Phantoms

GP: 82 | W: 51 | L: 27 | OTL: 4 | P: 106
GF: 327 | GA: 239 | PP%: 19.84% | PK%: 82.18%
DG: Richard Duguay | Morale : 50 | Moyenne d'Équipe : 59
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Evan RodriguesXXX100.0064429077666377616961626975636305063X02621,100,000$
2Antti SuomelaX100.00794393746454716072755766254848050610253700,000$
3Tyler BensonX100.0073707971707578635066576354444405061X0212792,500$
4Austin PoganskiX100.00807590657573776050595766544444050600234750,000$
5Christoffer EhnXXX100.0076439864705683575554567425575705060X0233700,000$
6Jake EvansXX100.0077439962685683576758686725454505060X0232525,000$
7Frederick Gaudreau (A)XX100.00715896646562666169575964595858050590261595,000$
8Connor BunnamanX100.00794496647554735756555761254545050570212730,000$
9Jonah GadjovichX100.00767676667659605750456463614444050570203783,333$
10Skyler McKenzieX100.00706190666171755650525660534444050570212741,666$
11Ben Harpur (A)X100.00817473658564645625444169375959050610244750,000$
12Gavin BayreutherX100.00746886637275835325484365404545050600253650,000$
13Sami NikuX100.00705483756668616126584666254848050600221525,000$
14Chris BigrasX100.00746984637162635625484166395757050590246560,000$
15Sebastian AhoDX100.00726387626271745525544262394444050580232750,000$
Rayé
MOYENNE D'ÉQUIPE100.0074598867706473584856546542505005060
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Arvid Holm (R)100.0057716779515662605556575858050600
2Hunter Miska100.0059567363626256636062304444050580
Rayé
1Philippe Desrosiers100.0060597474636250615856304444050580
2Landon Bow100.0053698786495450564848304444050560
MOYENNE D'ÉQUIPE100.005764757656595560555637484805058
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Evan RodriguesPhantoms (Phi)C/LW/RW7040529237180602223578924211.20%28158922.715131857189000102107358.69%194400031.1636000526
2Dominic ToninatoPhiladelphieC81404686402401652513338823812.01%25165620.4587155520800061617156.78%208700011.0417000794
3Tyler BensonPhantoms (Phi)LW743145762442101331583108222110.00%9149020.1466125619500051115245.97%12400001.0204011265
4Joel FarabeePhiladelphieLW5228467437613595168288882399.72%10121123.31313163614400031438034.74%38000201.2202214651
5Antti SuomelaPhantoms (Phi)C842243652922096199245601488.98%15132215.741239350001355060.66%78800000.9822000123
6Jake EvansPhantoms (Phi)C/RW752736633722056822598317710.42%14133617.8253843172000062257.01%22100010.9400000043
7Sami NikuPhantoms (Phi)D82134962243801058213161989.92%111177121.6041317612040001211100.00%000000.7000000014
8Ben HarpurPhantoms (Phi)D821247595594026875104469411.54%120191123.315712382250001190100.00%000000.6200000322
9Christoffer EhnPhantoms (Phi)C/LW/RW592430541612077882116614811.37%9108118.338513411610002113156.52%9200011.0001000611
10Frederick GaudreauPhantoms (Phi)C/RW821934531112034156239661797.95%12117314.311128170001353155.21%103600000.9000000114
11Alexandre CarrierPhiladelphieD726414731315121449425556.38%75156221.7021315502120001190210.00%000000.6000100124
12Ryan ReavesPhiladelphieRW6914264020640224103215561476.51%6129918.83156321720001862041.76%18200000.6225000332
13Jonah GadjovichPhantoms (Phi)LW81181533195220112511683510710.71%1383510.320227220001712048.33%12000000.7900103300
14Austin PoganskiPhantoms (Phi)RW441020301846109648150431096.67%375617.1911219660002280043.86%5700000.7901011022
15Connor BunnamanPhantoms (Phi)C741114256180537611537939.57%475010.1500001000092150.40%37900000.6700000141
16Sebastian AhoDPhantoms (Phi)D82020208320103474814380.00%73121714.85000317000094000.00%000000.3300000000
17Chris BigrasPhantoms (Phi)D824151913480150557228565.56%93145517.7500011101000199100.00%000000.2600000001
18Gavin BayreutherPhantoms (Phi)D44514192014069316519237.69%54101122.99224371100000114100.00%000000.3800000121
19Skyler McKenziePhantoms (Phi)LW35336-54011224617316.52%32467.0501115000060033.33%3000000.4900000000
Stats d'équipe Total ou en Moyenne132432759692344065480202819583450100324439.48%6772368217.8952941465642265000361819521255.15%744000260.78828439404644
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Hunter MiskaPhantoms (Phi)39251210.9212.61232110510112810200.66763921522
2Arvid HolmPhantoms (Phi)2313910.9192.68131921597270010.71472222132
3Philippe DesrosiersPhantoms (Phi)147420.8953.4284300484570000.72711139100
4Landon BowPhantoms (Phi)86200.9133.2548000262990000.0000830000
Stats d'équipe Total ou en Moyenne84512740.9152.83496312623427640210.708248282754


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Antti SuomelaPhantoms (Phi)C251994-03-17No172 Lbs6 ft0NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Arvid HolmPhantoms (Phi)G201998-11-03Yes214 Lbs6 ft4NoNoNo4Pro & Farm845,833$84,583$0$No845,833$845,833$845,833$Lien
Austin PoganskiPhantoms (Phi)RW231996-02-16No201 Lbs6 ft2NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Lien
Ben HarpurPhantoms (Phi)D241995-01-12No222 Lbs6 ft6NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Lien
Chris BigrasPhantoms (Phi)D241995-02-22No190 Lbs6 ft1YesNoNo6Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$560,000$560,000$Lien
Christoffer EhnPhantoms (Phi)C/LW/RW231996-04-05No181 Lbs6 ft3NoYesNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Connor BunnamanPhantoms (Phi)C211998-04-16No207 Lbs6 ft1NoNoNo2Pro & Farm730,000$73,000$0$No730,000$Lien
Evan RodriguesPhantoms (Phi)C/LW/RW261993-07-28No182 Lbs5 ft11NoYesNo2Pro & Farm1,100,000$110,000$0$No1,100,000$Lien
Frederick GaudreauPhantoms (Phi)C/RW261993-05-01No179 Lbs6 ft0NoNoNo1Pro & Farm595,000$59,500$0$NoLien
Gavin BayreutherPhantoms (Phi)D251994-05-12No195 Lbs6 ft1NoNoNo3Pro & Farm650,000$65,000$0$No650,000$650,000$Lien
Hunter MiskaPhantoms (Phi)G241995-07-06No170 Lbs6 ft1NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Jake EvansPhantoms (Phi)C/RW231996-06-02No185 Lbs6 ft0NoYesNo2Pro & Farm525,000$52,500$0$No525,000$Lien
Jonah GadjovichPhantoms (Phi)LW201998-10-12No209 Lbs6 ft2NoNoNo3Pro & Farm783,333$78,333$0$No783,333$783,333$Lien
Landon BowPhantoms (Phi)G241995-08-23No214 Lbs6 ft4NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Philippe DesrosiersPhantoms (Phi)G241995-08-15No195 Lbs6 ft1NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Sami NikuPhantoms (Phi)D221996-10-10No176 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Sebastian AhoDPhantoms (Phi)D231996-02-17No170 Lbs5 ft10NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Lien
Skyler McKenziePhantoms (Phi)LW211998-01-20No170 Lbs5 ft9NoNoNo2Pro & Farm741,666$74,167$0$No741,666$Lien
Tyler BensonPhantoms (Phi)LW211998-03-15No192 Lbs6 ft0NoYesNo2Pro & Farm792,500$79,250$0$No792,500$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1923.11191 Lbs6 ft12.68727,544$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Tyler Benson40122
2Jonah GadjovichJake Evans30122
3Skyler McKenzieAntti SuomelaAustin Poganski20122
4Frederick Gaudreau10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ben HarpurGavin Bayreuther40122
2Sami Niku30122
3Chris BigrasSebastian AhoD20122
4Ben HarpurGavin Bayreuther10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Tyler Benson60122
2Jonah GadjovichJake Evans40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ben HarpurGavin Bayreuther60122
2Sami Niku40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Tyler Benson40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ben HarpurGavin Bayreuther60122
2Sami Niku40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Ben HarpurGavin Bayreuther60122
240122Sami Niku40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Tyler Benson40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ben HarpurGavin Bayreuther60122
2Sami Niku40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Tyler BensonBen HarpurGavin Bayreuther
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Tyler BensonBen HarpurGavin Bayreuther
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Connor Bunnaman, Antti Suomela, Austin PoganskiConnor Bunnaman, Antti SuomelaAustin Poganski
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Chris Bigras, Sebastian AhoD, Chris BigrasSebastian AhoD,
Tirs de Pénalité
, , , Tyler Benson, Antti Suomela
Gardien
#1 : Hunter Miska, #2 : Arvid Holm


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001138110000004221100000071641.0001119300013011378108110981150110042592612439222.22%50100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
2Baby Hawks2110000078-11010000024-21100000054120.500713201013011378105610981150110042871716477228.57%8187.50%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
3Bears42100010151412110000067-12100001097260.75015254000130113781014610981150110042165453012713323.08%15473.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
4Bruins312000006602020000025-31100000041320.3336111700130113781010310981150110042893218711317.69%9277.78%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
5Cabaret Lady Mary Ann330000002161511000000835220000001331061.000213960001301137810228109811501100421122718645120.00%9188.89%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
6Caroline42101000181442110000086221001000108260.750183452001301137810161109811501100421764534947228.57%16381.25%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
7Chiefs2010000168-21010000034-11000000134-110.25061016001301137810581098115011004269212451600.00%11281.82%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
8Chill211000009811010000045-11100000053220.500916250013011378107310981150110042731620725240.00%10280.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
9Comets21100000972110000006241010000035-220.500916250013011378106610981150110042591914464125.00%7185.71%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
10Cougars321000008711010000046-22200000041340.667814220113011378101151098115011004212022388816212.50%10190.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
11Crunch320010001376220000009451000100043161.0001325380113011378101381098115011004211636338112216.67%13192.31%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
12Heat22000000844110000002021100000064241.000814220113011378101321098115011004254182643200.00%8362.50%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
13Jayhawks22000000954110000005321100000042241.000915240013011378108810981150110042751610447114.29%50100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
14Las Vegas2110000089-11010000035-21100000054120.500816240013011378105710981150110042691834574125.00%12283.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
15Manchots413000001416-2211000008802020000068-220.2501424380013011378101271098115011004214649738111218.18%18477.78%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
16Marlies3020000159-42010000136-31010000023-110.167581300130113781098109811501100421062532748112.50%14471.43%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
17Minnesota2200000014212110000008081100000062441.00014274101130113781013210981150110042571011552150.00%30100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
18Monarchs20200000710-31010000034-11010000046-200.00071320001301137810731098115011004294181764600.00%6266.67%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
19Monsters430000011385220000008352100000155070.87513243700130113781013610981150110042116322510110220.00%10190.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
20Monsters2020000058-31010000034-11010000024-200.0005813001301137810731098115011004266158367114.29%4175.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
21Oceanics2110000046-21010000014-31100000032120.500481200130113781062109811501100425712105911218.18%5180.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
22Oil Kings2010100067-1100010004311010000024-220.500610160013011378109310981150110042731920509111.11%8450.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
23Rocket32100000165112110000011561100000050540.66716294501130113781012610981150110042912416727342.86%70100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
24Senators31100001131211100000052320100001810-230.500132437001301137810146109811501100429619267014321.43%8275.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
25Sharks22000000523110000003121100000021141.000581300130113781059109811501100424117144810110.00%7185.71%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
26Sound Tigers43100000181082200000012392110000067-160.7501832500013011378101771098115011004213134259012325.00%10280.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
27Spiders42200000161332110000010732110000066040.5001631470013011378101461098115011004211729299311545.45%12283.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
28Stars210000101064100000106511100000041341.000101525001301137810951098115011004272231244600.00%60100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
29Thunder32100000844110000004042110000044040.667815230113011378101221098115011004272241978700.00%70100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
Total8245270303432723988412216010111681185041231102023159121381060.646327587914161301137810336510981150110042276573968820432525019.84%2754982.18%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
30Wolf Pack4300001025151022000000137621000010128481.00025446900130113781019810981150110042107312410011545.45%12283.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
_Since Last GM Reset8245270303432723988412216010111681185041231102023159121381060.646327587914161301137810336510981150110042276573968820432525019.84%2754982.18%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
_Vs Conference462417000231691363323139000018664222311800022837211550.598169302471011301137810174710981150110042146940937411711513221.19%1482980.41%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
_Vs Division2811300011119902914710000065412414420001154495250.446119214333001301137810109110981150110042958265240686752229.33%931880.65%01765320955.00%1438274952.31%788138956.73%2155151217465691065556

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82106W132758791433652765739688204316
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8245273034327239
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4122161011168118
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4123112023159121
Derniers 10 Matchs
WLOTWOTL SOWSOL
820000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2525019.84%2754982.18%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
109811501100421301137810
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1765320955.00%1438274952.31%788138956.73%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2155151217465691065556


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2020-10-2413Baby Hawks4Phantoms2LSommaire du Match
8 - 2020-10-2945Spiders5Phantoms3LSommaire du Match
11 - 2020-11-0173Phantoms3Comets5LSommaire du Match
14 - 2020-11-0488Phantoms6Heat4WSommaire du Match
15 - 2020-11-0595Phantoms2Oil Kings4LSommaire du Match
18 - 2020-11-08118Stars5Phantoms6WXXSommaire du Match
20 - 2020-11-10130Las Vegas5Phantoms3LSommaire du Match
23 - 2020-11-13151Phantoms5Baby Hawks4WSommaire du Match
25 - 2020-11-15165Monsters1Phantoms3WSommaire du Match
26 - 2020-11-16174Phantoms5Sound Tigers4WSommaire du Match
28 - 2020-11-18182Phantoms4Manchots5LSommaire du Match
31 - 2020-11-21196Phantoms3Spiders4LSommaire du Match
32 - 2020-11-22210Marlies4Phantoms3LXXSommaire du Match
35 - 2020-11-25226Caroline2Phantoms5WSommaire du Match
37 - 2020-11-27240Rocket4Phantoms2LSommaire du Match
39 - 2020-11-29254Phantoms2Marlies3LSommaire du Match
40 - 2020-11-30268Phantoms4Bruins1WSommaire du Match
43 - 2020-12-03283Bears3Phantoms4WSommaire du Match
45 - 2020-12-05298Phantoms4Senators5LXXSommaire du Match
46 - 2020-12-06307Sound Tigers2Phantoms6WSommaire du Match
49 - 2020-12-09319Phantoms9Cabaret Lady Mary Ann2WSommaire du Match
51 - 2020-12-11336Phantoms6Caroline5WXSommaire du Match
53 - 2020-12-13349Heat0Phantoms2WSommaire du Match
55 - 2020-12-15367Comets2Phantoms6WSommaire du Match
57 - 2020-12-17384Phantoms2Monsters1WSommaire du Match
59 - 2020-12-19397Cougars6Phantoms4LSommaire du Match
60 - 2020-12-20404Phantoms5Rocket0WSommaire du Match
63 - 2020-12-23428Marlies2Phantoms0LSommaire du Match
65 - 2020-12-25442Jayhawks3Phantoms5WSommaire du Match
67 - 2020-12-27452Senators2Phantoms5WSommaire du Match
71 - 2020-12-31486Phantoms2Monsters4LSommaire du Match
74 - 2021-01-03507Phantoms6Minnesota2WSommaire du Match
75 - 2021-01-04515Phantoms3Oceanics2WSommaire du Match
77 - 2021-01-06528Admirals2Phantoms4WSommaire du Match
79 - 2021-01-08540Crunch0Phantoms4WSommaire du Match
81 - 2021-01-10558Phantoms4Senators5LSommaire du Match
83 - 2021-01-12574Wolf Pack5Phantoms6WSommaire du Match
88 - 2021-01-17601Phantoms2Sharks1WSommaire du Match
89 - 2021-01-18610Phantoms7Admirals1WSommaire du Match
91 - 2021-01-20622Phantoms4Monarchs6LSommaire du Match
93 - 2021-01-22638Phantoms5Las Vegas4WSommaire du Match
95 - 2021-01-24650Phantoms4Jayhawks2WSommaire du Match
98 - 2021-01-27668Phantoms4Caroline3WSommaire du Match
99 - 2021-01-28676Bears4Phantoms2LSommaire du Match
102 - 2021-01-31695Thunder0Phantoms4WSommaire du Match
104 - 2021-02-02711Bruins3Phantoms1LSommaire du Match
106 - 2021-02-04726Phantoms3Chiefs4LXXSommaire du Match
107 - 2021-02-05731Rocket1Phantoms9WSommaire du Match
109 - 2021-02-07750Monarchs4Phantoms3LSommaire du Match
112 - 2021-02-10763Manchots5Phantoms4LSommaire du Match
122 - 2021-02-20786Phantoms2Manchots3LSommaire du Match
123 - 2021-02-21799Monsters4Phantoms3LSommaire du Match
125 - 2021-02-23811Phantoms2Cougars0WSommaire du Match
128 - 2021-02-26832Spiders2Phantoms7WSommaire du Match
130 - 2021-02-28850Phantoms6Bears5WXXSommaire du Match
132 - 2021-03-02861Cabaret Lady Mary Ann3Phantoms8WSommaire du Match
133 - 2021-03-03869Phantoms1Sound Tigers3LSommaire du Match
135 - 2021-03-05883Phantoms4Cabaret Lady Mary Ann1WSommaire du Match
137 - 2021-03-07897Phantoms3Thunder1WSommaire du Match
140 - 2021-03-10920Monsters2Phantoms5WSommaire du Match
142 - 2021-03-12936Phantoms3Monsters4LXXSommaire du Match
144 - 2021-03-14949Oceanics4Phantoms1LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17972Sharks1Phantoms3WSommaire du Match
150 - 2021-03-20994Wolf Pack2Phantoms7WSommaire du Match
152 - 2021-03-221011Phantoms6Wolf Pack3WSommaire du Match
155 - 2021-03-251029Phantoms3Bears2WSommaire du Match
156 - 2021-03-261037Caroline4Phantoms3LSommaire du Match
158 - 2021-03-281057Crunch4Phantoms5WSommaire du Match
161 - 2021-03-311073Bruins2Phantoms1LSommaire du Match
163 - 2021-04-021085Phantoms1Thunder3LSommaire du Match
165 - 2021-04-041098Minnesota0Phantoms8WSommaire du Match
166 - 2021-04-051109Oil Kings3Phantoms4WXSommaire du Match
168 - 2021-04-071125Chiefs4Phantoms3LSommaire du Match
171 - 2021-04-101149Phantoms4Stars1WSommaire du Match
172 - 2021-04-111159Phantoms5Chill3WSommaire du Match
175 - 2021-04-141179Sound Tigers1Phantoms6WSommaire du Match
177 - 2021-04-161196Phantoms2Cougars1WSommaire du Match
179 - 2021-04-181206Phantoms3Spiders2WSommaire du Match
180 - 2021-04-191216Manchots3Phantoms4WSommaire du Match
183 - 2021-04-221239Phantoms6Wolf Pack5WXXSommaire du Match
184 - 2021-04-231246Chill5Phantoms4LSommaire du Match
186 - 2021-04-251261Phantoms4Crunch3WXSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance77,64739,857
Assistance PCT94.69%97.21%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2866 - 95.53% 80,866$3,315,500$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,882,098$ 1,382,333$ 1,382,333$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
7,432$ 1,882,098$ 19 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 7,432$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT