Comets

GP: 82 | W: 30 | L: 46 | OTL: 6 | P: 66
GF: 272 | GA: 309 | PP%: 18.75% | PK%: 75.00%
DG: Samuel Gendron-Mallet | Morale : 50 | Moyenne d'Équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Markus GranlundXXX100.006541898267618362415460747265660506302621,750,000$
2Emil Bemstrom (R)X100.00734295826562696834647154255050050620204925,001$
3Danny O'Regan (R)XX100.00736688686679846278625763544444050610251600,000$
4Jean-Sebastien DeaXX100.00716284626474826469596268595252050610251650,000$
5Maxim LetunovX100.00777191627170726580666066574444050610231825,000$
6Filip ChlapikX100.00865188777258825945585860535757050610221825,000$
7Eric RobinsonXX100.008145916275577864356066592551510506002441,000,000$
8Michael BuntingXX100.00737073687074756150645864554444050600241650,000$
9Givani SmithXX100.00857687667654787025555961254545050590212742,500$
10Ivan Lodnia (R)X100.00524784716970816464585951625454050590204747,500$
11Laurent DauphinXXX100.00747078646872765771555762574747050580241718,000$
12Michael SpacekX100.00787095686774775569525565554444050580221650,000$
13Justin HollX100.007653856366736662265446792556560506302741,400,000$
14Ben ThomasX100.00756887656974794925404064395555050590231650,000$
15Joe HickettsX100.00716491666176815527494064384949050590231825,000$
16Timothy LiljegrenX100.00704991727055645425464467254545050580203863,333$
17Kyle CapobiancoX100.00716870646665645925575362524545050580221700,000$
18Maxwell Gildon (R)X100.00595568667260745025523955415454050560204700,000$
Rayé
1Maxim Sushko (R)X100.00726882686871755650495861554444050570204775,002$
2Shane GersichXX100.00716486626472775468475760544444050560231525,000$
3Sheldon RempalXX100.00635678625673785350564656444444050540242925,000$
4Aleksi Heponiemi (R)XX100.00665689615663675063504657444444050520204925,001$
5Joni Ikonen (R)X100.00443799656233323750293839405454050420204825,000$
6Daniel BrickleyX100.00807786567750524625373963374444050540242825,000$
7Daniel Walcott (R)X100.00626358656352535025404655444444050520251620,000$
8Juuso Valimaki (R)X100.00553582607048353935374167473533050500203925,000$
9Markus Phillips (R)X100.00524784646950653925373447365454050500204796,667$
MOYENNE D'ÉQUIPE100.0069588466676470564551516145484805057
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Matt Villalta (R)100.0053668367495350574949304444050540
2Matej Tomek (R)100.0039434166383737373737353230050400
Rayé
MOYENNE D'ÉQUIPE100.004655626744454447434333383705047
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Justin HollComets (Van)D82226486195001391211915813211.52%157195623.8631114792100110198320.00%000000.88000001124
2Emil BemstromComets (Van)C81384482-51801042143708925910.27%9177221.88813214719910192295138.62%203800010.9327000434
3Jean-Sebastien DeaComets (Van)C/RW7228416913180104842457218411.43%19133418.5481119441831013760052.91%17200011.0314000345
4Markus GranlundComets (Van)C/LW/RW58322557-360501793048821510.53%16134223.1566125114900041604141.54%173100130.8515000531
5Eric RobinsonComets (Van)LW/RW821839571142018664206631818.74%20146417.8621214332020002362142.86%9100010.7800000043
6Danny O'ReganComets (Van)C/RW82223456-3240100117295871807.46%15158119.297512442170005846160.14%14800010.7123000123
7Filip ChlapikComets (Van)C81143953-2340174195228662016.14%20145517.97145147600021202148.55%168900000.7324000213
8Michael BuntingComets (Van)LW/RW82173249-543520193249651966.83%15145417.74471139214000002245.28%10600000.6711001240
9Givani SmithComets (Van)LW/RW82162137-165410175107239802056.69%15124315.16112933000060032.38%10500000.6000011132
10Joe HickettsComets (Van)D8052530-22240995210536534.76%122174321.79178422010001191010.00%000000.3400000023
11Timothy LiljegrenComets (Van)D8292029-33201025984195110.71%106126015.37000621000146100.00%000000.4600000011
12Ben ThomasComets (Van)D8172128-13555183457719569.09%116181322.39369292110110189000.00%000000.3100010001
13Kyle CapobiancoComets (Van)D8262228-277210179588634696.98%116152618.62448261400000112000.00%000000.3700100011
14Ivan LodniaComets (Van)RW82101828-1620396181551255.52%9128215.65000040000541052.86%14000000.4402000001
15Maxim LetunovComets (Van)C82141327-428064155170531288.24%2096011.7100021100021071158.17%99200000.5602000101
16Dylan McIlrathVancouverD284131721495121215712187.02%5164423.030331562011263010.00%000100.5300100112
17Laurent DauphinComets (Van)C/LW/RW825611-1316045426411387.81%55016.11000010001130053.18%22000000.4411000011
18Michael SpacekComets (Van)C82551012011214192012.20%22022.47022524000000259.15%16400000.9900000000
19Maxwell GildonComets (Van)D50189-4260861718595.56%3976315.2700000000047000.00%000000.2400000001
20Aleksi HeponiemiComets (Van)C/RW39123-240111013797.69%12005.14000020000160060.00%2500000.3000000000
21Maxim SushkoComets (Van)RW2011000212210.00%0115.69000000000000100.00%100001.7600000000
22Juuso ValimakiComets (Van)D19000-920311240.00%51075.680001100006000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne1493274493767-826013521421752322693223348.49%8782462516.4948921404862173235321764271446.02%762200270.621029222313237
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matt VillaltaComets (Van)82294460.8973.6746242028327460120.58629820433
2Matej TomekComets (Van)101200.9133.6732700202310000.0000082000
Stats d'équipe Total ou en Moyenne92304660.8983.6749522030329770120.586298282433


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Aleksi HeponiemiComets (Van)C/RW201999-01-09Yes150 Lbs5 ft10NoNoNo4Pro & Farm925,001$92,500$0$No925,001$925,001$925,001$Lien
Ben ThomasComets (Van)D231996-05-27No187 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Daniel BrickleyComets (Van)D241995-03-30No205 Lbs6 ft3NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Daniel WalcottComets (Van)D251994-02-19Yes174 Lbs5 ft11NoNoNo1Pro & Farm620,000$62,000$0$NoLien
Danny O'ReganComets (Van)C/RW251994-01-30Yes185 Lbs5 ft10NoNoNo1Pro & Farm600,000$60,000$0$NoLien
Emil BemstromComets (Van)C201999-06-01Yes181 Lbs5 ft10NoNoNo4Pro & Farm925,001$92,500$0$No925,001$925,001$925,001$Lien
Eric RobinsonComets (Van)LW/RW241995-06-14No201 Lbs6 ft2NoNoNo4Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$Lien
Filip ChlapikComets (Van)C221997-06-03No196 Lbs6 ft1NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Givani SmithComets (Van)LW/RW211998-02-27No204 Lbs6 ft2NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Ivan LodniaComets (Van)RW201999-08-21Yes194 Lbs6 ft0NoNoNo4Pro & Farm747,500$74,750$0$No747,500$747,500$747,500$Lien
Jean-Sebastien DeaComets (Van)C/RW251994-02-08No175 Lbs5 ft11NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Joe HickettsComets (Van)D231996-05-04No175 Lbs5 ft8NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Joni IkonenComets (Van)C201999-04-14Yes172 Lbs5 ft11NoNoNo4Pro & Farm825,000$82,500$0$No825,000$825,000$825,000$Lien
Justin HollComets (Van)D271992-01-30No170 Lbs6 ft2NoNoNo4Pro & Farm1,400,000$140,000$0$No1,400,000$1,400,000$1,400,000$Lien
Juuso ValimakiComets (Van)D201998-10-06Yes212 Lbs6 ft2NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Kyle CapobiancoComets (Van)D221997-08-13No178 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Laurent DauphinComets (Van)C/LW/RW241995-03-27No180 Lbs6 ft1NoNoNo1Pro & Farm718,000$71,800$0$NoLien
Markus GranlundComets (Van)C/LW/RW261993-04-15No183 Lbs6 ft0NoNoNo2Pro & Farm1,750,000$175,000$0$No1,750,000$Lien
Markus PhillipsComets (Van)D201999-03-21Yes194 Lbs6 ft0NoNoNo4Pro & Farm796,667$79,667$0$No796,667$796,667$796,667$Lien
Matej TomekComets (Van)G221997-05-24Yes180 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Matt VillaltaComets (Van)G201999-06-03Yes165 Lbs6 ft3NoNoNo3Pro & Farm778,333$77,833$0$No778,333$778,333$Lien
Maxim LetunovComets (Van)C231996-02-19No180 Lbs6 ft4NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Maxim SushkoComets (Van)RW201999-02-10Yes185 Lbs6 ft0NoNoNo4Pro & Farm775,002$77,500$0$No775,002$775,002$775,002$Lien
Maxwell GildonComets (Van)D201999-05-17Yes192 Lbs6 ft3NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Lien
Michael BuntingComets (Van)LW/RW241995-09-17No197 Lbs5 ft11NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Michael SpacekComets (Van)C221997-04-09No187 Lbs5 ft11NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Shane GersichComets (Van)C/LW231996-07-09No175 Lbs5 ft11NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Sheldon RempalComets (Van)LW/RW241995-08-06No154 Lbs5 ft10NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Timothy LiljegrenComets (Van)D201999-04-30No192 Lbs6 ft0NoNoNo3Pro & Farm863,333$86,333$0$No863,333$863,333$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2922.38184 Lbs6 ft02.28822,115$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Michael BuntingMarkus GranlundJean-Sebastien Dea40122
2Eric RobinsonEmil BemstromDanny O'Regan30122
3Givani SmithFilip ChlapikIvan Lodnia20122
4Laurent DauphinMaxim LetunovMarkus Granlund10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Justin HollBen Thomas40122
2Joe HickettsKyle Capobianco30122
3Timothy LiljegrenMaxwell Gildon20122
4Justin HollBen Thomas10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Michael BuntingMarkus GranlundJean-Sebastien Dea60122
2Eric RobinsonEmil BemstromDanny O'Regan40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Justin HollBen Thomas60122
2Joe HickettsKyle Capobianco40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Markus GranlundEmil Bemstrom60122
2Jean-Sebastien DeaDanny O'Regan40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Justin HollBen Thomas60122
2Joe HickettsKyle Capobianco40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Markus Granlund60122Justin HollBen Thomas60122
2Emil Bemstrom40122Joe HickettsKyle Capobianco40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Markus GranlundEmil Bemstrom60122
2Jean-Sebastien DeaDanny O'Regan40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Justin HollBen Thomas60122
2Joe HickettsKyle Capobianco40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Michael BuntingMarkus GranlundJean-Sebastien DeaJustin HollBen Thomas
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Michael BuntingMarkus GranlundJean-Sebastien DeaJustin HollBen Thomas
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Michael Spacek, Filip Chlapik, Maxim LetunovMichael Spacek, Filip ChlapikMaxim Letunov
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Timothy Liljegren, Maxwell Gildon, Joe HickettsTimothy LiljegrenMaxwell Gildon, Joe Hicketts
Tirs de Pénalité
Markus Granlund, Emil Bemstrom, Jean-Sebastien Dea, Danny O'Regan, Filip Chlapik
Gardien
#1 : Matt Villalta, #2 : Matej Tomek


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals40400000713-62020000036-32020000047-300.00071320001198466101241038100910717014054361049111.11%18572.22%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
2Baby Hawks31100010131302100001012841010000015-440.667132336001198466101251038100910717012229258216425.00%10280.00%11385299046.32%1242277844.71%613136444.94%2038141018485901074551
3Bears2020000069-31010000034-11010000035-200.0006915001198466106910381009107170811718488112.50%8362.50%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
4Bruins21100000910-11010000025-31100000075220.5009162500119846610105103810091071707122124711218.18%6350.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
5Cabaret Lady Mary Ann211000009721010000034-11100000063320.500917260011984661014410381009107170792320522150.00%9188.89%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
6Caroline20200000811-31010000024-21010000067-100.000814220011984661080103810091071707629133833100.00%4175.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
7Chiefs3120000068-22110000045-11010000023-120.3336915001198466101211038100910717010226288211218.18%13284.62%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
8Chill312000001015-521100000811-31010000024-220.333101828001198466101181038100910717013034229013323.08%11281.82%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
9Cougars2010000158-31000000145-11010000013-210.2505101500119846610781038100910717055191038900.00%5180.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
10Crunch2020000079-21010000034-11010000045-100.00071219001198466106610381009107170662122515120.00%10460.00%11385299046.32%1242277844.71%613136444.94%2038141018485901074551
11Heat431000002315821100000128422000000117460.75023396200119846610190103810091071701484552884125.00%14378.57%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
12Jayhawks43100000191362110000010732200000096360.750193251001198466101571038100910717014043208816425.00%10190.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
13Las Vegas412000011418-42020000049-521000001109130.3751424380011984661014910381009107170138273213016425.00%16756.25%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
14Manchots2110000056-1110000003211010000024-220.500581310119846610821038100910717077268525120.00%4175.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
15Marlies20100100610-41000010056-11010000014-310.25061218001198466108510381009107170881518509333.33%9366.67%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
16Minnesota321000001486110000006152110000087140.667142438001198466101591038100910717011126161066233.33%8275.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
17Monarchs41200010151502100001011832020000047-340.5001524390011984661015810381009107170170392811915213.33%13284.62%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
18Monsters2010001078-11010000024-21000001054120.500711180011984661080103810091071706020284810110.00%7271.43%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
19Monsters3120000089-1211000006421010000025-320.333814220011984661099103810091071701174518794250.00%9277.78%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
20Oceanics30300000818-101010000013-220200000715-800.000814220011984661098103810091071701444624748112.50%11463.64%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
21Oil Kings411000021317-42100000177020100001610-440.50013243700119846610134103810091071701393824931317.69%11372.73%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
22Phantoms2110000079-2110000005321010000026-420.5007142100119846610591038100910717066188367114.29%4175.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
23Rocket2110000034-1110000002111010000013-220.50036900119846610541038100910717057181149800.00%2150.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
24Senators210001006601000010034-11100000032130.75061016001198466108610381009107170923612469333.33%6266.67%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
25Sharks514000001019-92110000056-130300000513-820.200102030101198466101641038100910717016247301111715.88%12283.33%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
26Sound Tigers2020000035-21010000012-11010000023-100.000369001198466104510381009107170712918623133.33%9277.78%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
27Spiders2020000018-71010000005-51010000013-200.0001120011984661059103810091071706123441600.00%2150.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
28Stars31200000121111010000034-12110000097220.33312223400119846610117103810091071701072812858112.50%6183.33%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
29Thunder22000000835110000004221100000041341.00081523001198466107310381009107170511416622150.00%7185.71%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
Total82274600234272309-3741152000222140144-441122600012132165-33660.40227248075220119846610316010381009107170297987659721012564818.75%2606575.00%21385299046.32%1242277844.71%613136444.94%2038141018485901074551
30Wolf Pack220000001046110000006241100000042241.00010192900119846610821038100910717058191250300.00%60100.00%01385299046.32%1242277844.71%613136444.94%2038141018485901074551
_Since Last GM Reset82274600234272309-3741152000222140144-441122600012132165-33660.40227248075220119846610316010381009107170297987659721012564818.75%2606575.00%21385299046.32%1242277844.71%613136444.94%2038141018485901074551
_Vs Conference41162000014154151321810000127871720810000027680-4380.46315427042400119846610167310381009107170145741730310611212621.49%1273175.59%21385299046.32%1242277844.71%613136444.94%2038141018485901074551
_Vs Division2137000007182-11112300000403641014000003146-1560.143711241950011984661083710381009107170833234145598661522.73%681577.94%11385299046.32%1242277844.71%613136444.94%2038141018485901074551

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8266L127248075231602979876597210120
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8227460234272309
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4115200222140144
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4112260012132165
Derniers 10 Matchs
WLOTWOTL SOWSOL
550000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2564818.75%2606575.00%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
10381009107170119846610
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1385299046.32%1242277844.71%613136444.94%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2038141018485901074551


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-10-223Comets2Oil Kings5LSommaire du Match
4 - 2020-10-2529Comets4Heat1WSommaire du Match
8 - 2020-10-2946Monarchs4Comets5WXXSommaire du Match
11 - 2020-11-0173Phantoms3Comets5WSommaire du Match
14 - 2020-11-0489Cougars5Comets4LXXSommaire du Match
16 - 2020-11-06101Comets2Chiefs3LSommaire du Match
18 - 2020-11-08113Comets1Spiders3LSommaire du Match
19 - 2020-11-09124Comets4Wolf Pack2WSommaire du Match
21 - 2020-11-11137Comets1Cougars3LSommaire du Match
24 - 2020-11-14160Bears4Comets3LSommaire du Match
27 - 2020-11-17178Cabaret Lady Mary Ann4Comets3LSommaire du Match
29 - 2020-11-19193Comets2Monarchs3LSommaire du Match
31 - 2020-11-21202Comets2Admirals3LSommaire du Match
32 - 2020-11-22216Comets3Sharks6LSommaire du Match
35 - 2020-11-25232Chiefs4Comets1LSommaire du Match
37 - 2020-11-27243Comets1Baby Hawks5LSommaire du Match
38 - 2020-11-28250Comets5Oceanics8LSommaire du Match
40 - 2020-11-30265Spiders5Comets0LSommaire du Match
42 - 2020-12-02277Chill7Comets2LSommaire du Match
44 - 2020-12-04291Stars4Comets3LSommaire du Match
46 - 2020-12-06311Monsters2Comets5WSommaire du Match
49 - 2020-12-09327Comets4Stars6LSommaire du Match
51 - 2020-12-11339Comets2Chill4LSommaire du Match
53 - 2020-12-13348Comets3Bears5LSommaire du Match
55 - 2020-12-15367Comets2Phantoms6LSommaire du Match
57 - 2020-12-17382Comets2Manchots4LSommaire du Match
60 - 2020-12-20415Comets4Oil Kings5LXXSommaire du Match
61 - 2020-12-21418Oil Kings2Comets1LXXSommaire du Match
63 - 2020-12-23432Senators4Comets3LXSommaire du Match
67 - 2020-12-27453Crunch4Comets3LSommaire du Match
70 - 2020-12-30481Marlies6Comets5LXSommaire du Match
72 - 2021-01-01496Caroline4Comets2LSommaire du Match
74 - 2021-01-03514Comets1Sharks4LSommaire du Match
75 - 2021-01-04518Comets4Las Vegas5LXXSommaire du Match
77 - 2021-01-06532Rocket1Comets2WSommaire du Match
79 - 2021-01-08547Las Vegas3Comets1LSommaire du Match
81 - 2021-01-10563Manchots2Comets3WSommaire du Match
83 - 2021-01-12579Oil Kings5Comets6WSommaire du Match
88 - 2021-01-17599Monarchs4Comets6WSommaire du Match
89 - 2021-01-18611Comets7Heat6WSommaire du Match
93 - 2021-01-22637Baby Hawks4Comets7WSommaire du Match
95 - 2021-01-24651Wolf Pack2Comets6WSommaire du Match
98 - 2021-01-27663Comets4Thunder1WSommaire du Match
100 - 2021-01-29681Comets6Cabaret Lady Mary Ann3WSommaire du Match
102 - 2021-01-31692Comets4Crunch5LSommaire du Match
103 - 2021-02-01704Comets6Minnesota3WSommaire du Match
105 - 2021-02-03721Comets2Oceanics7LSommaire du Match
107 - 2021-02-05739Jayhawks4Comets3LSommaire du Match
109 - 2021-02-07754Sharks3Comets4WSommaire du Match
118 - 2021-02-16772Chiefs1Comets3WSommaire du Match
120 - 2021-02-18781Comets1Sharks3LSommaire du Match
123 - 2021-02-21793Comets2Sound Tigers3LSommaire du Match
124 - 2021-02-22808Comets6Caroline7LSommaire du Match
126 - 2021-02-24812Comets7Bruins5WSommaire du Match
128 - 2021-02-26835Comets2Minnesota4LSommaire du Match
130 - 2021-02-28853Heat4Comets3LSommaire du Match
132 - 2021-03-02864Chill4Comets6WSommaire du Match
134 - 2021-03-04879Baby Hawks4Comets5WXXSommaire du Match
138 - 2021-03-08909Admirals3Comets1LSommaire du Match
141 - 2021-03-11932Minnesota1Comets6WSommaire du Match
144 - 2021-03-14956Bruins5Comets2LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17969Comets1Rocket3LSommaire du Match
149 - 2021-03-19988Comets3Senators2WSommaire du Match
151 - 2021-03-211003Comets1Marlies4LSommaire du Match
152 - 2021-03-221013Comets5Monsters4WXXSommaire du Match
155 - 2021-03-251032Jayhawks3Comets7WSommaire du Match
157 - 2021-03-271047Monsters2Comets1LSommaire du Match
159 - 2021-03-291064Monsters4Comets2LSommaire du Match
161 - 2021-03-311077Sound Tigers2Comets1LSommaire du Match
163 - 2021-04-021092Comets4Jayhawks2WSommaire du Match
164 - 2021-04-031096Comets2Monsters5LSommaire du Match
166 - 2021-04-051117Oceanics3Comets1LSommaire du Match
169 - 2021-04-081134Thunder2Comets4WSommaire du Match
171 - 2021-04-101151Comets2Admirals4LSommaire du Match
172 - 2021-04-111161Comets2Monarchs4LSommaire du Match
174 - 2021-04-131175Comets6Las Vegas4WSommaire du Match
176 - 2021-04-151189Sharks3Comets1LSommaire du Match
178 - 2021-04-171204Heat4Comets9WSommaire du Match
179 - 2021-04-181215Admirals3Comets2LSommaire du Match
181 - 2021-04-201227Comets5Stars1WSommaire du Match
184 - 2021-04-231253Comets5Jayhawks4WSommaire du Match
186 - 2021-04-251268Las Vegas6Comets3LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3015
Assistance80,55040,023
Assistance PCT98.23%97.62%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2941 - 98.03% 71,042$2,912,710$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,387,209$ 2,384,133$ 2,384,133$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
12,818$ 2,387,209$ 29 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 12,818$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT