Sharks

GP: 82 | W: 40 | L: 39 | OTL: 3 | P: 83
GF: 267 | GA: 271 | PP%: 23.31% | PK%: 82.85%
GM : Marc-Andre Bois | Morale : 50 | Team Overall : 58
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Morgan Frost (R)X100.00594093856365777560705953254545050620204863,334$
2Alexander TrueX100.00845490677860775964665558255656050600222763,333$
3Sasha Chmelevski (R)XX100.00736884656865666278596263594444050590204778,335$
4Matt BeleskeyX100.007574726573687456485056675768700505903122,750,000$
5Austin WagnerXX100.00866982626857856236575962255959050590221650,000$
6Matthew PhillipsXX100.00655394645368696580626560624444050590212525,000$
7Noah Gregor (R)XXX100.00834490776856755836576055254646050580212650,000$
8Clark BishopX100.00736474617066755659534965465657050570232875,000$
9Cooper MarodyXX100.00696479666463646075605661534444050570221525,000$
10Nolan PatrickX100.00564384696960745883556059563734050570212925,000$
11Shayne GostisbehereX100.006342868666777876255552594565660506502626,000,000$
12Libor HajekX100.00734387677568745725534782254747050640212742,500$
13Connor CarrickX100.007258837770665658255347702565650506302511,250,000$
14Brennan MenellX100.00736685646679835725594166405555050620221825,000$
15Kale ClagueX100.00716584716567705725485161484444050580212767,500$
16Zach WhitecloudX100.00674391627664805725454763254545050580222925,000$
17Cam DineenX100.00746692666667734725374260404444050560212742,500$
Scratches
1Chris Stewart (R)XX100.008799657290505052255655612545450505603112,700,000$
2Noah Cates (R)X100.00575272687163745761515352565454050560204525,000$
3Otto SomppiX100.00716684676662645468564860464444050550212525,000$
4Josh Wilkins (R)X100.00736688646662655063504660444444050540224925,002$
5Rourke Chartier (R)X100.00473589696150344237334956473532050470231525,000$
6Reilly Walsh (R)X100.00494391686758705125504250445454050540204700,000$
TEAM AVERAGE100.0070578469696470584754526141504905058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Garret Sparks100.0062546883616158666364304747050610
2Malcolm Subban100.0054545478625456586354955252050580
Scratches
1Keith Kinkaid100.0057627579525451605455306060050580
2Sam Montembeault100.0053696578574953555953754545050560
3Stuart Skinner100.0050546881485150555050304444050530
TEAM AVERAGE100.005559668056545459585552505005057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Connor CarrickSharks (San)D76154964-13440132109162501229.26%112158320.8351621751621121165100.00%000000.8100000062
2Alexander TrueSharks (San)C761639557275102220226631427.08%14168922.23314173017010172004155.54%246500000.6517001215
3Cooper MarodySharks (San)C/RW76193655-316063110231721608.23%10144218.98581334173000012160.00%10500000.7600000232
4Nolan PatrickSharks (San)C76253055-1214045213275712249.09%17128716.9423511240002263060.16%146600000.8500000322
5Shayne GostisbehereSharks (San)D6714405421408497175651098.00%83163324.388816781700115172300.00%000000.6600000234
6Noah GregorSharks (San)C/LW/RW7622325452358884225641659.78%11149919.73110113217211231102133.02%10600100.7224010320
7Libor HajekSharks (San)D7616345011580172129163591389.82%159167622.06791669186011117032100.00%100000.6000000343
8Clark BishopSharks (San)C7621254615401712011794112711.73%16157820.773912251730004955051.42%193500110.5823000621
9Austin WagnerSharks (San)LW/RW7628164427620157762465718311.38%16169422.3065113017101111814440.32%12400010.5247112336
10Matt BeleskeySharks (San)LW70241943-66620139852216017010.86%21149621.383583915611241046047.03%20200000.5715112422
11Brennan MenellSharks (San)D76103141-145351408210834709.26%93157920.7910919641660110162000.00%000000.5200001002
12Kale ClagueSharks (San)D765303524610140879333675.38%70110714.5700081600007100.00%100000.6300110202
13Noah CatesSharks (San)LW66121931-92357648156501097.69%5115317.481122170000610255.00%8000010.5400001102
14Cam DineenSharks (San)D7671724-45525123569930747.07%33128716.940000110001300233.33%5700100.3700311020
15Zach WhitecloudSharks (San)D76815233415745859314613.56%88113414.9300002011070000.00%000000.4100000001
16Chris StewartSharks (San)LW/RW7202-3115202318186.45%19113.0600000000120014.29%700000.4400010000
Team Total or Average1122244432676-3162110517261657264978819249.21%7492193619.55549715149717754812301563341354.27%654900330.621026668313034
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Garret SparksSharks (San)76393430.9133.0242296221324570310.741277601064
2Malcolm SubbanSharks (San)90000.9392.6236600162630000.0000076000
Team Total or Average85393430.9162.9945956222927200310.7412776761064


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexander TrueSharks (San)C221997-07-17No201 Lbs6 ft5NoNoNo2Pro & Farm763,333$76,333$0$No763,333$Link
Austin WagnerSharks (San)LW/RW221997-06-23No178 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Brennan MenellSharks (San)D221997-05-24No183 Lbs5 ft11NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Cam DineenSharks (San)D211998-06-19No183 Lbs5 ft11NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Chris StewartSharks (San)LW/RW311987-10-30Yes243 Lbs6 ft2NoNoNo1Pro & Farm2,700,000$270,000$0$NoLink
Clark BishopSharks (San)C231996-03-29No194 Lbs6 ft0NoNoNo2Pro & Farm875,000$87,500$0$No875,000$Link
Connor CarrickSharks (San)D251994-04-13No192 Lbs5 ft11NoNoNo1Pro & Farm1,250,000$125,000$0$NoLink
Cooper MarodySharks (San)C/RW221996-12-20No173 Lbs6 ft0NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Garret SparksSharks (San)G261993-06-28No210 Lbs6 ft3NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Josh WilkinsSharks (San)C221997-06-11Yes181 Lbs5 ft11NoNoNo4Pro & Farm925,002$92,500$0$No925,002$925,002$925,002$Link
Kale ClagueSharks (San)D211998-06-05No177 Lbs6 ft0NoNoNo2Pro & Farm767,500$76,750$0$No767,500$Link
Keith KinkaidSharks (San)G301989-07-03No195 Lbs6 ft3NoNoNo1Pro & Farm1,225,000$122,500$0$NoLink
Libor HajekSharks (San)D211998-02-03No202 Lbs6 ft2NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Malcolm SubbanSharks (San)G251993-12-21No200 Lbs6 ft2NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Matt BeleskeySharks (San)LW311988-06-07No203 Lbs6 ft0NoNoNo2Pro & Farm2,750,000$275,000$0$No2,750,000$Link
Matthew PhillipsSharks (San)C/RW211998-04-06No154 Lbs5 ft7NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Morgan FrostSharks (San)C201999-05-14Yes170 Lbs5 ft11NoNoNo4Pro & Farm863,334$86,333$0$No863,334$863,334$863,334$Link
Noah CatesSharks (San)LW201999-02-05Yes190 Lbs6 ft2NoNoNo4Pro & Farm525,000$52,500$0$No525,000$525,000$525,000$Link
Noah GregorSharks (San)C/LW/RW211998-07-27Yes185 Lbs6 ft0NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Nolan PatrickSharks (San)C211998-09-19No198 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Otto SomppiSharks (San)C211998-01-11No178 Lbs6 ft1NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Reilly WalshSharks (San)D201999-04-21Yes185 Lbs6 ft0NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Link
Rourke ChartierSharks (San)C231996-04-03Yes190 Lbs5 ft11NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Sam MontembeaultSharks (San)G221996-10-30No192 Lbs6 ft3NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Sasha ChmelevskiSharks (San)C/RW201999-06-09Yes187 Lbs6 ft0NoNoNo4Pro & Farm778,335$77,834$0$No778,335$778,335$778,335$Link
Shayne GostisbehereSharks (San)D261993-04-19No180 Lbs5 ft11NoNoNo2Pro & Farm6,000,000$600,000$0$No6,000,000$Link
Stuart SkinnerSharks (San)G201998-11-01No203 Lbs6 ft3NoNoNo2Pro & Farm784,166$78,417$0$No784,166$Link
Zach WhitecloudSharks (San)D221996-11-27No209 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2822.89191 Lbs6 ft12.041,091,667$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Austin WagnerAlexander TrueNoah Gregor40122
2Matt BeleskeyClark BishopCooper Marody30122
3Nolan PatrickCam Dineen20122
4Austin WagnerAlexander TrueMatt Beleskey10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Shayne GostisbehereLibor Hajek40122
2Connor CarrickBrennan Menell30122
3Kale ClagueZach Whitecloud20122
4Cam DineenShayne Gostisbehere10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Austin WagnerAlexander TrueNoah Gregor60122
2Matt BeleskeyClark BishopCooper Marody40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Shayne GostisbehereLibor Hajek60122
2Connor CarrickBrennan Menell40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Alexander TrueAustin Wagner60122
2Matt BeleskeyNoah Gregor40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Shayne GostisbehereLibor Hajek60122
2Connor CarrickBrennan Menell40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Alexander True60122Shayne GostisbehereLibor Hajek60122
2Austin Wagner40122Connor CarrickBrennan Menell40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Alexander TrueAustin Wagner60122
2Matt BeleskeyNoah Gregor40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Shayne GostisbehereLibor Hajek60122
2Connor CarrickBrennan Menell40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Austin WagnerAlexander TrueNoah GregorShayne GostisbehereLibor Hajek
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Austin WagnerAlexander TrueNoah GregorShayne GostisbehereLibor Hajek
Extra Forwards
Normal PowerPlayPenalty Kill
Nolan Patrick, , Clark BishopNolan Patrick, Clark Bishop
Extra Defensemen
Normal PowerPlayPenalty Kill
Kale Clague, Zach Whitecloud, Cam DineenKale ClagueZach Whitecloud, Cam Dineen
Penalty Shots
Alexander True, Austin Wagner, Matt Beleskey, Noah Gregor, Clark Bishop
Goalie
#1 : Garret Sparks, #2 : Malcolm Subban


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals422000001617-12200000095420200000712-540.50016274300968976111699649099834615149248712541.67%60100.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
2Baby Hawks30300000412-81010000013-22020000039-600.0004812009689761180964909983461533951721119.09%11281.82%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
3Bears2020000029-71010000005-51010000024-200.000235009689761184964909983467427861700.00%40100.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
4Bruins21000010844100000103211100000052341.00081220009689761167964909983466317253411436.36%8275.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
5Cabaret Lady Mary Ann210000018621000000145-11100000041330.750814220096897611117964909983464512655100.00%3166.67%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
6Caroline20100010770100000104311010000034-120.5007111800968976116796490998346773712508337.50%6183.33%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
7Chiefs31200000710-31010000034-12110000046-220.333714210096897611109964909983461043616611218.33%8275.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
8Chill30300000520-151010000017-620200000413-900.0005914009689761184964909983461724218739222.22%10190.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
9Comets54100000191093300000013582110000065180.800193453009689761116296490998346164464010312216.67%17194.12%21548286454.05%1529294951.85%710137151.79%1986136519005911073552
10Cougars2110000047-31010000026-41100000021120.500481200968976117096490998346602226389222.22%13284.62%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
11Crunch2020000059-41010000035-21010000024-200.00058130096897611739649099834681158531218.33%4175.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
12Heat440000002213922000000128422000000105581.00022426400968976111789649099834616161241077114.29%11281.82%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
13Jayhawks41100011161512100000175220100010910-150.62516274300968976111509649099834612743299111436.36%12650.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
14Las Vegas413000001018-82110000078-120200000310-720.250101828009689761114796490998346227498939111.11%40100.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
15Manchots20200000510-51010000035-21010000025-300.00059140096897611589649099834682291448500.00%7271.43%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
16Marlies211000007521010000023-11100000052320.500714210096897611689649099834666211046500.00%5180.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
17Minnesota330000001376220000009541100000042261.0001324370096897611128964909983461352826835360.00%12283.33%11548286454.05%1529294951.85%710137151.79%1986136519005911073552
18Monarchs403001001118-72020000069-32010010059-410.1251120311096897611152964909983461683630981119.09%14378.57%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
19Monsters2020000036-31010000013-21010000023-100.00035800968976115696490998346771615505120.00%5180.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
20Monsters3020001069-3100000102112020000048-420.3336915009689761178964909983461284728717228.57%3166.67%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
21Oceanics3120000089-1211000005501010000034-120.33381422009689761166964909983461293922675240.00%10280.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
22Oil Kings4120100012102201010006602110000064240.50012203200968976111219649099834616237398611327.27%12191.67%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
23Phantoms2020000025-31010000012-11010000013-200.00024600968976114196490998346591020427114.29%10190.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
24Rocket2110000068-2110000003211010000036-320.500610160096897611619649099834676182641600.00%7185.71%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
25Senators21000010963110000006421000001032141.0009162500968976117096490998346761821418337.50%8187.50%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
26Sound Tigers2110000067-1110000004131010000026-420.50061218009689761163964909983468016113644100.00%3166.67%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
27Spiders22000000752110000004311100000032141.0007121900968976115896490998346881318377342.86%9188.89%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
28Stars330000001751222000000133101100000042261.000173148019689761111496490998346962222778337.50%11190.91%11548286454.05%1529294951.85%710137151.79%1986136519005911073552
29Thunder220000001138110000005141100000062441.00011203100968976119496490998346401018409222.22%4175.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
Total82343901152267271-4412015010321441251941142400120123146-23830.5062674747411296897611287696490998346316287462418752365523.31%2394182.85%41548286454.05%1529294951.85%710137151.79%1986136519005911073552
30Wolf Pack2200000011110110000005141100000060641.000111930019689761191964909983464119934200.00%20100.00%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
_Since Last GM Reset82343901152267271-4412015010321441251941142400120123146-23830.5062674747411296897611287696490998346316287462418752365523.31%2394182.85%41548286454.05%1529294951.85%710137151.79%1986136519005911073552
_Vs Conference36132000120111125-141889000105556-118511001105669-13310.431111196307119689761112219649099834613663622637941072826.17%1051783.81%01548286454.05%1529294951.85%710137151.79%1986136519005911073552
_Vs Division16390011058481081500010282808240010030201090.28158102160009689761162096490998346507133140348611219.67%521080.77%01548286454.05%1529294951.85%710137151.79%1986136519005911073552

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8283W226747474128763162874624187512
All Games
GPWLOTWOTL SOWSOLGFGA
8234391152267271
Home Games
GPWLOTWOTL SOWSOLGFGA
4120151032144125
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4114240120123146
Last 10 Games
WLOTWOTL SOWSOL
810100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2365523.31%2394182.85%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9649099834696897611
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1548286454.05%1529294951.85%710137151.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1986136519005911073552


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-10-224Sharks2Las Vegas8LBoxScore
3 - 2020-10-2417Las Vegas6Sharks3LBoxScore
4 - 2020-10-2528Sharks4Admirals8LBoxScore
7 - 2020-10-2841Sharks1Chill7LBoxScore
9 - 2020-10-3054Sharks2Baby Hawks5LBoxScore
12 - 2020-11-0277Heat5Sharks7WBoxScore
15 - 2020-11-0597Caroline3Sharks4WXXBoxScore
18 - 2020-11-08123Crunch5Sharks3LBoxScore
21 - 2020-11-11134Sharks2Crunch4LBoxScore
23 - 2020-11-13145Sharks3Rocket6LBoxScore
24 - 2020-11-14156Sharks5Marlies2WBoxScore
26 - 2020-11-16173Sharks3Senators2WXXBoxScore
28 - 2020-11-18179Sharks5Bruins2WBoxScore
31 - 2020-11-21203Oceanics3Sharks1LBoxScore
32 - 2020-11-22216Comets3Sharks6WBoxScore
35 - 2020-11-25234Baby Hawks3Sharks1LBoxScore
37 - 2020-11-27247Minnesota2Sharks4WBoxScore
39 - 2020-11-29262Chill7Sharks1LBoxScore
42 - 2020-12-02280Oil Kings4Sharks3LBoxScore
44 - 2020-12-04292Sharks3Admirals4LBoxScore
46 - 2020-12-06313Cougars6Sharks2LBoxScore
49 - 2020-12-09330Oil Kings2Sharks3WXBoxScore
51 - 2020-12-11344Sharks1Las Vegas2LBoxScore
53 - 2020-12-13361Sound Tigers1Sharks4WBoxScore
55 - 2020-12-15373Sharks3Monarchs6LBoxScore
57 - 2020-12-17389Oceanics2Sharks4WBoxScore
59 - 2020-12-19393Monarchs4Sharks3LBoxScore
60 - 2020-12-20411Sharks5Jayhawks7LBoxScore
63 - 2020-12-23433Bears5Sharks0LBoxScore
65 - 2020-12-25443Sharks3Caroline4LBoxScore
67 - 2020-12-27457Sharks6Thunder2WBoxScore
68 - 2020-12-28464Sharks4Cabaret Lady Mary Ann1WBoxScore
70 - 2020-12-30475Sharks3Chill6LBoxScore
72 - 2021-01-01498Wolf Pack1Sharks5WBoxScore
74 - 2021-01-03514Comets1Sharks4WBoxScore
77 - 2021-01-06534Jayhawks3Sharks2LXXBoxScore
81 - 2021-01-10564Chiefs4Sharks3LBoxScore
82 - 2021-01-11568Las Vegas2Sharks4WBoxScore
87 - 2021-01-16592Monarchs5Sharks3LBoxScore
88 - 2021-01-17601Phantoms2Sharks1LBoxScore
91 - 2021-01-20620Sharks2Cougars1WBoxScore
93 - 2021-01-22631Sharks2Manchots5LBoxScore
95 - 2021-01-24642Sharks2Monsters3LBoxScore
96 - 2021-01-25653Sharks2Bears4LBoxScore
98 - 2021-01-27670Sharks1Chiefs5LBoxScore
100 - 2021-01-29688Monsters3Sharks1LBoxScore
102 - 2021-01-31702Stars3Sharks9WBoxScore
105 - 2021-02-03724Sharks4Jayhawks3WXXBoxScore
107 - 2021-02-05738Sharks2Monsters4LBoxScore
109 - 2021-02-07754Sharks3Comets4LBoxScore
118 - 2021-02-16773Admirals2Sharks4WBoxScore
120 - 2021-02-18781Comets1Sharks3WBoxScore
123 - 2021-02-21805Thunder1Sharks5WBoxScore
126 - 2021-02-24823Sharks5Heat2WBoxScore
128 - 2021-02-26837Sharks2Oil Kings3LBoxScore
132 - 2021-03-02865Heat3Sharks5WBoxScore
136 - 2021-03-06891Sharks3Oceanics4LBoxScore
137 - 2021-03-07899Sharks4Minnesota2WBoxScore
139 - 2021-03-09915Cabaret Lady Mary Ann5Sharks4LXXBoxScore
142 - 2021-03-12934Sharks3Spiders2WBoxScore
144 - 2021-03-14953Sharks6Wolf Pack0WBoxScore
145 - 2021-03-15962Sharks2Sound Tigers6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17972Sharks1Phantoms3LBoxScore
149 - 2021-03-19993Spiders3Sharks4WBoxScore
151 - 2021-03-211010Manchots5Sharks3LBoxScore
154 - 2021-03-241028Marlies3Sharks2LBoxScore
156 - 2021-03-261042Minnesota3Sharks5WBoxScore
158 - 2021-03-281053Senators4Sharks6WBoxScore
159 - 2021-03-291065Monsters1Sharks2WXXBoxScore
162 - 2021-04-011079Sharks1Baby Hawks4LBoxScore
164 - 2021-04-031094Sharks3Chiefs1WBoxScore
165 - 2021-04-041106Sharks4Stars2WBoxScore
168 - 2021-04-071129Sharks2Monsters4LBoxScore
170 - 2021-04-091145Rocket2Sharks3WBoxScore
172 - 2021-04-111163Bruins2Sharks3WXXBoxScore
174 - 2021-04-131173Sharks5Heat3WBoxScore
176 - 2021-04-151189Sharks3Comets1WBoxScore
178 - 2021-04-171203Sharks4Oil Kings1WBoxScore
180 - 2021-04-191223Jayhawks2Sharks5WBoxScore
182 - 2021-04-211238Sharks2Monarchs3LXBoxScore
184 - 2021-04-231254Stars0Sharks4WBoxScore
186 - 2021-04-251271Admirals3Sharks5WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity17501250
Ticket Price5020
Attendance44,13833,776
Attendance PCT61.52%65.90%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 1900 - 63.34% 70,303$2,882,420$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,949,534$ 3,056,666$ 3,056,666$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
16,434$ 2,949,534$ 28 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,434$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT