3WBoxScore
166 - 2021-04-051112Rocket5Admirals6WBoxScore
169 - 2021-04-081136Bruins1Admirals5WBoxScore
171 - 2021-04-101151Comets2Admirals4WBoxScore
174 - 2021-04-131174Admirals5Oil Kings1WBoxScore
176 - 2021-04-151187Admirals3Heat4LXXBoxScore
179 - 2021-04-181215Admirals3Comets2WBoxScore
180 - 2021-04-191221Admirals3Oil Kings5LBoxScore
183 - 2021-04-221241Stars3Admirals5WBoxScore
185 - 2021-04-241256Monarchs5Admirals6WXXBoxScore
186 - 2021-04-251271Admirals3Sharks5LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3520
Attendance78,01226,581
Attendance PCT95.14%64.83%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2551 - 85.03% 79,562$3,262,040$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,343,339$ 2,350,000$ 2,350,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,634$ 2,343,339$ 27 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 12,634$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT