Admirals

GP: 82 | W: 50 | L: 24 | OTL: 8 | P: 108
GF: 301 | GA: 260 | PP%: 18.53% | PK%: 80.00%
DG: Marc Simard | Morale : 50 | Moyenne d'Équipe : 53
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Garrett PilonX100.00716390686378836176566162584444050600212742,500$
2Dominic TurgeonXX100.00797293637380875468495368535353050590232750,000$
3Joshua Ho-Sang (R)X100.006959937764636262505956655444440505902321,000,000$
4Patrick RussellXX100.00795388627564685746585576254949050590262925,000$
5Tomas JurcoXX100.00644787777056515945625656256263050580262750,000$
6Tanner MacMasterX100.00727078656868735872555463554444050580231560,000$
7Ryan SpoonerXX100.004835936762626658785758514848450505602722,400,000$
8Joona Luoto (R)XX100.00674295737046645225505572254545050560221560,000$
9D'Artagnan Joly (R)X100.00524784676960755062543747395454050520204650,000$
10Jack Badini (R)X100.00534989647256714456394146435858050500214805,000$
11Dillon HeatheringtonX100.00787775668177864825403966385354050610242700,000$
12Cal FooteX100.00838382618378855225484266404444050610202925,000$
13Trevor CarrickX100.00757470667476795425455065504444050600251560,000$
14Joey Keane (R)X100.00726782616775795925535162484444050590204809,166$
15Gustav Olofsson (R)X100.00787389727352544925433962374444050560242750,000$
16Bode Wilde (R)X100.00777385607356604525353961374444050540194778,333$
17Benjamin Mirageas (R)X100.00514584626747663125282944305454050480204525,000$
Rayé
1Dennis EverbergXX100.00463588627243333836383866443532050460273600,000$
2Malte Stromwall (R)XX100.00414545455439394145414145433230050410252742,500$
3Brendan Warren (R)X100.00374343436435353743373743403230050390221700,000$
4Matt HunwickX100.004843846162654446354745624765570505403422,800,000$
5James Greenway (R)X100.00394343436837373943393943413230050410212700,000$
6Linus Hultstrom (R)X100.00414545455539394145414145433230050410262825,000$
7Lukas Bengtsson (R)X100.00414545454839394145414145433230050410252742,500$
MOYENNE D'ÉQUIPE100.0061557761685861494446465842454405053
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Christopher Gibson100.0058638072596353626058304545050590
2Spencer Martin100.0053587583505450585251304444050550
Rayé
1Ales Stezka (R)100.0036403871353434343434333230050390
MOYENNE D'ÉQUIPE100.004954647548504651494831404005051
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Garrett PilonAdmirals (Ana)C813666102302001263153961172989.09%26201824.92713205019901162247257.62%281000011.01213000864
2Tomas JurcoAdmirals (Ana)LW/RW8238569432180641773258423211.69%21152018.553710401820000578145.26%9500011.24110000133
3Joshua Ho-SangAdmirals (Ana)RW7930487823260681893521052538.52%37146318.5231215531920112945250.00%17800001.0715000126
4Dominic TurgeonAdmirals (Ana)C/LW5523315422400146118257711968.95%31127723.223584213911291163058.13%48000200.8526000533
5Tanner MacMasterAdmirals (Ana)C7915395425160110164181701398.29%1498512.471451798000177157.04%129900001.1000000252
6Joona LuotoAdmirals (Ana)LW/RW792231531710040136265731878.30%16120315.2443721920000120140.00%7000010.8800000132
7Patrick RussellAdmirals (Ana)LW/RW4327255213100104892075714713.04%689120.7465113410000051043151.35%7400001.1707000554
8Dillon HeatheringtonAdmirals (Ana)D7983846885152789111455967.02%153195724.783912292030000178210.00%000000.4700111213
9Gustav OlofssonAdmirals (Ana)D798354330315126469131588.79%126146518.56347261380001115310.00%000000.5900100101
10Trevor CarrickAdmirals (Ana)D799303987001966412946926.98%114170321.563811581840003142010.00%000000.4600000205
11Andy AndreoffAnaheimC/LW3720173712340110901374410914.60%1676120.571347831011543343.62%61900000.9726000412
12Joey KeaneAdmirals (Ana)D49726332628078577526519.33%72104521.34246301070001108110.00%000000.6300000221
13Ryan SpoonerAdmirals (Ana)C/LW46131427-100662100197713.00%265714.30011130110590159.88%17200000.8211000022
14Trent FredericAnaheimC36913228300967689205610.11%752714.65000311000080054.77%61900000.8300000111
15Bode WildeAdmirals (Ana)D8231619-54610193586826534.41%120122714.97000524000149000.00%000000.3100101011
16D'Artagnan JolyAdmirals (Ana)RW6910818-19806211816841855.95%1389112.92000123000011060.32%6300000.4000000021
17Cal FooteAdmirals (Ana)D1951217521541223282415.63%2245223.83235939101246110.00%000010.7500010200
18Matt HunwickAdmirals (Ana)D35381196013162951510.34%3452915.1310135000015000.00%000000.4200000100
19Dennis EverbergAdmirals (Ana)LW/RW14224-1240319256178.00%421515.42000040002170134.78%2300000.3700000000
20Linus HultstromAdmirals (Ana)D3044420210100.00%44715.940000001102000.00%000001.6700000001
21Benjamin MirageasAdmirals (Ana)D13022-820411000.00%816913.0400000000014000.00%000000.2400000000
22James GreenwayAdmirals (Ana)D14011520801000.00%5866.190000300009000.00%000000.2300000000
23Jack BadiniAdmirals (Ana)C22011-12601117152120.00%026412.0400005000070049.13%23000000.0800000000
24Malte StromwallAdmirals (Ana)LW/RW3000-100426200.00%03812.960000000000000.00%300000.0000000000
25Brendan WarrenAdmirals (Ana)LW14000000312000.00%1785.6300000000010033.33%300000.0000000000
Stats d'équipe Total ou en Moyenne11912885238112195153518921929306590921979.40%8522148318.0442811234291844358341449441855.05%673800240.75939322374742
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Christopher GibsonAdmirals (Ana)76472170.9222.91445012121627530030.75833760974
2Ales StezkaAdmirals (Ana)50010.9352.701780081230100.6673054000
Stats d'équipe Total ou en Moyenne81472180.9222.90462912122428760130.750367654974


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Ales StezkaAdmirals (Ana)G221997-01-06Yes192 Lbs6 ft4NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Benjamin MirageasAdmirals (Ana)D201999-05-08Yes181 Lbs6 ft1NoNoNo4Pro & Farm525,000$52,500$0$No525,000$525,000$525,000$Lien
Bode WildeAdmirals (Ana)D192000-01-24Yes192 Lbs6 ft3NoNoNo4Pro & Farm778,333$77,833$0$No778,333$778,333$778,333$Lien
Brendan WarrenAdmirals (Ana)LW221997-05-07Yes191 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Cal FooteAdmirals (Ana)D201998-12-13No220 Lbs6 ft4NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Christopher GibsonAdmirals (Ana)G261992-12-27No188 Lbs6 ft1NoNoNo2Pro & Farm800,000$80,000$0$No800,000$Lien
D'Artagnan JolyAdmirals (Ana)RW201999-04-07Yes181 Lbs6 ft3NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Lien
Dennis EverbergAdmirals (Ana)LW/RW271991-12-31No205 Lbs6 ft4NoNoNo3Pro & Farm600,000$60,000$0$No600,000$600,000$Lien
Dillon HeatheringtonAdmirals (Ana)D241995-05-08No215 Lbs6 ft4NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Dominic TurgeonAdmirals (Ana)C/LW231996-02-24No196 Lbs6 ft2NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Lien
Garrett PilonAdmirals (Ana)C211998-04-13No175 Lbs5 ft10NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Gustav OlofssonAdmirals (Ana)D241994-12-01Yes194 Lbs6 ft3NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Lien
Jack BadiniAdmirals (Ana)C211998-01-19Yes203 Lbs6 ft0NoNoNo4Pro & Farm805,000$80,500$0$No805,000$805,000$805,000$Lien
James GreenwayAdmirals (Ana)D211998-04-27Yes205 Lbs6 ft4NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Lien
Joey KeaneAdmirals (Ana)D201999-07-02Yes183 Lbs6 ft0NoNoNo4Pro & Farm809,166$80,917$0$No809,166$809,166$809,166$Lien
Joona LuotoAdmirals (Ana)LW/RW221997-09-26Yes185 Lbs6 ft2YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Joshua Ho-SangAdmirals (Ana)RW231996-01-22Yes173 Lbs6 ft0NoNoNo2Pro & Farm1,000,000$100,000$0$No1,000,000$Lien
Linus HultstromAdmirals (Ana)D261992-12-09Yes181 Lbs5 ft10NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Lukas BengtssonAdmirals (Ana)D251994-04-14Yes168 Lbs5 ft9NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Malte StromwallAdmirals (Ana)LW/RW251994-08-24Yes180 Lbs5 ft10NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Matt HunwickAdmirals (Ana)D341985-05-21No194 Lbs5 ft11NoNoNo2Pro & Farm2,800,000$280,000$0$No2,800,000$Lien
Patrick RussellAdmirals (Ana)LW/RW261993-01-03No205 Lbs6 ft1NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Ryan SpoonerAdmirals (Ana)C/LW271992-01-30No191 Lbs5 ft11NoNoNo2Pro & Farm2,400,000$240,000$0$No2,400,000$Lien
Spencer MartinAdmirals (Ana)G241995-06-07No210 Lbs6 ft3NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Lien
Tanner MacMasterAdmirals (Ana)C231996-01-08No185 Lbs6 ft0YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Tomas JurcoAdmirals (Ana)LW/RW261992-12-27No188 Lbs6 ft2NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Lien
Trevor CarrickAdmirals (Ana)D251994-07-04No186 Lbs6 ft2YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2723.56191 Lbs6 ft12.30870,370$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dominic TurgeonGarrett PilonJoshua Ho-Sang40122
2Patrick RussellTanner MacMasterTomas Jurco30122
3Joona LuotoRyan SpoonerD'Artagnan Joly20122
4Garrett PilonJack BadiniDominic Turgeon10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dillon HeatheringtonCal Foote40122
2Trevor CarrickJoey Keane30122
3Gustav OlofssonBode Wilde20122
4Benjamin MirageasDillon Heatherington10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dominic TurgeonGarrett PilonJoshua Ho-Sang60122
2Patrick RussellTanner MacMasterTomas Jurco40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dillon HeatheringtonCal Foote60122
2Trevor CarrickJoey Keane40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Garrett PilonDominic Turgeon60122
2Joshua Ho-SangPatrick Russell40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dillon HeatheringtonCal Foote60122
2Trevor CarrickJoey Keane40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Garrett Pilon60122Dillon HeatheringtonCal Foote60122
2Dominic Turgeon40122Trevor CarrickJoey Keane40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Garrett PilonDominic Turgeon60122
2Joshua Ho-SangPatrick Russell40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dillon HeatheringtonCal Foote60122
2Trevor CarrickJoey Keane40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dominic TurgeonGarrett PilonJoshua Ho-SangDillon HeatheringtonCal Foote
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dominic TurgeonGarrett PilonJoshua Ho-SangDillon HeatheringtonCal Foote
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Joona Luoto, Ryan Spooner, D'Artagnan JolyJoona Luoto, Ryan SpoonerD'Artagnan Joly
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Gustav Olofsson, Bode Wilde, Benjamin MirageasGustav OlofssonBode Wilde, Benjamin Mirageas
Tirs de Pénalité
Garrett Pilon, Dominic Turgeon, Joshua Ho-Sang, Patrick Russell, Tomas Jurco
Gardien
#1 : Christopher Gibson, #2 : Spencer Martin


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Baby Hawks31200000610-4110000004222020000028-620.3336101600126917512115104210479811051284510841616.25%5180.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
2Bears21000001550110000003211000000123-130.750591400126917512781042104798110589201152300.00%30100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
3Bruins21100000633110000005141010000012-120.5006111700126917512701042104798110592121552300.00%50100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
4Cabaret Lady Mary Ann2200000013310110000006241100000071641.000132437001269175121211042104798110556211050300.00%40100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
5Caroline22000000743110000003211100000042241.00071320001269175126410421047981105742614384250.00%60100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
6Chiefs30200001711-41000000123-12020000058-310.16771118001269175121081042104798110511735246111218.18%11281.82%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
7Chill30100101812-41000000134-12010010058-320.33381523101269175129910421047981105118353168600.00%13284.62%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
8Comets440000001376220000007432200000063381.000132437001269175121401042104798110512424189418527.78%9188.89%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
9Cougars2020000068-21010000034-11010000034-100.00061117001269175124910421047981105842418416233.33%9366.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
10Crunch2110000047-3110000003121010000016-520.500471100126917512721042104798110583211847500.00%8187.50%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
11Heat4300000116115220000008532100000186270.87516304600126917512151104210479811051545020847228.57%9277.78%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
12Jayhawks402010101821-3201000101011-120101000810-240.5001830481012691751216210421047981105152453010413323.08%15753.33%11550293352.85%1631303753.70%722136552.89%2003140219246091071534
13Las Vegas4100101113112210000016602000101075270.875132235001269175121461042104798110514042209017423.53%9188.89%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
14Manchots21001000963100010003211100000064241.000915240012691751259104210479811057421643400.00%3166.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
15Marlies21000001541110000004221000000112-130.750591400126917512531042104798110574181232200.00%6266.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
16Minnesota330000001841422000000153121100000031261.0001835530012691751220310421047981105972312958112.50%60100.00%11550293352.85%1631303753.70%722136552.89%2003140219246091071534
17Monarchs530000202014631000020128422000000862101.000203252001269175122501042104798110524056371491500.00%16193.75%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
18Monsters2110000079-2110000005231010000027-520.50071219001269175126810421047981105671310409111.11%50100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
19Monsters311000011316-31000000178-12110000068-230.50013233600126917512118104210479811051254222649111.11%11463.64%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
20Oceanics32100000911-2220000006331010000038-540.6679182700126917512761042104798110512526185610330.00%8362.50%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
21Oil Kings422000001716121100000910-12110000086240.500173047101269175121571042104798110516241291006116.67%11190.91%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
22Phantoms20200000311-81010000017-61010000024-200.00035800126917512591042104798110581282042500.00%9277.78%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
23Rocket21000010972110000006511000001032141.000916250012691751273104210479811056228143616425.00%7442.86%11550293352.85%1631303753.70%722136552.89%2003140219246091071534
24Senators201000108801010000045-11000001043120.50081321001269175127510421047981105812514526233.33%50100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
25Sharks42200000171612200000012752020000059-440.50017314800126917512151104210479811051694936100600.00%12558.33%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
26Sound Tigers2020000057-21010000034-11010000023-100.0005914001269175126010421047981105802512664125.00%5180.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
27Spiders22000000725110000004221100000030341.00071118011269175125210421047981105712512458450.00%5180.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
28Stars321000001192220000008531010000034-140.6671120310012691751213710421047981105943728607228.57%11190.91%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
29Thunder220000001349110000008171100000053241.00013253800126917512911042104798110554116503133.33%3166.67%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
Total824124031673012604141276010341751235241141802133126137-111080.65930153583631126917512313510421047981105312689153919352324318.53%2354780.00%31550293352.85%1631303753.70%722136552.89%2003140219246091071534
30Wolf Pack22000000835110000005231100000031241.00081422001269175127810421047981105592312402150.00%60100.00%01550293352.85%1631303753.70%722136552.89%2003140219246091071534
_Since Last GM Reset824124031673012604141276010341751235241141802133126137-111080.65930153583631126917512313510421047981105312689153919352324318.53%2354780.00%31550293352.85%1631303753.70%722136552.89%2003140219246091071534
_Vs Conference371811011331301151519123010217852261868001125263-11480.649130229359111269175121319104210479811051474387252887861315.12%1041981.73%01550293352.85%1631303753.70%722136552.89%2003140219246091071534

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
82108L130153583631353126891539193531
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8241243167301260
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
412761034175123
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4114182133126137
Derniers 10 Matchs
WLOTWOTL SOWSOL
720001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2324318.53%2354780.00%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
10421047981105126917512
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1550293352.85%1631303753.70%722136552.89%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2003140219246091071534


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-2312Jayhawks5Admirals6WXXSommaire du Match
4 - 2020-10-2528Sharks4Admirals8WSommaire du Match
7 - 2020-10-2840Admirals3Cougars4LSommaire du Match
9 - 2020-10-3050Admirals6Manchots4WSommaire du Match
10 - 2020-10-3159Admirals2Monsters7LSommaire du Match
13 - 2020-11-0378Admirals1Bruins2LSommaire du Match
15 - 2020-11-0596Crunch1Admirals3WSommaire du Match
17 - 2020-11-07112Caroline2Admirals3WSommaire du Match
19 - 2020-11-09128Heat2Admirals3WSommaire du Match
21 - 2020-11-11138Admirals2Chill4LSommaire du Match
23 - 2020-11-13152Admirals3Stars4LSommaire du Match
25 - 2020-11-15168Admirals2Monsters5LSommaire du Match
26 - 2020-11-16176Admirals3Las Vegas2WXXSommaire du Match
28 - 2020-11-18187Oceanics2Admirals4WSommaire du Match
31 - 2020-11-21202Comets2Admirals3WSommaire du Match
33 - 2020-11-23219Baby Hawks2Admirals4WSommaire du Match
35 - 2020-11-25233Minnesota1Admirals7WSommaire du Match
40 - 2020-11-30269Oil Kings6Admirals4LSommaire du Match
42 - 2020-12-02278Cougars4Admirals3LSommaire du Match
44 - 2020-12-04292Sharks3Admirals4WSommaire du Match
46 - 2020-12-06309Admirals2Chiefs4LSommaire du Match
48 - 2020-12-08316Admirals2Bears3LXXSommaire du Match
51 - 2020-12-11334Admirals7Cabaret Lady Mary Ann1WSommaire du Match
53 - 2020-12-13355Admirals5Thunder3WSommaire du Match
55 - 2020-12-15372Sound Tigers4Admirals3LSommaire du Match
57 - 2020-12-17386Admirals7Jayhawks6WXSommaire du Match
59 - 2020-12-19392Oceanics1Admirals2WSommaire du Match
62 - 2020-12-22423Monarchs1Admirals3WSommaire du Match
66 - 2020-12-26451Bears2Admirals3WSommaire du Match
68 - 2020-12-28463Admirals3Oceanics8LSommaire du Match
70 - 2020-12-30476Admirals3Minnesota1WSommaire du Match
72 - 2021-01-01497Monarchs2Admirals3WXXSommaire du Match
74 - 2021-01-03503Wolf Pack2Admirals5WSommaire du Match
77 - 2021-01-06528Admirals2Phantoms4LSommaire du Match
78 - 2021-01-07535Admirals3Spiders0WSommaire du Match
81 - 2021-01-10553Admirals2Sound Tigers3LSommaire du Match
82 - 2021-01-11565Admirals3Wolf Pack1WSommaire du Match
87 - 2021-01-16591Las Vegas4Admirals3LXXSommaire du Match
89 - 2021-01-18610Phantoms7Admirals1LSommaire du Match
91 - 2021-01-20615Admirals4Las Vegas3WXSommaire du Match
93 - 2021-01-22636Admirals1Jayhawks4LSommaire du Match
96 - 2021-01-25658Chill4Admirals3LXXSommaire du Match
98 - 2021-01-27674Monsters2Admirals5WSommaire du Match
100 - 2021-01-29687Stars2Admirals3WSommaire du Match
102 - 2021-01-31699Admirals1Baby Hawks4LSommaire du Match
104 - 2021-02-02713Admirals3Chiefs4LSommaire du Match
107 - 2021-02-05735Admirals3Chill4LXSommaire du Match
108 - 2021-02-06741Admirals4Caroline2WSommaire du Match
118 - 2021-02-16773Admirals2Sharks4LSommaire du Match
120 - 2021-02-18778Jayhawks6Admirals4LSommaire du Match
122 - 2021-02-20791Thunder1Admirals8WSommaire du Match
123 - 2021-02-21804Admirals4Monarchs3WSommaire du Match
126 - 2021-02-24819Admirals4Senators3WXXSommaire du Match
128 - 2021-02-26828Admirals3Rocket2WXXSommaire du Match
129 - 2021-02-27839Admirals1Marlies2LXXSommaire du Match
131 - 2021-03-01856Admirals1Crunch6LSommaire du Match
133 - 2021-03-03876Chiefs3Admirals2LXXSommaire du Match
135 - 2021-03-05890Heat3Admirals5WSommaire du Match
138 - 2021-03-08909Admirals3Comets1WSommaire du Match
139 - 2021-03-09916Admirals5Heat2WSommaire du Match
141 - 2021-03-11930Cabaret Lady Mary Ann2Admirals6WSommaire du Match
143 - 2021-03-13947Monsters8Admirals7LXXSommaire du Match
145 - 2021-03-15965Las Vegas2Admirals3WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17980Oil Kings4Admirals5WSommaire du Match
150 - 2021-03-20998Manchots2Admirals3WXSommaire du Match
152 - 2021-03-221015Spiders2Admirals4WSommaire du Match
154 - 2021-03-241025Admirals1Baby Hawks4LSommaire du Match
155 - 2021-03-251031Admirals4Monsters3WSommaire du Match
157 - 2021-03-271048Marlies2Admirals4WSommaire du Match
159 - 2021-03-291063Minnesota2Admirals8WSommaire du Match
161 - 2021-03-311078Senators5Admirals4LSommaire du Match
165 - 2021-04-041099Admirals4Monarchs3WSommaire du Match
166 - 2021-04-051112Rocket5Admirals6WSommaire du Match
169 - 2021-04-081136Bruins1Admirals5WSommaire du Match
171 - 2021-04-101151Comets2Admirals4WSommaire du Match
174 - 2021-04-131174Admirals5Oil Kings1WSommaire du Match
176 - 2021-04-151187Admirals3Heat4LXXSommaire du Match
179 - 2021-04-181215Admirals3Comets2WSommaire du Match
180 - 2021-04-191221Admirals3Oil Kings5LSommaire du Match
183 - 2021-04-221241Stars3Admirals5WSommaire du Match
185 - 2021-04-241256Monarchs5Admirals6WXXSommaire du Match
186 - 2021-04-251271Admirals3Sharks5LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3520
Assistance78,01226,581
Assistance PCT95.14%64.83%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2551 - 85.03% 79,562$3,262,040$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,343,339$ 2,350,000$ 2,350,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
12,634$ 2,343,339$ 27 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 12,634$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT