Oceanics

GP: 82 | W: 59 | L: 20 | OTL: 3 | P: 121
GF: 350 | GA: 235 | PP%: 18.73% | PK%: 82.21%
GM : Stéphane Gagné | Morale : 50 | Team Overall : 56
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Conor ShearyX100.006341948461658864306568586366680506402772,800,000$
2Jordan NolanXX100.008075756180708260435556735467690506203011,000,000$
3Frederik GauthierX100.007748947088568356685757732563640506202451,200,000$
4Micheal FerlandXX100.009379848079596259277261562565660506202743,000,000$
5Michael RasmussenX100.00848583688566676278615870555151050620203925,000$
6Glenn GawdinX100.00757184647174766680676165584444050620221650,000$
7Mathieu JosephXX100.00784587826561855937586167255758050620221650,000$
8Nic PetanXXX100.00624492796255576647625572255959050610243693,000$
9Nicolas RoyX100.00795389687865825969606666254747050610221650,000$
10Trevor MooreX100.00764595666162756440606274255253050610242925,000$
11Joakim Nygard (R)X100.00654191906557616144645961254747050600261565,000$
12Mark PysykX100.007443898074658156385155722567670506502712,875,000$
13Lawrence PilutX100.00714290776169745625394780254848050630232925,000$
14Jacob MiddletonX100.00819173687960685825504568255151050610232735,000$
15Nick DeSimoneX100.00787287657269735025464364404444050590243700,000$
16Maxime LajoieX100.00726286776870745225444359395151050590212730,000$
Scratches
1J.C. Beaudin (R)X100.00887589757152665873555567254646050590221700,000$
2Karson KuhlmanXX100.00796784656763696032655661254748050580243775,000$
3Jeffrey Viel (R)X100.00657150647174786050566059574444050580201630,000$
4Giorgio Estephan (R)X100.00797199527158605164465163484444050530222525,000$
5Artur Kayumov (R)XX100.00414545455339394145414145433230050410212825,000$
6William Lockwood (R)X100.00394343435137373943393943413230050390212700,000$
7Pavel Karnaukhov (R)X100.00323737376731313237323237343230050350221525,000$
8Logan StanleyX100.00788756628768744725374162394444050580212925,000$
9Scott Walford (R)X100.00545084667269954825503752395454050570201560,000$
10Chad Krys (R)X100.00736786676757604725374159394444050550212825,000$
11Mitchell Vande Sompel (R)X100.00374343436035353743373743403230050400221700,000$
TEAM AVERAGE100.0069597867705968544352516237494905057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Collin Delia100.0057667875636561606557304545050610
2Joren Van Pottelberghe (R)100.0036403868353434343434333230050380
Scratches
TEAM AVERAGE100.004753587249504847504632393805050
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Frederik GauthierOceanics (Win)C82385290481401012552698817514.13%31170920.84871554222011524911160.61%264000011.0539000764
2Conor ShearyOceanics (Win)LW71314778318018127323752219.60%7129718.2741115541910114745147.71%10900011.2057000542
3Nick BjugstadWinnipegC/RW5227437028280131982396716711.30%7108520.8838114314000081554347.67%8600111.2935000629
4Lawrence PilutOceanics (Win)D822046664440013099238831518.40%138195023.7871421982250001224400.00%000000.6800000542
5Mark PysykOceanics (Win)D801252644436014984181511196.63%114191123.8941519812190002222400.00%000000.6700000247
6Nic PetanOceanics (Win)C/LW/RW822836642260211942727422410.29%15125015.25336261002026692243.71%15100011.0201000440
7Michael RasmussenOceanics (Win)C7923396224495129184284761708.10%26143918.2257125220800091492163.41%194300000.8614100343
8Mathieu JosephOceanics (Win)LW/RW772533583416082144335802137.46%21140318.23641063198000101413132.04%10300010.8302000256
9Trevor MooreOceanics (Win)LW8229295821180721122577217411.28%14103812.6701117000014051.56%6400021.1200000441
10Micheal FerlandOceanics (Win)LW/RW8221355617660204105258691798.14%5123215.03291134145000062138.89%9000000.9100000142
11Glenn GawdinOceanics (Win)C8211405121340103144204531695.39%12104812.79000212000040059.74%124200000.9701000123
12Jacob MiddletonOceanics (Win)D809404943102202475313438766.72%114167720.96055451940001187210.00%000000.5800202244
13Joakim NygardOceanics (Win)LW821525401610034106183581168.20%96437.8500002000013141.67%3600001.2400000031
14Nicolas RoyOceanics (Win)C82162036161808779194431138.25%96427.8400010000003158.06%73200011.1200000121
15Jordan NolanOceanics (Win)LW/RW3916193528531573501373111011.68%877919.993251611310171060444.83%5800000.9025111314
16Nick DeSimoneOceanics (Win)D828233143440106329217488.70%107177421.65448332100002214010.00%000000.3501000121
17Logan StanleyOceanics (Win)D7461420208952222859142610.17%57109614.81000211011016300.00%000000.3600001013
18Maxime LajoieOceanics (Win)D82317201940060324422296.82%72129315.77000426011065000.00%000000.3100000101
19Karson KuhlmanOceanics (Win)C/RW16712191240321753103013.21%126716.741124270002101127.50%4000001.4200000210
20J.C. BeaudinOceanics (Win)C3202-22015483625.00%04816.1600014000030057.75%7100000.8300000000
21Scott WalfordOceanics (Win)D2011400022000.00%03115.970000000001000.00%000000.6300000000
Team Total or Average139334762397053367745201619493766102425169.21%7672362316.9650911416142265347571908531959.09%736500180.821435414505754
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Collin DeliaOceanics (Win)80542130.9092.7847106221823870140.70020800541
2Joren Van PottelbergheOceanics (Win)41100.9302.93123006860000.7504082000
Team Total or Average84552230.9092.7848336222424730140.708248082541


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Artur KayumovOceanics (Win)LW/RW211998-02-14Yes176 Lbs5 ft11NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Chad KrysOceanics (Win)D211998-04-10Yes185 Lbs5 ft11NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Collin DeliaOceanics (Win)G251994-06-19No190 Lbs6 ft2NoNoNo4Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$Link
Conor ShearyOceanics (Win)LW271992-06-08No175 Lbs5 ft8NoNoNo7Pro & Farm2,800,000$280,000$0$No2,800,000$2,800,000$2,800,000$2,800,000$2,800,000$2,800,000$Link
Frederik GauthierOceanics (Win)C241995-04-26No238 Lbs6 ft5NoNoNo5Pro & Farm1,200,000$120,000$0$No1,200,000$1,200,000$1,200,000$1,200,000$Link
Giorgio EstephanOceanics (Win)C221997-02-03Yes196 Lbs6 ft0NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Glenn GawdinOceanics (Win)C221997-03-25No191 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLink
J.C. BeaudinOceanics (Win)C221997-03-24Yes185 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Jacob MiddletonOceanics (Win)D231996-01-01No200 Lbs6 ft3NoNoNo2Pro & Farm735,000$73,500$0$No735,000$Link
Jeffrey VielOceanics (Win)LW201999-01-28Yes196 Lbs6 ft0YesNoNo1Pro & Farm630,000$63,000$0$NoLink
Joakim NygardOceanics (Win)LW261993-01-08Yes179 Lbs6 ft0YesNoNo1Pro & Farm565,000$56,500$0$NoLink
Jordan NolanOceanics (Win)LW/RW301989-06-22No219 Lbs6 ft3NoNoNo1Pro & Farm1,000,000$100,000$0$NoLink
Joren Van PottelbergheOceanics (Win)G221997-06-05Yes187 Lbs6 ft2NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Karson KuhlmanOceanics (Win)C/RW241995-09-26No180 Lbs5 ft11NoNoNo3Pro & Farm775,000$77,500$0$No775,000$775,000$Link
Lawrence PilutOceanics (Win)D231995-12-29No165 Lbs5 ft11NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Logan StanleyOceanics (Win)D211998-05-25No228 Lbs6 ft7NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Mark PysykOceanics (Win)D271992-01-11No200 Lbs6 ft1NoNoNo1Pro & Farm4,000,000$287,500$0$NoLink
Mathieu JosephOceanics (Win)LW/RW221997-02-09No173 Lbs6 ft1NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Maxime LajoieOceanics (Win)D211997-11-05No183 Lbs6 ft1NoNoNo2Pro & Farm730,000$73,000$0$No730,000$Link
Michael RasmussenOceanics (Win)C201999-04-17No220 Lbs6 ft6NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Micheal FerlandOceanics (Win)LW/RW271992-04-19No208 Lbs6 ft2NoNoNo4Pro & Farm3,000,000$300,000$0$No3,000,000$3,000,000$3,000,000$Link
Mitchell Vande SompelOceanics (Win)D221997-02-11Yes190 Lbs5 ft10NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Nic PetanOceanics (Win)C/LW/RW241995-03-21No179 Lbs5 ft9NoNoNo3Pro & Farm693,000$69,300$0$No693,000$693,000$Link
Nick DeSimoneOceanics (Win)D241994-11-21No190 Lbs6 ft2NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Nicolas RoyOceanics (Win)C221997-02-05No208 Lbs6 ft4NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Pavel KarnaukhovOceanics (Win)LW221997-03-15Yes194 Lbs6 ft3NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Scott WalfordOceanics (Win)D201999-01-12Yes198 Lbs6 ft2YesNoNo1Pro & Farm560,000$56,000$0$NoLink
Trevor MooreOceanics (Win)LW241995-03-31No170 Lbs5 ft9NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
William LockwoodOceanics (Win)RW211998-06-20Yes172 Lbs5 ft11NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2923.07192 Lbs6 ft12.141,016,828$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Conor ShearyFrederik GauthierMathieu Joseph35014
2Jordan NolanMichael RasmussenNic Petan30023
3Trevor MooreGlenn GawdinMicheal Ferland25023
4Joakim NygardNicolas Roy10023
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark PysykLawrence Pilut45023
2Jacob MiddletonNick DeSimone35113
3Maxime Lajoie10122
4Mark PysykLawrence Pilut10014
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Conor ShearyFrederik GauthierMathieu Joseph60005
2Jordan NolanMichael RasmussenNic Petan40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Lawrence PilutMark Pysyk60014
2Jacob MiddletonNick DeSimone40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Frederik GauthierJordan Nolan60050
2Michael RasmussenConor Sheary40050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark PysykLawrence Pilut60050
2Jacob MiddletonNick DeSimone40050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Frederik Gauthier60050Lawrence PilutMark Pysyk60050
2Michael Rasmussen40050Jacob MiddletonNick DeSimone40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Frederik GauthierConor Sheary60014
2Michael RasmussenNic Petan40014
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lawrence PilutMark Pysyk60014
2Jacob MiddletonNick DeSimone40023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Conor ShearyFrederik GauthierMathieu JosephMark PysykLawrence Pilut
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Micheal FerlandMichael RasmussenNic PetanMark PysykLawrence Pilut
Extra Forwards
Normal PowerPlayPenalty Kill
Jordan Nolan, Frederik Gauthier, Conor ShearyConor Sheary, Michael RasmussenJordan Nolan
Extra Defensemen
Normal PowerPlayPenalty Kill
Mark Pysyk, Lawrence Pilut, Jacob MiddletonMark PysykMark Pysyk, Lawrence Pilut
Penalty Shots
Frederik Gauthier, Jordan Nolan, Conor Sheary, Michael Rasmussen, Mathieu Joseph
Goalie
#1 : Collin Delia, #2 : Joren Van Pottelberghe


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals312000001192110000008352020000036-320.33311193000135109961712512481155129080763020858337.50%10370.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
2Baby Hawks541000002211113300000014772110000084480.80022355700135109961721512481155129080143431812029724.14%70100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
3Bears210000101073100000106511100000042241.0001015250013510996171121248115512908071156379111.11%3166.67%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
4Bruins2010100058-31010000037-41000100021120.500510150013510996177012481155129080562012467114.29%6266.67%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
5Cabaret Lady Mary Ann2200000014311110000008171100000062441.000142640001351099617122124811551290806223156111100.00%50100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
6Caroline220000001037110000004221100000061541.0001019290013510996178712481155129080541016555120.00%7185.71%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
7Chiefs413000001216-42110000066020200000610-420.25012233510135109961715712481155129080144465812213215.38%19384.21%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
8Chill43100000191362200000011562110000088060.7501935540013510996171621248115512908014250519419421.05%17476.47%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
9Comets33000000188102200000015781100000031261.000183452001351099617144124811551290809826188911436.36%8187.50%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
10Cougars2110000069-3110000003211010000037-420.500612180013510996179312481155129080642126398225.00%13469.23%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
11Crunch220000001055110000006331100000042241.00010203000135109961710412481155129080592212475120.00%60100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
12Heat3200100015781000100032122000000125761.00015284300135109961713912481155129080661622571119.09%11372.73%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
13Jayhawks310010101174210010008531000001032161.0001118290013510996171391248115512908099311865500.00%8187.50%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
14Las Vegas31100010880210000107521010000013-240.66781220001351099617146124811551290801093033741119.09%13376.92%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
15Manchots200000201082100000105411000001054141.00010132300135109961787124811551290801052826637114.29%11281.82%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
16Marlies201010007701010000034-11000100043120.500711180013510996177212481155129080662516466116.67%8187.50%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
17Minnesota44000000219122200000082622000000137681.000213960001351099617283124811551290801133745859111.11%15380.00%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
18Monarchs330000001951422000000133101100000062461.000193554001351099617189124811551290809730168613538.46%80100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
19Monsters211000008801010000035-21100000053220.50081321001351099617611248115512908073192451400.00%12191.67%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
20Monsters412000101113-22020000037-42100001086240.500111930001351099617152124811551290801333724831317.69%11281.82%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
21Oil Kings3300000015871100000051422000000107361.0001530450013510996171431248115512908012534318613323.08%80100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
22Phantoms211000006421010000023-11100000041320.500612180013510996175712481155129080622422545120.00%11281.82%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
23Rocket211000009901010000035-21100000064220.50091726001351099617701248115512908064158554250.00%40100.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
24Senators2110000078-11010000035-21100000043120.50071320001351099617841248115512908070202449500.00%10280.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
25Sharks32100000981110000004312110000055040.66791524101351099617129124811551290806616126210220.00%5260.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
26Sound Tigers210000011064110000007251000000134-130.7501018280013510996179112481155129080701516545240.00%7271.43%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
27Spiders21000001651110000004221000000123-130.75061016001351099617751248115512908083211846400.00%9188.89%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
28Stars531000012616102010000158-3330000002181370.7002646721013510996172331248115512908013642451101218.33%17288.24%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
29Thunder22000000835110000004311100000040441.00081523011351099617931248115512908043148436116.67%4250.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
Total82492004063350235115412510020311801196141241002032170116541210.738350625975311351099617373912481155129080258677367820032675018.73%2815082.21%31990332559.85%1555267258.20%813139758.20%2225159916945711052552
30Wolf Pack21100000743110000006241010000012-120.500713200013510996171051248115512908037131839900.00%8275.00%01990332559.85%1555267258.20%813139758.20%2225159916945711052552
_Since Last GM Reset82492004063350235115412510020311801196141241002032170116541210.738350625975311351099617373912481155129080258677367820032675018.73%2815082.21%31990332559.85%1555267258.20%813139758.20%2225159916945711052552
_Vs Conference35181002032142103391710500020825626188502012604713480.68614224738911135109961715121248115512908011173402898551172218.80%1292779.07%11990332559.85%1555267258.20%813139758.20%2225159916945711052552
_Vs Division168402000665214852000003330383202000332211200.625661241900113510996177081248115512908048416012138642921.43%561180.36%01990332559.85%1555267258.20%813139758.20%2225159916945711052552

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82121W435062597537392586773678200331
All Games
GPWLOTWOTL SOWSOLGFGA
8249204063350235
Home Games
GPWLOTWOTL SOWSOLGFGA
4125102031180119
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4124102032170116
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2675018.73%2815082.21%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
124811551290801351099617
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1990332559.85%1555267258.20%813139758.20%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2225159916945711052552


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-10-236Oceanics1Wolf Pack2LBoxScore
3 - 2020-10-2414Oceanics2Spiders3LXXBoxScore
5 - 2020-10-2633Oceanics3Sound Tigers4LXXBoxScore
7 - 2020-10-2838Oceanics5Manchots4WXXBoxScore
9 - 2020-10-3053Minnesota1Oceanics5WBoxScore
11 - 2020-11-0164Oceanics2Baby Hawks3LBoxScore
12 - 2020-11-0275Manchots4Oceanics5WXXBoxScore
14 - 2020-11-0487Jayhawks4Oceanics5WXBoxScore
16 - 2020-11-06102Sound Tigers2Oceanics7WBoxScore
19 - 2020-11-09127Oil Kings1Oceanics5WBoxScore
21 - 2020-11-11140Monarchs1Oceanics8WBoxScore
25 - 2020-11-15169Heat2Oceanics3WXBoxScore
28 - 2020-11-18187Oceanics2Admirals4LBoxScore
31 - 2020-11-21203Oceanics3Sharks1WBoxScore
32 - 2020-11-22215Oceanics1Las Vegas3LBoxScore
35 - 2020-11-25229Spiders2Oceanics4WBoxScore
38 - 2020-11-28250Comets5Oceanics8WBoxScore
40 - 2020-11-30264Stars4Oceanics3LXXBoxScore
42 - 2020-12-02276Monsters4Oceanics2LBoxScore
44 - 2020-12-04288Oceanics6Cabaret Lady Mary Ann2WBoxScore
46 - 2020-12-06302Oceanics4Thunder0WBoxScore
49 - 2020-12-09325Oceanics4Chill2WBoxScore
51 - 2020-12-11342Oceanics5Stars1WBoxScore
53 - 2020-12-13352Monsters5Oceanics3LBoxScore
57 - 2020-12-17389Oceanics2Sharks4LBoxScore
59 - 2020-12-19392Oceanics1Admirals2LBoxScore
60 - 2020-12-20414Oceanics6Monarchs2WBoxScore
63 - 2020-12-23431Stars4Oceanics2LBoxScore
65 - 2020-12-25445Oceanics9Stars4WBoxScore
68 - 2020-12-28463Admirals3Oceanics8WBoxScore
70 - 2020-12-30477Cougars2Oceanics3WBoxScore
72 - 2021-01-01491Oceanics3Cougars7LBoxScore
75 - 2021-01-04515Phantoms3Oceanics2LBoxScore
77 - 2021-01-06530Caroline2Oceanics4WBoxScore
79 - 2021-01-08543Baby Hawks2Oceanics4WBoxScore
81 - 2021-01-10554Oceanics5Minnesota3WBoxScore
83 - 2021-01-12577Rocket5Oceanics3LBoxScore
87 - 2021-01-16588Chiefs3Oceanics5WBoxScore
89 - 2021-01-18602Oceanics2Chiefs4LBoxScore
91 - 2021-01-20621Oceanics3Monsters2WBoxScore
93 - 2021-01-22633Marlies4Oceanics3LBoxScore
95 - 2021-01-24643Oceanics8Minnesota4WBoxScore
97 - 2021-01-26660Oceanics6Rocket4WBoxScore
99 - 2021-01-28675Oceanics4Marlies3WXBoxScore
100 - 2021-01-29678Oceanics2Bruins1WXBoxScore
103 - 2021-02-01703Chill2Oceanics5WBoxScore
105 - 2021-02-03721Comets2Oceanics7WBoxScore
108 - 2021-02-06742Thunder3Oceanics4WBoxScore
110 - 2021-02-08757Oceanics6Baby Hawks1WBoxScore
112 - 2021-02-10764Oceanics6Caroline1WBoxScore
113 - 2021-02-11766Oceanics5Monsters3WBoxScore
122 - 2021-02-20789Bruins7Oceanics3LBoxScore
123 - 2021-02-21795Chiefs3Oceanics1LBoxScore
126 - 2021-02-24822Chill3Oceanics6WBoxScore
128 - 2021-02-26834Oceanics4Chiefs6LBoxScore
130 - 2021-02-28843Senators5Oceanics3LBoxScore
131 - 2021-03-01858Baby Hawks3Oceanics5WBoxScore
133 - 2021-03-03872Wolf Pack2Oceanics6WBoxScore
136 - 2021-03-06891Sharks3Oceanics4WBoxScore
138 - 2021-03-08914Baby Hawks2Oceanics5WBoxScore
140 - 2021-03-10926Monarchs2Oceanics5WBoxScore
142 - 2021-03-12937Oceanics4Senators3WBoxScore
144 - 2021-03-14949Oceanics4Phantoms1WBoxScore
145 - 2021-03-15961Oceanics4Crunch2WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17973Oceanics4Bears2WBoxScore
149 - 2021-03-19992Bears5Oceanics6WXXBoxScore
151 - 2021-03-211009Oceanics5Oil Kings3WBoxScore
154 - 2021-03-241024Crunch3Oceanics6WBoxScore
157 - 2021-03-271045Las Vegas2Oceanics3WBoxScore
160 - 2021-03-301067Jayhawks1Oceanics3WBoxScore
162 - 2021-04-011080Oceanics5Oil Kings4WBoxScore
165 - 2021-04-041108Oceanics6Heat1WBoxScore
166 - 2021-04-051117Oceanics3Comets1WBoxScore
168 - 2021-04-071128Cabaret Lady Mary Ann1Oceanics8WBoxScore
171 - 2021-04-101148Minnesota1Oceanics3WBoxScore
173 - 2021-04-121168Oceanics7Stars3WBoxScore
175 - 2021-04-141183Oceanics4Chill6LBoxScore
178 - 2021-04-171201Monsters3Oceanics1LBoxScore
180 - 2021-04-191218Las Vegas3Oceanics4WXXBoxScore
182 - 2021-04-211236Oceanics6Heat4WBoxScore
184 - 2021-04-231251Oceanics5Monsters4WXXBoxScore
186 - 2021-04-251259Oceanics3Jayhawks2WXXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4020
Attendance61,67726,975
Attendance PCT75.22%65.79%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2162 - 72.07% 73,331$3,006,580$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,209,345$ 2,948,800$ 2,836,300$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
15,249$ 3,058,258$ 29 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 15,854$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT