Marlies

GP: 82 | W: 61 | L: 16 | OTL: 5 | P: 127
GF: 315 | GA: 211 | PP%: 21.77% | PK%: 85.00%
GM : Patrick Pellegrino | Morale : 50 | Team Overall : 59
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Austin CzarnikXXX100.006456858058636468676466666762630506302611,500,000$
2Pontus AbergXX100.007261847670727863436265626254550506202621,250,000$
3Matt ReadXX100.007359886466707862455260715969700506103313,125,000$
4Victor RaskXXX100.006843957275596463676360573667670506102612,183,546$
5Nicholas Merkley (R)XX100.00736885796867696278625863554444050610221895,000$
6Timothy GettingerX100.00878591648574785850506169584444050600213770,000$
7Valentin ZykovXX100.007547907180615963256357612548480505902421,225,000$
8Brian GibbonsXX100.006641917061577056275356685364650505803132,200,000$
9Shane Bowers (R)X100.00767090667062636075585864554444050580204925,002$
10David Gustafsson (R)X100.00594199807145575164505769254646050570193817,500$
11Marian GaborikXX100.004535816769595856405160614983740505703713,166,667$
12Sven AndrighettoXX100.00473588695858695535525866444639050550261825,000$
13Nicolas Hague (R)X100.00834676788269846625604856254747050630204791,668$
14Chad RuhwedelX100.008447907269665461304847732559600506302911,425,000$
15Kevin ConnautonX100.0078667880766664602554466544646505063X02931,500,000$
16Scott HarringtonX100.007743887076637358255247672560610506202622,300,000$
17Alex Petrovic (R)X100.008381866281606351254740653844440505802721,600,000$
18Alexey MarchenkoX100.00484385586958524335463982454439050560273700,000$
Scratches
1Adam CracknellXXX100.00493594667352333358333363475449050470341750,000$
2Spencer FooX100.00453593666250313649324061463532050450252925,000$
3Jason GarrisonX100.005635825972553540353445714765570505403413,625,001$
4Lucas JohansenX100.00776990606757514825403961374444050540212925,000$
TEAM AVERAGE100.0068528870716161554351526644545305058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alexandar Georgiev100.0067726966757169678167685555050670
2Max Lagace100.0063637975647061686967304444050640
Scratches
1Anthony Stolarz100.0063617688666555656261304545050620
2Daniil Tarasov G (R)100.0051817372405053534548495454050540
TEAM AVERAGE100.006169747561646063646144505005062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pontus AbergMarlies (Tor)LW/RW82404989253201571563689926510.87%22193623.62910195522621382187142.95%15600010.92390001133
2Victor RaskMarlies (Tor)C/LW/RW8226527823160762042385916310.92%12161719.73613194420803331645256.09%218400000.9635000326
3Matt ReadMarlies (Tor)LW/RW82324375226220118113355982119.01%24159419.44511167120910171063041.41%12800000.9426121364
4Valentin ZykovMarlies (Tor)LW/RW82333568212801281032966818611.15%12145817.79681449210000008328.30%10600000.9300000733
5Kevin ConnautonMarlies (Tor)D8218496719620153106143449712.59%146195823.8872128612251011179320.00%000100.6800000515
6Nicholas MerkleyMarlies (Tor)C/RW8226386420440123164273851939.52%26159119.40213155522801151042357.66%27400000.8027000138
7Timothy GettingerMarlies (Tor)LW8228336131555257882727320210.29%11129515.79581344144000004151.41%31900010.9401001671
8Chad RuhwedelMarlies (Tor)D821438523056019811217256948.14%102178521.778311772040113151510.00%000000.5800000431
9David GustafssonMarlies (Tor)C82193251344014183227551558.37%14120414.691013240000193253.89%131000000.8526000234
10Scott HarringtonMarlies (Tor)D828384629280846911240887.14%90151618.49156321740001145310.00%000000.6100000133
11Shane BowersMarlies (Tor)C82152742243515122189192431387.81%14129215.7600000000000058.51%165100000.6500012244
12Marian GaborikMarlies (Tor)LW/RW821922413100455169399311.24%3115514.09000020000115051.65%9100000.7100000122
13Nicolas HagueMarlies (Tor)D764323611620184576624396.06%75151219.903691996000165100.00%000000.4800000040
14Alex PetrovicMarlies (Tor)D82618243136101693958225310.34%93153018.66325191410001177100.00%000000.3100020020
15Alexey MarchenkoMarlies (Tor)D704192315009424313469.30%78105415.06000129011073110.00%000000.4400000020
16Austin CzarnikMarlies (Tor)C/LW/RW5571522-620266710131886.93%75199.45371028940003712055.38%74400000.8513000211
17Brian GibbonsMarlies (Tor)C/LW82871520022478719639.20%95927.230000500001051137.02%18100000.5100000000
18Trevor DaleyTorontoD15211131012019234414304.55%2335723.810112236000037000.00%000100.7311000000
19Matt IrwinTorontoD12044101202917154140.00%1121017.550000000000000.00%000000.3800000000
20Adam CracknellMarlies (Tor)C/LW/RW21011-300044170.00%31808.59000140000170053.85%1300000.1100000000
21Lucas JohansenMarlies (Tor)D28011440513010.00%7923.320000000001000.00%000000.2200000000
22Jason GarrisonMarlies (Tor)D5000000010000.00%010.390000000000000.00%000000.0000000000
23Sven AndrighettoMarlies (Tor)LW/RW47000000000000.00%040.100000000000000.00%000000.0000000000
Team Total or Average14773095648733835505018971840323888722269.54%7822446316.565910816758122684711331650541854.52%715700220.711438154484945
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alexandar GeorgievMarlies (Tor)76551640.9242.5044256418424200120.83330766846
2Max LagaceMarlies (Tor)126010.9252.5055200233060000.7508676000
Team Total or Average88611650.9242.5049786420727260120.816388282846


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam CracknellMarlies (Tor)C/LW/RW341985-07-15No209 Lbs6 ft3NoNoNo1Pro & Farm750,000$75,000$0$NoLink
Alex PetrovicMarlies (Tor)D271992-03-03Yes216 Lbs6 ft4NoNoNo2Pro & Farm1,600,000$160,000$0$No1,600,000$Link
Alexandar GeorgievMarlies (Tor)G231996-02-10No176 Lbs6 ft1NoNoNo1Pro & Farm792,500$79,250$0$NoLink
Alexey MarchenkoMarlies (Tor)D271992-01-02No210 Lbs6 ft3NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Anthony StolarzMarlies (Tor)G251994-01-20No210 Lbs6 ft6NoNoNo3Pro & Farm900,000$90,000$0$No900,000$900,000$Link
Austin CzarnikMarlies (Tor)C/LW/RW261992-12-12No160 Lbs5 ft9NoNoNo1Pro & Farm1,500,000$150,000$0$NoLink
Brian GibbonsMarlies (Tor)C/LW311988-02-05No175 Lbs5 ft8NoNoNo3Pro & Farm2,000,000$220,000$0$No2,000,000$2,000,000$Link
Chad RuhwedelMarlies (Tor)D291990-05-07No191 Lbs5 ft11NoNoNo1Pro & Farm1,425,000$142,500$0$NoLink
Daniil Tarasov GMarlies (Tor)G201999-03-27Yes185 Lbs6 ft5NoNoNo4Pro & Farm825,000$82,500$0$No825,000$825,000$825,000$Link
David GustafssonMarlies (Tor)C192000-04-11Yes194 Lbs6 ft1NoNoNo3Pro & Farm817,500$81,750$0$No817,500$817,500$Link
Jason GarrisonMarlies (Tor)D341984-11-13No218 Lbs6 ft1NoNoNo1Pro & Farm3,000,001$362,500$0$NoLink
Kevin ConnautonMarlies (Tor)D291990-02-23No205 Lbs6 ft2NoYesNo3Pro & Farm1,500,000$150,000$0$No1,500,000$1,500,000$Link
Lucas JohansenMarlies (Tor)D211997-11-16No176 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Marian Gaborik (1 Way Contract)Marlies (Tor)LW/RW371982-02-14No200 Lbs6 ft1NoNoNo1Pro & Farm2,500,000$3,166,667$0$NoLink
Matt ReadMarlies (Tor)LW/RW331986-06-13No185 Lbs5 ft10NoNoNo1Pro & Farm1,500,000$312,500$0$NoLink
Max LagaceMarlies (Tor)G261993-01-11No190 Lbs6 ft2NoNoNo4Pro & Farm950,000$95,000$0$No950,000$950,000$950,000$Link
Nicholas MerkleyMarlies (Tor)C/RW221997-05-23Yes194 Lbs5 ft10NoNoNo1Pro & Farm895,000$89,500$0$NoLink
Nicolas HagueMarlies (Tor)D201998-12-05Yes214 Lbs6 ft6NoNoNo4Pro & Farm791,668$79,167$0$No791,668$791,668$791,668$Link
Pontus AbergMarlies (Tor)LW/RW261993-09-22No196 Lbs5 ft11NoNoNo2Pro & Farm1,250,000$125,000$0$No1,250,000$Link
Scott HarringtonMarlies (Tor)D261993-03-10No207 Lbs6 ft2NoNoNo2Pro & Farm2,300,000$230,000$0$No2,300,000$Link
Shane BowersMarlies (Tor)C201999-07-30Yes187 Lbs6 ft2NoNoNo4Pro & Farm925,002$92,500$0$No925,002$925,002$925,002$Link
Spencer FooMarlies (Tor)RW251994-05-19No190 Lbs6 ft0NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Sven AndrighettoMarlies (Tor)LW/RW261993-03-21No188 Lbs5 ft10NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Timothy GettingerMarlies (Tor)LW211998-04-14No220 Lbs6 ft6NoNoNo3Pro & Farm770,000$77,000$0$No770,000$770,000$Link
Valentin ZykovMarlies (Tor)LW/RW241995-05-14No224 Lbs6 ft1NoNoNo2Pro & Farm1,225,000$122,500$0$No1,225,000$Link
Victor RaskMarlies (Tor)C/LW/RW261993-03-01No200 Lbs6 ft2NoNoNo1Pro & Farm2,183,546$218,355$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2626.04197 Lbs6 ft12.151,299,047$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus AbergShane BowersNicholas Merkley40122
2Matt ReadVictor RaskValentin Zykov30122
3Timothy GettingerDavid GustafssonMarian Gaborik20122
4Brian GibbonsShane BowersPontus Aberg10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin ConnautonNicolas Hague40122
2Alexey MarchenkoChad Ruhwedel30122
3Scott HarringtonAlex Petrovic20122
4Kevin ConnautonChad Ruhwedel10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus AbergTimothy GettingerNicholas Merkley60122
2Matt ReadVictor RaskValentin Zykov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin ConnautonAlex Petrovic60122
2Scott HarringtonChad Ruhwedel40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Victor RaskPontus Aberg60122
2Nicholas MerkleyMatt Read40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin ConnautonScott Harrington60122
2Alex PetrovicChad Ruhwedel40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nicholas Merkley60122Kevin ConnautonScott Harrington60122
2Pontus Aberg40122Alex PetrovicChad Ruhwedel40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brian GibbonsPontus Aberg60122
2Nicholas MerkleyMatt Read40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin ConnautonAlex Petrovic60122
2Scott HarringtonChad Ruhwedel40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Pontus AbergMatt ReadNicholas MerkleyKevin ConnautonChad Ruhwedel
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Pontus AbergMatt ReadNicholas MerkleyKevin ConnautonChad Ruhwedel
Extra Forwards
Normal PowerPlayPenalty Kill
David Gustafsson, Timothy Gettinger, Brian GibbonsDavid Gustafsson, Timothy GettingerBrian Gibbons
Extra Defensemen
Normal PowerPlayPenalty Kill
Scott Harrington, Alex Petrovic, Kevin ConnautonScott HarringtonAlex Petrovic, Kevin Connauton
Penalty Shots
David Gustafsson, Pontus Aberg, Nicholas Merkley, Matt Read, Victor Rask
Goalie
#1 : Alexandar Georgiev, #2 : Max Lagace


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2010001045-1100000102111010000024-220.500459001111148016741031110610337853234566233.33%20100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
2Baby Hawks21100000541110000005231010000002-220.5005914101111148016591031110610337861198409111.11%4175.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
3Bears3120000079-21010000035-22110000044020.33371421001111148016103103111061033789234334519421.05%14192.86%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
4Bruins4310000015105220000009542110000065160.7501528430011111480161581031110610337810824248517211.76%12375.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
5Cabaret Lady Mary Ann4400000029121722000000156922000000146881.00029507900111114801630210311106103378130292412111654.55%12283.33%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
6Caroline320000101394210000108621100000053261.0001322350011111480169010311106103378103303254800.00%11281.82%11614296454.45%1560287554.26%728131855.24%2110147017975851072562
7Chiefs21100000440110000003031010000014-320.50046100111111480165610311106103378501113569333.33%40100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
8Chill2010001078-11010000024-21000001054120.50071118001111148016681031110610337883186617228.57%3166.67%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
9Comets210010001064110000004131000100065141.0001016260011111480168810311106103378852718449333.33%9366.67%11614296454.45%1560287554.26%728131855.24%2110147017975851072562
10Cougars42200000811-3220000004222020000049-540.500816241011111480161261031110610337814040248616318.75%12191.67%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
11Crunch440000001495220000006332200000086281.0001426400011111480161631031110610337815958241228225.00%100100.00%21614296454.45%1560287554.26%728131855.24%2110147017975851072562
12Heat21000010945100000104311100000051441.000916250011111480168210311106103378712018486116.67%8187.50%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
13Jayhawks210000101284110000006331000001065141.0001220320011111480169710311106103378902418525240.00%8362.50%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
14Las Vegas20000110660100000104311000010023-130.750610160011111480166810311106103378611314491119.09%6266.67%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
15Manchots31200000911-21010000013-22110000088020.3339162500111114801610910311106103378111202273400.00%11372.73%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
16Minnesota2200000011110110000004041100000071641.00011213201111114801610510311106103378592010434250.00%50100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
17Monarchs200010018801000000134-11000100054130.750813210011111480167610311106103378782912565240.00%60100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
18Monsters321000001495211000009721100000052340.667142438001111148016145103111061033788421237210330.00%9366.67%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
19Monsters210000016601000000112-11100000054130.75061218001111148016531031110610337891242038300.00%10190.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
20Oceanics210001007701000010034-11100000043130.750714210011111480166610311106103378721612478112.50%6183.33%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
21Oil Kings21100000770110000003211010000045-120.500713200011111480166610311106103378661921387114.29%8187.50%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
22Phantoms32000010954110000003212100001063361.00091423011111148016106103111061033789824204814428.57%8187.50%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
23Rocket430001001688220000008352100010085370.8751629450011111480161701031110610337813438349019421.05%12191.67%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
24Senators42200000131212200000092720200000410-640.500132336001111148016132103111061033781354131891417.14%12283.33%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
25Sharks2110000057-21010000025-31100000032120.50059140011111480166610311106103378682210505120.00%50100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
26Sound Tigers3300000014410220000009271100000052361.0001427410111111480161121031110610337886331757500.00%60100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
27Spiders330000001266220000009451100000032161.0001220320011111480161181031110610337810232148313323.08%7271.43%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
28Stars22000000734110000004131100000032141.0007111800111114801671103111061033785415659400.00%3166.67%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
29Thunder430010001587210010008352200000075281.00015284300111114801613910311106103378114342067500.00%100100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
Total825116033723152111044128501142156896741231102230159122371270.774315558873241111148016321110311106103378272878454618952715921.77%2403685.00%41614296454.45%1560287554.26%728131855.24%2110147017975851072562
30Wolf Pack330000001941511000000514220000001431161.000193554001111148016143103111061033789026146610550.00%70100.00%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
_Since Last GM Reset825116033723152111044128501142156896741231102230159122371270.774315558873241111148016321110311106103378272878454618952715921.77%2403685.00%41614296454.45%1560287554.26%728131855.24%2110147017975851072562
_Vs Conference432511021311581134521125011117752252213601020816120620.72115828143902111114801616151031110610337813743972629551423021.13%1181785.59%01614296454.45%1560287554.26%728131855.24%2110147017975851072562
_Vs Division285301111110704014220010159243514310101051465160.286110200310101111148016119010311106103378920264181660901820.00%80988.75%21614296454.45%1560287554.26%728131855.24%2110147017975851072562

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82127W231555887332112728784546189524
All Games
GPWLOTWOTL SOWSOLGFGA
8251163372315211
Home Games
GPWLOTWOTL SOWSOLGFGA
41285114215689
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4123112230159122
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2715921.77%2403685.00%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
103111061033781111148016
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1614296454.45%1560287554.26%728131855.24%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2110147017975851072562


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-10-221Senators1Marlies4WBoxScore
3 - 2020-10-2416Marlies5Monsters2WBoxScore
4 - 2020-10-2519Rocket1Marlies3WBoxScore
6 - 2020-10-2734Chiefs0Marlies3WBoxScore
9 - 2020-10-3047Thunder2Marlies3WXBoxScore
11 - 2020-11-0167Marlies0Cougars3LBoxScore
14 - 2020-11-0485Minnesota0Marlies4WBoxScore
15 - 2020-11-0593Marlies4Bears2WBoxScore
18 - 2020-11-08116Bruins2Marlies5WBoxScore
20 - 2020-11-10129Monsters2Marlies5WBoxScore
21 - 2020-11-11133Marlies1Bruins4LBoxScore
24 - 2020-11-14156Sharks5Marlies2LBoxScore
25 - 2020-11-15163Marlies5Rocket1WBoxScore
28 - 2020-11-18180Bears5Marlies3LBoxScore
32 - 2020-11-22210Marlies4Phantoms3WXXBoxScore
35 - 2020-11-25228Monarchs4Marlies3LXXBoxScore
37 - 2020-11-27237Las Vegas3Marlies4WXXBoxScore
39 - 2020-11-29254Phantoms2Marlies3WBoxScore
40 - 2020-11-30267Marlies0Baby Hawks2LBoxScore
43 - 2020-12-03282Marlies5Sound Tigers2WBoxScore
45 - 2020-12-05294Bruins3Marlies4WBoxScore
46 - 2020-12-06308Marlies1Manchots4LBoxScore
49 - 2020-12-09329Marlies2Las Vegas3LXBoxScore
51 - 2020-12-11343Marlies6Jayhawks5WXXBoxScore
53 - 2020-12-13351Marlies5Monsters4WBoxScore
57 - 2020-12-17379Marlies4Cougars6LBoxScore
59 - 2020-12-19396Marlies5Crunch4WBoxScore
60 - 2020-12-20406Crunch1Marlies3WBoxScore
63 - 2020-12-23428Marlies2Phantoms0WBoxScore
64 - 2020-12-24434Monsters2Marlies1LXXBoxScore
67 - 2020-12-27454Marlies1Chiefs4LBoxScore
70 - 2020-12-30481Marlies6Comets5WXBoxScore
72 - 2021-01-01494Marlies5Heat1WBoxScore
74 - 2021-01-03506Marlies4Oil Kings5LBoxScore
77 - 2021-01-06525Crunch2Marlies3WBoxScore
80 - 2021-01-09550Marlies8Wolf Pack1WBoxScore
81 - 2021-01-10557Cougars1Marlies2WBoxScore
83 - 2021-01-12569Caroline3Marlies4WBoxScore
87 - 2021-01-16583Marlies3Spiders2WBoxScore
88 - 2021-01-17594Wolf Pack1Marlies5WBoxScore
91 - 2021-01-20616Marlies7Minnesota1WBoxScore
93 - 2021-01-22633Marlies4Oceanics3WBoxScore
95 - 2021-01-24646Sound Tigers0Marlies3WBoxScore
97 - 2021-01-26659Oil Kings2Marlies3WBoxScore
99 - 2021-01-28675Oceanics4Marlies3LXBoxScore
103 - 2021-02-01707Marlies6Cabaret Lady Mary Ann3WBoxScore
105 - 2021-02-03715Spiders3Marlies5WBoxScore
107 - 2021-02-05728Heat3Marlies4WXXBoxScore
109 - 2021-02-07747Baby Hawks2Marlies5WBoxScore
118 - 2021-02-16770Marlies5Chill4WXXBoxScore
120 - 2021-02-18776Marlies3Stars2WBoxScore
123 - 2021-02-21796Senators1Marlies5WBoxScore
125 - 2021-02-23809Cabaret Lady Mary Ann2Marlies7WBoxScore
127 - 2021-02-25825Marlies6Wolf Pack2WBoxScore
129 - 2021-02-27839Admirals1Marlies2WXXBoxScore
130 - 2021-02-28846Marlies3Rocket4LXBoxScore
133 - 2021-03-03867Jayhawks3Marlies6WBoxScore
135 - 2021-03-05881Stars1Marlies4WBoxScore
137 - 2021-03-07901Marlies3Senators6LBoxScore
138 - 2021-03-08913Marlies3Crunch2WBoxScore
140 - 2021-03-10921Marlies7Manchots4WBoxScore
142 - 2021-03-12933Manchots3Marlies1LBoxScore
144 - 2021-03-14951Caroline3Marlies4WXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17970Marlies3Thunder2WBoxScore
149 - 2021-03-19987Marlies8Cabaret Lady Mary Ann3WBoxScore
151 - 2021-03-211003Comets1Marlies4WBoxScore
154 - 2021-03-241028Marlies3Sharks2WBoxScore
156 - 2021-03-261041Marlies5Monarchs4WXBoxScore
157 - 2021-03-271048Marlies2Admirals4LBoxScore
161 - 2021-03-311070Thunder1Marlies5WBoxScore
163 - 2021-04-021083Chill4Marlies2LBoxScore
165 - 2021-04-041101Marlies5Bruins1WBoxScore
168 - 2021-04-071123Spiders1Marlies4WBoxScore
170 - 2021-04-091137Sound Tigers2Marlies6WBoxScore
172 - 2021-04-111155Monsters5Marlies4LBoxScore
174 - 2021-04-131170Cabaret Lady Mary Ann4Marlies8WBoxScore
176 - 2021-04-151185Marlies4Thunder3WBoxScore
177 - 2021-04-161195Marlies5Caroline3WBoxScore
179 - 2021-04-181209Marlies1Senators4LBoxScore
182 - 2021-04-211231Marlies0Bears2LBoxScore
184 - 2021-04-231242Cougars1Marlies2WBoxScore
186 - 2021-04-251262Rocket2Marlies5WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity40002000
Ticket Price3515
Attendance157,72978,158
Attendance PCT96.18%95.31%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 5753 - 95.89% 163,241$6,692,885$6000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,488,410$ 3,127,522$ 3,372,522$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
18,132$ 3,734,690$ 26 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,815$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT