Bears

GP: 82 | W: 53 | L: 24 | OTL: 5 | P: 111
GF: 340 | GA: 250 | PP%: 22.09% | PK%: 78.53%
GM : David Arseneault | Morale : 50 | Team Overall : 57
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1David BackesXX100.008349757482586462466657615785890506303518,000,000$
2Gemel SmithXXX100.006965797268687667685765676556560506202511,200,000$
3Nick Shore (R)X100.007343897771536759795557832551510506102751,300,000$
4Dylan SikuraXXX100.00665886615880846480616261594747050600242925,000$
5Phillip Di GiuseppeXX100.00825091797356745830595664255757050600251700,000$
6Boris KatchoukX100.00757184617180856050565964564444050590212742,500$
7Nathan BastianX100.00777574627877815850535965594444050590212742,500$
8Bob Carpenter (R)XX100.00767284667253525771565363504444050560231600,000$
9Ryan GroppX100.00797193687268705050494964464444050560231825,000$
10Shea TheodoreX100.006149908474849280256858638062640506802435,200,000$
11Dakota MermisX100.00835285676776805925484774795555050640254655,000$
12Philippe MyersX100.00815084807669825931534766255353050640223700,000$
13Josh BrownX100.00817279628763755625454663255757050610251800,000$
14Jaycob MegnaX100.00817484608671805127394271395252050610263969,006$
15Jakub ZborilX100.00767280667570754925434064394848050590221895,000$
16Evan McEnenyX100.007774806375565946253543644051510505602531,154,888$
Scratches
1Antoine Morand (R)X100.00716683676670755063494759454444050550204778,334$
2Ty RattieX100.00533592665755424949475160444742050510261900,000$
3Kirill Kaprizov (R)XX100.00323737375631313237323237343230050350221525,000$
4Jack Rathbone (R)X100.00524783696859685525594153435454050560204925,000$
5Sean DayX100.00828477538451534825394164394444050550212742,500$
6Igor Ozhiganov (R)X100.00613587626947424035374362473532050510263925,000$
TEAM AVERAGE100.0071598266726369554350506346505005058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Dan Vladar100.0064587380666768716968304444050640
2Alex Lyon100.0062688375626555656460304545050610
Scratches
1Gilles Senn (R)100.0052546886515453585454304444050560
2Kaden Fulcher (R)100.0043454566434343434362423532050460
3Linus Soderstrom (R)100.0035403769343232323232323230050370
TEAM AVERAGE100.005153617551525054525533403905053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Gemel SmithBears (Was)C/LW/RW82873412135761025025471420951112.18%57169220.6418112912724300014515448.37%18400151.433910116154
2Philippe MyersBears (Was)D821189100408202981472801041743.93%200187822.91717241252380001229110.00%000001.06000002118
3Nick ShoreBears (Was)C8243468936803430234010225112.65%25134616.4241620521630003479262.66%204600021.3206000643
4Phillip Di GiuseppeBears (Was)LW/RW822541663542081123268681749.33%11129415.7954936163000005040.38%10400001.0200000444
5Dylan SikuraBears (Was)C/LW/RW822238602010034177237661709.28%599612.160118260000112059.37%129200001.2011000141
6Dakota MermisBears (Was)D81144559305401278916251988.64%117151518.7141014661740004179100.00%000000.7801000034
7Boris KatchoukBears (Was)LW822333562026073932186818410.55%2398312.00000130002443144.74%7600011.1400000316
8John HaydenWashingtonLW/RW75193453278715228101265661917.17%13117715.69771443150000003147.52%10100000.9013201026
9Nathan BastianBears (Was)RW8215324720721011987208621387.21%1792511.2801119000002246.05%7600001.0200101311
10Bob CarpenterBears (Was)C/LW822110311318082961664511912.65%214605.6200000000002257.12%54800011.3500000104
11Byron FroeseWashingtonC/RW241018287215843214735926.80%1059824.931111230930007811060.00%5000010.9403010230
12Shea TheodoreBears (Was)D23919288100233768325713.24%4560026.127293389000175100.00%000000.9300000211
13Jakub ZborilBears (Was)D8272128165001263969204110.14%77101712.4100022000197100.00%000000.5500000100
14Josh BrownBears (Was)D826192532500177418524577.06%97153118.67336311750001179000.00%000000.3300000111
15Jaycob MegnaBears (Was)D8251419158620130507120507.04%6094511.5300071800000000.00%000000.4000102001
16Filip ChytilWashingtonC/LW/RW8134-200234288243.57%019424.350119320000270049.80%24900000.4101000000
17Evan McEnenyBears (Was)D3000000000000.00%0103.660000000000000.00%000000.0000000000
Team Total or Average11163184968143526926018681702332698023319.56%7781717215.3956841405711587000211020461358.48%4726001100.95524515425044
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dan VladarBears (Was)82522450.9232.99485710324231590410.82941820889
2Alex LyonBears (Was)31000.9711.12107002700000.0000082000
Team Total or Average85532450.9242.95496510324432290410.829418282889


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alex LyonBears (Was)G261992-12-08No201 Lbs6 ft1NoNoNo2Pro & Farm874,125$87,412$0$No874,125$Link
Antoine MorandBears (Was)C201999-02-18Yes185 Lbs5 ft10NoNoNo4Pro & Farm778,334$77,833$0$No778,334$778,334$778,334$Link
Bob CarpenterBears (Was)C/LW231996-08-16Yes201 Lbs5 ft11YesNoNo1Pro & Farm600,000$60,000$0$NoLink
Boris KatchoukBears (Was)LW211998-06-18No192 Lbs6 ft1NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Dakota MermisBears (Was)D251994-01-05No188 Lbs5 ft11NoNoNo4Pro & Farm655,000$65,500$0$No655,000$655,000$655,000$Link
Dan VladarBears (Was)G221997-08-20No185 Lbs6 ft5NoNoNo1Pro & Farm700,000$70,000$0$NoLink
David BackesBears (Was)C/RW351984-05-01No221 Lbs6 ft3NoNoNo1Pro & Farm8,000,000$800,000$0$NoLink
Dylan SikuraBears (Was)C/LW/RW241995-06-01No158 Lbs5 ft11NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Evan McEnenyBears (Was)D251994-05-22No203 Lbs6 ft2NoNoNo3Pro & Farm1,154,888$115,489$0$No1,154,888$1,154,888$Link
Gemel SmithBears (Was)C/LW/RW251994-04-16No190 Lbs5 ft10NoNoNo1Pro & Farm1,200,000$120,000$0$NoLink
Gilles SennBears (Was)G231996-03-01Yes203 Lbs6 ft5NoNoNo2Pro & Farm817,500$81,750$0$No817,500$Link
Igor OzhiganovBears (Was)D261992-10-13Yes210 Lbs6 ft2NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Jack RathboneBears (Was)D201999-05-20Yes190 Lbs5 ft11NoNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Link
Jakub ZborilBears (Was)D221997-02-21No200 Lbs6 ft2NoNoNo1Pro & Farm895,000$89,500$0$NoLink
Jaycob MegnaBears (Was)D261992-12-10No225 Lbs6 ft6NoNoNo3Pro & Farm969,006$96,901$0$No969,006$969,006$Link
Josh BrownBears (Was)D251994-01-21No225 Lbs6 ft5NoNoNo1Pro & Farm800,000$80,000$0$NoLink
Kaden FulcherBears (Was)G211998-09-23Yes182 Lbs6 ft2NoNoNo2Pro & Farm1,200,000$120,000$0$No1,200,000$Link
Kirill KaprizovBears (Was)LW/RW221997-04-26Yes185 Lbs5 ft9NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Linus SoderstromBears (Was)G231996-08-23Yes187 Lbs6 ft3NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Nathan BastianBears (Was)RW211997-12-06No205 Lbs6 ft4NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Nick ShoreBears (Was)C271992-09-26Yes194 Lbs6 ft1NoNoNo5Pro & Farm1,300,000$130,000$0$No1,300,000$1,300,000$1,300,000$1,300,000$Link
Philippe MyersBears (Was)D221997-01-25No196 Lbs6 ft5NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Phillip Di GiuseppeBears (Was)LW/RW251993-10-09No201 Lbs6 ft0NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Ryan GroppBears (Was)LW231996-09-16No190 Lbs6 ft2NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Sean DayBears (Was)D211998-01-08No231 Lbs6 ft2NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Shea TheodoreBears (Was)D241995-08-03No195 Lbs6 ft2NoNoNo3Pro & Farm5,200,000$520,000$0$No5,200,000$5,200,000$Link
Ty RattieBears (Was)RW261993-02-05No183 Lbs6 ft0NoNoNo1Pro & Farm900,000$90,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2723.81197 Lbs6 ft22.111,275,791$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gemel Smith40122
2Nick ShorePhillip Di Giuseppe30122
3Boris KatchoukDylan SikuraNathan Bastian20122
4Bob Carpenter10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Philippe Myers40122
2Dakota MermisJosh Brown30122
3Jaycob MegnaJakub Zboril20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gemel Smith60122
2Nick ShorePhillip Di Giuseppe40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Philippe Myers60122
2Dakota MermisJosh Brown40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Gemel SmithNick Shore40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Philippe Myers60122
2Dakota MermisJosh Brown40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Philippe Myers60122
240122Dakota MermisJosh Brown40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Gemel SmithNick Shore40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Philippe Myers60122
2Dakota MermisJosh Brown40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Gemel SmithPhilippe Myers
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Gemel SmithPhilippe Myers
Extra Forwards
Normal PowerPlayPenalty Kill
Dylan Sikura, Nathan Bastian, Boris KatchoukDylan Sikura, Nathan BastianBoris Katchouk
Extra Defensemen
Normal PowerPlayPenalty Kill
Jaycob Megna, Jakub Zboril, Jaycob MegnaJakub Zboril,
Penalty Shots
, , Gemel Smith, Nick Shore,
Goalie
#1 : Dan Vladar, #2 : Alex Lyon


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals20100010550100000103211010000023-120.500571200146105838891259115212016578251150300.00%30100.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
2Baby Hawks21100000550110000002111010000034-120.5005813001461058386712591152120165641510518112.50%3166.67%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
3Bruins301000111112-1100000106512010000157-230.500111728001461058381261259115212016513045247010110.00%11463.64%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
4Cabaret Lady Mary Ann330000002210121100000073422000000157861.00022386000146105838237125911521201651333112897114.29%6350.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
5Caroline43100000141132110000046-222000000105560.7501423370014610583816612591152120165165413694900.00%18477.78%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
6Chiefs21000001752110000005231000000123-130.75071118001461058389112591152120165752210489333.33%5180.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
7Chill20200000810-21010000067-11010000023-100.000812200014610583863125911521201651052620498225.00%9277.78%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
8Comets22000000963110000005321100000043141.00091625001461058388112591152120165691618518337.50%8187.50%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
9Cougars311000011113-21000000123-121100000910-130.500111526001461058381011259115212016512944267610550.00%13376.92%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
10Crunch330000001257110000004222200000083561.000122032001461058381731259115212016512232258316425.00%8275.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
11Heat220000001257110000005231100000073441.000122335001461058389812591152120165542320439333.33%8275.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
12Jayhawks21100000972110000007431010000023-120.50091827001461058387612591152120165742020596466.67%9277.78%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
13Las Vegas2020000058-31010000035-21010000023-100.0005813001461058388112591152120165793418627342.86%8362.50%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
14Manchots43000010181262100001075222000000117481.00018294700146105838178125911521201651854940909222.22%20195.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
15Marlies32100000972211000004401100000053240.667918271114610583892125911521201651033642591417.14%19478.95%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
16Minnesota220000001459110000007251100000073441.0001422360014610583814212591152120165982217463133.33%6183.33%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
17Monarchs211000001183110000007341010000045-120.5001117280014610583896125911521201651112714698450.00%70100.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
18Monsters412010001114-32020000028-62100100096340.50011142500146105838158125911521201651344638921119.09%18666.67%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
19Monsters21100000945110000007161010000023-120.50091625001461058389212591152120165612414464250.00%60100.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
20Oceanics20100001710-31010000024-21000000156-110.250711180014610583871125911521201651122518553133.33%9188.89%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
21Oil Kings22000000633110000004311100000020241.00068140114610583874125911521201657519234110220.00%90100.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
22Phantoms412000011415-12010000179-22110000076130.375142539001461058381651259115212016514638267915426.67%13376.92%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
23Rocket321000001596211000008621100000073440.667152843001461058381411259115212016514127308113215.38%14471.43%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
24Senators321000001293211000007701100000052340.667122133001461058381511259115212016513641285913215.38%14285.71%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
25Sharks22000000927110000004221100000050541.0009172601146105838741259115212016584201447400.00%70100.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
26Sound Tigers440000001798220000008532200000094581.00017274400146105838170125911521201651423733105600.00%11372.73%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
27Spiders4120001016133211000008442010001089-140.500162541001461058381521259115212016514749421081000.00%16193.75%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
28Stars2020000069-31010000035-21010000034-100.000611170014610583878125911521201656828323511436.36%6350.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
29Thunder320000101275220000008441000001043161.000121830001461058381461259115212016582292257300.00%10370.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
Total8247240105534025090412412000321641234141231201023176127491110.67734056890813146105838363712591152120165323091772419862585722.09%3126778.53%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
30Wolf Pack4400000024121222000000126622000000126681.00024456900146105838208125911521201651282641921119.09%18761.11%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
_Since Last GM Reset8247240105534025090412412000321641234141231201023176127491110.67734056890813146105838363712591152120165323091772419862585722.09%3126778.53%01675322851.89%1418318044.59%664141546.93%2005141719365851031514
_Vs Conference462314010531841453924128000319175162211601022937023610.66318430348712146105838193912591152120165182351941310811281914.84%1853780.00%01675322851.89%1418318044.59%664141546.93%2005141719365851031514

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82111W434056890836373230917724198613
All Games
GPWLOTWOTL SOWSOLGFGA
8247241055340250
Home Games
GPWLOTWOTL SOWSOLGFGA
4124120032164123
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4123121023176127
Last 10 Games
WLOTWOTL SOWSOL
910000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2585722.09%3126778.53%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
12591152120165146105838
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1675322851.89%1418318044.59%664141546.93%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2005141719365851031514


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-10-222Bears2Chiefs3LXXBoxScore
3 - 2020-10-2415Bears6Sound Tigers2WBoxScore
4 - 2020-10-2523Caroline4Bears1LBoxScore
7 - 2020-10-2839Stars5Bears3LBoxScore
9 - 2020-10-3052Bears2Chill3LBoxScore
11 - 2020-11-0170Bears3Stars4LBoxScore
13 - 2020-11-0383Monsters1Bears7WBoxScore
15 - 2020-11-0593Marlies4Bears2LBoxScore
17 - 2020-11-07109Wolf Pack2Bears6WBoxScore
19 - 2020-11-09126Bears3Baby Hawks4LBoxScore
21 - 2020-11-11142Bears7Heat3WBoxScore
23 - 2020-11-13154Bears2Oil Kings0WBoxScore
24 - 2020-11-14160Bears4Comets3WBoxScore
28 - 2020-11-18180Bears5Marlies3WBoxScore
31 - 2020-11-21198Crunch2Bears4WBoxScore
33 - 2020-11-23218Heat2Bears5WBoxScore
37 - 2020-11-27238Bears7Cabaret Lady Mary Ann5WBoxScore
39 - 2020-11-29258Las Vegas5Bears3LBoxScore
41 - 2020-12-01270Jayhawks4Bears7WBoxScore
43 - 2020-12-03283Bears3Phantoms4LBoxScore
45 - 2020-12-05296Rocket2Bears6WBoxScore
46 - 2020-12-06303Bears2Bruins3LXXBoxScore
48 - 2020-12-08316Admirals2Bears3WXXBoxScore
50 - 2020-12-10332Bears6Wolf Pack4WBoxScore
53 - 2020-12-13348Comets3Bears5WBoxScore
57 - 2020-12-17383Cabaret Lady Mary Ann3Bears7WBoxScore
59 - 2020-12-19398Thunder2Bears3WBoxScore
60 - 2020-12-20407Bears6Cougars5WBoxScore
63 - 2020-12-23433Bears5Sharks0WBoxScore
64 - 2020-12-24437Bears4Monarchs5LBoxScore
66 - 2020-12-26451Bears2Admirals3LBoxScore
69 - 2020-12-29469Monsters5Bears1LBoxScore
71 - 2020-12-31484Bruins5Bears6WXXBoxScore
74 - 2021-01-03509Bears4Thunder3WXXBoxScore
76 - 2021-01-05521Bears3Monsters1WBoxScore
80 - 2021-01-09549Bears3Spiders5LBoxScore
81 - 2021-01-10559Thunder2Bears5WBoxScore
83 - 2021-01-12571Bears3Bruins4LBoxScore
87 - 2021-01-16585Monsters3Bears1LBoxScore
88 - 2021-01-17598Bears4Caroline3WBoxScore
91 - 2021-01-20614Sound Tigers4Bears5WBoxScore
94 - 2021-01-23639Bears6Caroline2WBoxScore
96 - 2021-01-25653Sharks2Bears4WBoxScore
98 - 2021-01-27667Senators4Bears2LBoxScore
99 - 2021-01-28676Bears4Phantoms2WBoxScore
102 - 2021-01-31696Spiders1Bears6WBoxScore
104 - 2021-02-02712Caroline2Bears3WBoxScore
107 - 2021-02-05732Spiders3Bears2LBoxScore
109 - 2021-02-07743Bears3Sound Tigers2WBoxScore
118 - 2021-02-16768Bears7Rocket3WBoxScore
120 - 2021-02-18777Chill7Bears6LBoxScore
122 - 2021-02-20787Bears5Senators2WBoxScore
124 - 2021-02-22806Manchots1Bears2WBoxScore
126 - 2021-02-24817Monarchs3Bears7WBoxScore
130 - 2021-02-28850Phantoms6Bears5LXXBoxScore
132 - 2021-03-02862Sound Tigers1Bears3WBoxScore
135 - 2021-03-05888Bears2Monsters3LBoxScore
137 - 2021-03-07904Bears2Jayhawks3LBoxScore
139 - 2021-03-09918Bears2Las Vegas3LBoxScore
142 - 2021-03-12935Rocket4Bears2LBoxScore
144 - 2021-03-14948Bears5Spiders4WXXBoxScore
145 - 2021-03-15959Manchots4Bears5WXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17973Oceanics4Bears2LBoxScore
149 - 2021-03-19992Bears5Oceanics6LXXBoxScore
152 - 2021-03-221014Bears7Minnesota3WBoxScore
155 - 2021-03-251029Phantoms3Bears2LBoxScore
156 - 2021-03-261036Bears6Wolf Pack2WBoxScore
158 - 2021-03-281050Bears6Manchots4WBoxScore
160 - 2021-03-301066Bears4Crunch2WBoxScore
163 - 2021-04-021087Cougars3Bears2LXXBoxScore
165 - 2021-04-041103Baby Hawks1Bears2WBoxScore
167 - 2021-04-061120Oil Kings3Bears4WBoxScore
170 - 2021-04-091141Bears6Monsters5WXBoxScore
171 - 2021-04-101147Senators3Bears5WBoxScore
173 - 2021-04-121164Bears5Manchots3WBoxScore
175 - 2021-04-141181Chiefs2Bears5WBoxScore
177 - 2021-04-161194Wolf Pack4Bears6WBoxScore
179 - 2021-04-181210Bears3Cougars5LBoxScore
181 - 2021-04-201224Bears4Crunch1WBoxScore
182 - 2021-04-211231Marlies0Bears2WBoxScore
184 - 2021-04-231248Minnesota2Bears7WBoxScore
186 - 2021-04-251265Bears8Cabaret Lady Mary Ann2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4020
Attendance63,18927,294
Attendance PCT77.06%66.57%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2207 - 73.56% 74,962$3,073,440$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,588,702$ 3,444,636$ 3,444,636$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
18,520$ 3,588,702$ 27 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 18,520$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT