Oceanics

GP: 82 | W: 59 | L: 20 | OTL: 3 | P: 121
GF: 350 | GA: 235 | PP%: 18.73% | PK%: 82.21%
DG: Stéphane Gagné | Morale : 50 | Moyenne d'Équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Conor ShearyX100.006341948461658864306568586366680506402772,800,000$
2Jordan NolanXX100.008075756180708260435556735467690506203011,000,000$
3Frederik GauthierX100.007748947088568356685757732563640506202451,200,000$
4Micheal FerlandXX100.009379848079596259277261562565660506202743,000,000$
5Michael RasmussenX100.00848583688566676278615870555151050620203925,000$
6Glenn GawdinX100.00757184647174766680676165584444050620221650,000$
7Mathieu JosephXX100.00784587826561855937586167255758050620221650,000$
8Nic PetanXXX100.00624492796255576647625572255959050610243693,000$
9Nicolas RoyX100.00795389687865825969606666254747050610221650,000$
10Trevor MooreX100.00764595666162756440606274255253050610242925,000$
11Joakim Nygard (R)X100.00654191906557616144645961254747050600261565,000$
12Mark PysykX100.007443898074658156385155722567670506502712,875,000$
13Lawrence PilutX100.00714290776169745625394780254848050630232925,000$
14Jacob MiddletonX100.00819173687960685825504568255151050610232735,000$
15Nick DeSimoneX100.00787287657269735025464364404444050590243700,000$
16Maxime LajoieX100.00726286776870745225444359395151050590212730,000$
Rayé
1J.C. Beaudin (R)X100.00887589757152665873555567254646050590221700,000$
2Karson KuhlmanXX100.00796784656763696032655661254748050580243775,000$
3Jeffrey Viel (R)X100.00657150647174786050566059574444050580201630,000$
4Giorgio Estephan (R)X100.00797199527158605164465163484444050530222525,000$
5Artur Kayumov (R)XX100.00414545455339394145414145433230050410212825,000$
6William Lockwood (R)X100.00394343435137373943393943413230050390212700,000$
7Pavel Karnaukhov (R)X100.00323737376731313237323237343230050350221525,000$
8Logan StanleyX100.00788756628768744725374162394444050580212925,000$
9Scott Walford (R)X100.00545084667269954825503752395454050570201560,000$
10Chad Krys (R)X100.00736786676757604725374159394444050550212825,000$
11Mitchell Vande Sompel (R)X100.00374343436035353743373743403230050400221700,000$
MOYENNE D'ÉQUIPE100.0069597867705968544352516237494905057
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Collin Delia100.0057667875636561606557304545050610
2Joren Van Pottelberghe (R)100.0036403868353434343434333230050380
Rayé
MOYENNE D'ÉQUIPE100.004753587249504847504632393805050
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Frederik GauthierOceanics (Win)C82385290481401012552698817514.13%31170920.84871554222011524911160.61%264000011.0539000764
2Conor ShearyOceanics (Win)LW71314778318018127323752219.60%7129718.2741115541910114745147.71%10900011.2057000542
3Nick BjugstadWinnipegC/RW5227437028280131982396716711.30%7108520.8838114314000081554347.67%8600111.2935000629
4Lawrence PilutOceanics (Win)D822046664440013099238831518.40%138195023.7871421982250001224400.00%000000.6800000542
5Mark PysykOceanics (Win)D801252644436014984181511196.63%114191123.8941519812190002222400.00%000000.6700000247
6Nic PetanOceanics (Win)C/LW/RW822836642260211942727422410.29%15125015.25336261002026692243.71%15100011.0201000440
7Michael RasmussenOceanics (Win)C7923396224495129184284761708.10%26143918.2257125220800091492163.41%194300000.8614100343
8Mathieu JosephOceanics (Win)LW/RW772533583416082144335802137.46%21140318.23641063198000101413132.04%10300010.8302000256
9Trevor MooreOceanics (Win)LW8229295821180721122577217411.28%14103812.6701117000014051.56%6400021.1200000441
10Micheal FerlandOceanics (Win)LW/RW8221355617660204105258691798.14%5123215.03291134145000062138.89%9000000.9100000142
11Glenn GawdinOceanics (Win)C8211405121340103144204531695.39%12104812.79000212000040059.74%124200000.9701000123
12Jacob MiddletonOceanics (Win)D809404943102202475313438766.72%114167720.96055451940001187210.00%000000.5800202244
13Joakim NygardOceanics (Win)LW821525401610034106183581168.20%96437.8500002000013141.67%3600001.2400000031
14Nicolas RoyOceanics (Win)C82162036161808779194431138.25%96427.8400010000003158.06%73200011.1200000121
15Jordan NolanOceanics (Win)LW/RW3916193528531573501373111011.68%877919.993251611310171060444.83%5800000.9025111314
16Nick DeSimoneOceanics (Win)D828233143440106329217488.70%107177421.65448332100002214010.00%000000.3501000121
17Logan StanleyOceanics (Win)D7461420208952222859142610.17%57109614.81000211011016300.00%000000.3600001013
18Maxime LajoieOceanics (Win)D82317201940060324422296.82%72129315.77000426011065000.00%000000.3100000101
19Karson KuhlmanOceanics (Win)C/RW16712191240321753103013.21%126716.741124270002101127.50%4000001.4200000210
20J.C. BeaudinOceanics (Win)C3202-22015483625.00%04816.1600014000030057.75%7100000.8300000000
21Scott WalfordOceanics (Win)D2011400022000.00%03115.970000000001000.00%000000.6300000000
Stats d'équipe Total ou en Moyenne139334762397053367745201619493766102425169.21%7672362316.9650911416142265347571908531959.09%736500180.821435414505754
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Collin DeliaOceanics (Win)80542130.9092.7847106221823870140.70020800541
2Joren Van PottelbergheOceanics (Win)41100.9302.93123006860000.7504082000
Stats d'équipe Total ou en Moyenne84552230.9092.7848336222424730140.708248082541


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Artur KayumovOceanics (Win)LW/RW211998-02-14Yes176 Lbs5 ft11NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Chad KrysOceanics (Win)D211998-04-10Yes185 Lbs5 ft11NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Collin DeliaOceanics (Win)G251994-06-19No190 Lbs6 ft2NoNoNo4Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$Lien
Conor ShearyOceanics (Win)LW271992-06-08No175 Lbs5 ft8NoNoNo7Pro & Farm2,800,000$280,000$0$No2,800,000$2,800,000$2,800,000$2,800,000$2,800,000$2,800,000$Lien
Frederik GauthierOceanics (Win)C241995-04-26No238 Lbs6 ft5NoNoNo5Pro & Farm1,200,000$120,000$0$No1,200,000$1,200,000$1,200,000$1,200,000$Lien
Giorgio EstephanOceanics (Win)C221997-02-03Yes196 Lbs6 ft0NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Lien
Glenn GawdinOceanics (Win)C221997-03-25No191 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLien
J.C. BeaudinOceanics (Win)C221997-03-24Yes185 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Jacob MiddletonOceanics (Win)D231996-01-01No200 Lbs6 ft3NoNoNo2Pro & Farm735,000$73,500$0$No735,000$Lien
Jeffrey VielOceanics (Win)LW201999-01-28Yes196 Lbs6 ft0YesNoNo1Pro & Farm630,000$63,000$0$NoLien
Joakim NygardOceanics (Win)LW261993-01-08Yes179 Lbs6 ft0YesNoNo1Pro & Farm565,000$56,500$0$NoLien
Jordan NolanOceanics (Win)LW/RW301989-06-22No219 Lbs6 ft3NoNoNo1Pro & Farm1,000,000$100,000$0$NoLien
Joren Van PottelbergheOceanics (Win)G221997-06-05Yes187 Lbs6 ft2NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Karson KuhlmanOceanics (Win)C/RW241995-09-26No180 Lbs5 ft11NoNoNo3Pro & Farm775,000$77,500$0$No775,000$775,000$Lien
Lawrence PilutOceanics (Win)D231995-12-29No165 Lbs5 ft11NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Logan StanleyOceanics (Win)D211998-05-25No228 Lbs6 ft7NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Mark PysykOceanics (Win)D271992-01-11No200 Lbs6 ft1NoNoNo1Pro & Farm4,000,000$287,500$0$NoLien
Mathieu JosephOceanics (Win)LW/RW221997-02-09No173 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Maxime LajoieOceanics (Win)D211997-11-05No183 Lbs6 ft1NoNoNo2Pro & Farm730,000$73,000$0$No730,000$Lien
Michael RasmussenOceanics (Win)C201999-04-17No220 Lbs6 ft6NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Micheal FerlandOceanics (Win)LW/RW271992-04-19No208 Lbs6 ft2NoNoNo4Pro & Farm3,000,000$300,000$0$No3,000,000$3,000,000$3,000,000$Lien
Mitchell Vande SompelOceanics (Win)D221997-02-11Yes190 Lbs5 ft10NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Nic PetanOceanics (Win)C/LW/RW241995-03-21No179 Lbs5 ft9NoNoNo3Pro & Farm693,000$69,300$0$No693,000$693,000$Lien
Nick DeSimoneOceanics (Win)D241994-11-21No190 Lbs6 ft2NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Lien
Nicolas RoyOceanics (Win)C221997-02-05No208 Lbs6 ft4NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Pavel KarnaukhovOceanics (Win)LW221997-03-15Yes194 Lbs6 ft3NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Scott WalfordOceanics (Win)D201999-01-12Yes198 Lbs6 ft2YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Trevor MooreOceanics (Win)LW241995-03-31No170 Lbs5 ft9NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
William LockwoodOceanics (Win)RW211998-06-20Yes172 Lbs5 ft11NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2923.07192 Lbs6 ft12.141,016,828$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Conor ShearyFrederik GauthierMathieu Joseph35014
2Jordan NolanMichael RasmussenNic Petan30023
3Trevor MooreGlenn GawdinMicheal Ferland25023
4Joakim NygardNicolas Roy10023
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark PysykLawrence Pilut45023
2Jacob MiddletonNick DeSimone35113
3Maxime Lajoie10122
4Mark PysykLawrence Pilut10014
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Conor ShearyFrederik GauthierMathieu Joseph60005
2Jordan NolanMichael RasmussenNic Petan40005
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Lawrence PilutMark Pysyk60014
2Jacob MiddletonNick DeSimone40014
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Frederik GauthierJordan Nolan60050
2Michael RasmussenConor Sheary40050
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark PysykLawrence Pilut60050
2Jacob MiddletonNick DeSimone40050
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Frederik Gauthier60050Lawrence PilutMark Pysyk60050
2Michael Rasmussen40050Jacob MiddletonNick DeSimone40050
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Frederik GauthierConor Sheary60014
2Michael RasmussenNic Petan40014
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Lawrence PilutMark Pysyk60014
2Jacob MiddletonNick DeSimone40023
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Conor ShearyFrederik GauthierMathieu JosephMark PysykLawrence Pilut
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Micheal FerlandMichael RasmussenNic PetanMark PysykLawrence Pilut
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jordan Nolan, Frederik Gauthier, Conor ShearyConor Sheary, Michael RasmussenJordan Nolan
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mark Pysyk, Lawrence Pilut, Jacob MiddletonMark PysykMark Pysyk, Lawrence Pilut
Tirs de Pénalité
Frederik Gauthier, Jordan Nolan, Conor Sheary, Michael Rasmussen, Mathieu Joseph
Gardien
#1 : Collin Delia, #2 : Joren Van Pottelberghe


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals312000001192110000008352020000036-320.33311193000135109961712512481155129080763020858337.50%10370.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
2Baby Hawks541000002211113300000014772110000084480.80022355700135109961721512481155129080143431812029724.14%70100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
3Bears210000101073100000106511100000042241.0001015250013510996171121248115512908071156379111.11%3166.67%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
4Bruins2010100058-31010000037-41000100021120.500510150013510996177012481155129080562012467114.29%6266.67%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
5Cabaret Lady Mary Ann2200000014311110000008171100000062441.000142640001351099617122124811551290806223156111100.00%50100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
6Caroline220000001037110000004221100000061541.0001019290013510996178712481155129080541016555120.00%7185.71%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
7Chiefs413000001216-42110000066020200000610-420.25012233510135109961715712481155129080144465812213215.38%19384.21%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
8Chill43100000191362200000011562110000088060.7501935540013510996171621248115512908014250519419421.05%17476.47%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
9Comets33000000188102200000015781100000031261.000183452001351099617144124811551290809826188911436.36%8187.50%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
10Cougars2110000069-3110000003211010000037-420.500612180013510996179312481155129080642126398225.00%13469.23%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
11Crunch220000001055110000006331100000042241.00010203000135109961710412481155129080592212475120.00%60100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
12Heat3200100015781000100032122000000125761.00015284300135109961713912481155129080661622571119.09%11372.73%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
13Jayhawks310010101174210010008531000001032161.0001118290013510996171391248115512908099311865500.00%8187.50%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
14Las Vegas31100010880210000107521010000013-240.66781220001351099617146124811551290801093033741119.09%13376.92%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
15Manchots200000201082100000105411000001054141.00010132300135109961787124811551290801052826637114.29%11281.82%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
16Marlies201010007701010000034-11000100043120.500711180013510996177212481155129080662516466116.67%8187.50%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
17Minnesota44000000219122200000082622000000137681.000213960001351099617283124811551290801133745859111.11%15380.00%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
18Monarchs330000001951422000000133101100000062461.000193554001351099617189124811551290809730168613538.46%80100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
19Monsters211000008801010000035-21100000053220.50081321001351099617611248115512908073192451400.00%12191.67%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
20Monsters412000101113-22020000037-42100001086240.500111930001351099617152124811551290801333724831317.69%11281.82%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
21Oil Kings3300000015871100000051422000000107361.0001530450013510996171431248115512908012534318613323.08%80100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
22Phantoms211000006421010000023-11100000041320.500612180013510996175712481155129080622422545120.00%11281.82%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
23Rocket211000009901010000035-21100000064220.50091726001351099617701248115512908064158554250.00%40100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
24Senators2110000078-11010000035-21100000043120.50071320001351099617841248115512908070202449500.00%10280.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
25Sharks32100000981110000004312110000055040.66791524101351099617129124811551290806616126210220.00%5260.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
26Sound Tigers210000011064110000007251000000134-130.7501018280013510996179112481155129080701516545240.00%7271.43%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
27Spiders21000001651110000004221000000123-130.75061016001351099617751248115512908083211846400.00%9188.89%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
28Stars531000012616102010000158-3330000002181370.7002646721013510996172331248115512908013642451101218.33%17288.24%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
29Thunder22000000835110000004311100000040441.00081523011351099617931248115512908043148436116.67%4250.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
Total82492004063350235115412510020311801196141241002032170116541210.738350625975311351099617373912481155129080258677367820032675018.73%2815082.21%31990332559.85%1555267258.20%813139758.20%2225159916945711052552
30Wolf Pack21100000743110000006241010000012-120.500713200013510996171051248115512908037131839900.00%8275.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
_Since Last GM Reset82492004063350235115412510020311801196141241002032170116541210.738350625975311351099617373912481155129080258677367820032675018.73%2815082.21%31990332559.85%1555267258.20%813139758.20%2225159916945711052552
_Vs Conference35181002032142103391710500020825626188502012604713480.68614224738911135109961715121248115512908011173402898551172218.80%1292779.07%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
_Vs Division168402000665214852000003330383202000332211200.625661241900113510996177081248115512908048416012138642921.43%561180.36%01990332559.85%1555267258.20%813139758.20%2225159916945711052552

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82121W435062597537392586773678200331
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8249204063350235
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4125102031180119
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4124102032170116
Derniers 10 Matchs
WLOTWOTL SOWSOL
820000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2675018.73%2815082.21%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
124811551290801351099617
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1990332559.85%1555267258.20%813139758.20%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2225159916945711052552


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-236Oceanics1Wolf Pack2LSommaire du Match
3 - 2020-10-2414Oceanics2Spiders3LXXSommaire du Match
5 - 2020-10-2633Oceanics3Sound Tigers4LXXSommaire du Match
7 - 2020-10-2838Oceanics5Manchots4WXXSommaire du Match
9 - 2020-10-3053Minnesota1Oceanics5WSommaire du Match
11 - 2020-11-0164Oceanics2Baby Hawks3LSommaire du Match
12 - 2020-11-0275Manchots4Oceanics5WXXSommaire du Match
14 - 2020-11-0487Jayhawks4Oceanics5WXSommaire du Match
16 - 2020-11-06102Sound Tigers2Oceanics7WSommaire du Match
19 - 2020-11-09127Oil Kings1Oceanics5WSommaire du Match
21 - 2020-11-11140Monarchs1Oceanics8WSommaire du Match
25 - 2020-11-15169Heat2Oceanics3WXSommaire du Match
28 - 2020-11-18187Oceanics2Admirals4LSommaire du Match
31 - 2020-11-21203Oceanics3Sharks1WSommaire du Match
32 - 2020-11-22215Oceanics1Las Vegas3LSommaire du Match
35 - 2020-11-25229Spiders2Oceanics4WSommaire du Match
38 - 2020-11-28250Comets5Oceanics8WSommaire du Match
40 - 2020-11-30264Stars4Oceanics3LXXSommaire du Match
42 - 2020-12-02276Monsters4Oceanics2LSommaire du Match
44 - 2020-12-04288Oceanics6Cabaret Lady Mary Ann2WSommaire du Match
46 - 2020-12-06302Oceanics4Thunder0WSommaire du Match
49 - 2020-12-09325Oceanics4Chill2WSommaire du Match
51 - 2020-12-11342Oceanics5Stars1WSommaire du Match
53 - 2020-12-13352Monsters5Oceanics3LSommaire du Match
57 - 2020-12-17389Oceanics2Sharks4LSommaire du Match
59 - 2020-12-19392Oceanics1Admirals2LSommaire du Match
60 - 2020-12-20414Oceanics6Monarchs2WSommaire du Match
63 - 2020-12-23431Stars4Oceanics2LSommaire du Match
65 - 2020-12-25445Oceanics9Stars4WSommaire du Match
68 - 2020-12-28463Admirals3Oceanics8WSommaire du Match
70 - 2020-12-30477Cougars2Oceanics3WSommaire du Match
72 - 2021-01-01491Oceanics3Cougars7LSommaire du Match
75 - 2021-01-04515Phantoms3Oceanics2LSommaire du Match
77 - 2021-01-06530Caroline2Oceanics4WSommaire du Match
79 - 2021-01-08543Baby Hawks2Oceanics4WSommaire du Match
81 - 2021-01-10554Oceanics5Minnesota3WSommaire du Match
83 - 2021-01-12577Rocket5Oceanics3LSommaire du Match
87 - 2021-01-16588Chiefs3Oceanics5WSommaire du Match
89 - 2021-01-18602Oceanics2Chiefs4LSommaire du Match
91 - 2021-01-20621Oceanics3Monsters2WSommaire du Match
93 - 2021-01-22633Marlies4Oceanics3LSommaire du Match
95 - 2021-01-24643Oceanics8Minnesota4WSommaire du Match
97 - 2021-01-26660Oceanics6Rocket4WSommaire du Match
99 - 2021-01-28675Oceanics4Marlies3WXSommaire du Match
100 - 2021-01-29678Oceanics2Bruins1WXSommaire du Match
103 - 2021-02-01703Chill2Oceanics5WSommaire du Match
105 - 2021-02-03721Comets2Oceanics7WSommaire du Match
108 - 2021-02-06742Thunder3Oceanics4WSommaire du Match
110 - 2021-02-08757Oceanics6Baby Hawks1WSommaire du Match
112 - 2021-02-10764Oceanics6Caroline1WSommaire du Match
113 - 2021-02-11766Oceanics5Monsters3WSommaire du Match
122 - 2021-02-20789Bruins7Oceanics3LSommaire du Match
123 - 2021-02-21795Chiefs3Oceanics1LSommaire du Match
126 - 2021-02-24822Chill3Oceanics6WSommaire du Match
128 - 2021-02-26834Oceanics4Chiefs6LSommaire du Match
130 - 2021-02-28843Senators5Oceanics3LSommaire du Match
131 - 2021-03-01858Baby Hawks3Oceanics5WSommaire du Match
133 - 2021-03-03872Wolf Pack2Oceanics6WSommaire du Match
136 - 2021-03-06891Sharks3Oceanics4WSommaire du Match
138 - 2021-03-08914Baby Hawks2Oceanics5WSommaire du Match
140 - 2021-03-10926Monarchs2Oceanics5WSommaire du Match
142 - 2021-03-12937Oceanics4Senators3WSommaire du Match
144 - 2021-03-14949Oceanics4Phantoms1WSommaire du Match
145 - 2021-03-15961Oceanics4Crunch2WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17973Oceanics4Bears2WSommaire du Match
149 - 2021-03-19992Bears5Oceanics6WXXSommaire du Match
151 - 2021-03-211009Oceanics5Oil Kings3WSommaire du Match
154 - 2021-03-241024Crunch3Oceanics6WSommaire du Match
157 - 2021-03-271045Las Vegas2Oceanics3WSommaire du Match
160 - 2021-03-301067Jayhawks1Oceanics3WSommaire du Match
162 - 2021-04-011080Oceanics5Oil Kings4WSommaire du Match
165 - 2021-04-041108Oceanics6Heat1WSommaire du Match
166 - 2021-04-051117Oceanics3Comets1WSommaire du Match
168 - 2021-04-071128Cabaret Lady Mary Ann1Oceanics8WSommaire du Match
171 - 2021-04-101148Minnesota1Oceanics3WSommaire du Match
173 - 2021-04-121168Oceanics7Stars3WSommaire du Match
175 - 2021-04-141183Oceanics4Chill6LSommaire du Match
178 - 2021-04-171201Monsters3Oceanics1LSommaire du Match
180 - 2021-04-191218Las Vegas3Oceanics4WXXSommaire du Match
182 - 2021-04-211236Oceanics6Heat4WSommaire du Match
184 - 2021-04-231251Oceanics5Monsters4WXXSommaire du Match
186 - 2021-04-251259Oceanics3Jayhawks2WXXSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets4020
Assistance61,67726,975
Assistance PCT75.22%65.79%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2162 - 72.07% 73,331$3,006,580$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
3,209,345$ 2,948,800$ 2,836,300$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
15,249$ 3,058,258$ 29 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 15,854$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT