Heat

GP: 82 | W: 19 | L: 59 | OTL: 4 | P: 42
GF: 253 | GA: 398 | PP%: 17.99% | PK%: 77.61%
GM : Martin Bétit | Morale : 50 | Team Overall : 50
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Boo NievesX100.00796889767964705966625171485959050620253850,000$
2Oliver Wahlstrom (R)X100.00777581807563655850545864554444050590194925,001$
3Charles HudonXX100.00834995746660646333565756755959050590253750,000$
4Eric CornelXX100.00797393647279865367465567555151050590233850,000$
5Ryan Poehling (R)XX100.00794494776956675733545668254646050590203925,000$
6Mikhail Maltsev (R)XX100.00827793677762645670495866554444050580212650,000$
7Ryan MacInnisX100.00745295647160805450575164254444050570233850,000$
8Rasmus Kupari (R)X100.00756989656955565366435862554444050550194894,167$
9Sergey TolchinskyXX100.00453592754846293235323165423734050440244625,000$
10Jonathan Dahlen (R)X100.00414545455539394145414145433230050410212925,000$
11Aapeli Rasanen (R)X100.00333737376733333337333337353230050360212525,000$
12Ville Heinola (R)X100.00766699806650505025473962374444050570184925,002$
13Nicolas Beaudin (R)X100.00696383666368744825394158394444050550194894,168$
14Julius Honka (R)X100.00483585645558403835393761474236050500233950,000$
15Jacob Moverare (R)X100.00364040406535353640363640383230050390212720,000$
16Anthony Florentino (R)X100.00313737377629293137313137333230050360243560,000$
17Ryan Pilon (R)X100.00323737376831313237323237343230050360221525,000$
Scratches
1Hudson FaschingX100.00817591657675785850536069605252050610242850,000$
2Nikolai Prokhorkin (R)X100.007343957869626265626859597547470506102600$
3Cole Ully (R)XX100.00313737374629293137313137333230050340242650,000$
TEAM AVERAGE100.0061537561675354474545465645424105051
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Dipietro (R)100.0059678473586153625756304444050590
2Ilya Sorokin (R)100.0038434060373535353535343230050390
Scratches
1Andrey Makarov100.0039454964383942373550483532050420
2Colton Point (R)100.0034373684343333333333333230050390
TEAM AVERAGE100.004348527042424142404436363405045
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Boo NievesHeat (Cal)C75277198-234201353163481082607.76%79174423.25516214918001181572156.72%229000021.1204000352
2Ryan PoehlingHeat (Cal)C/LW75403878-161609521338312425510.44%73163721.83711185918110191620138.10%14700120.9534000442
3Eric CornelHeat (Cal)C/RW75254772-153420111156314962247.96%55159621.297916531940004943061.43%22300000.9023202122
4Oliver WahlstromHeat (Cal)RW75264369-5533151491903601082367.22%57150620.095914591760111705147.65%17000010.9202012413
5Charles HudonHeat (Cal)LW/RW75263965-50360131133337772277.72%34152820.3741014571750002870029.52%10500000.8502000143
6Ryan MacInnisHeat (Cal)C75204363-4612062190210591619.52%54142719.04571234176000022245.91%191900000.8800000233
7Mikhail MaltsevHeat (Cal)C/LW60184159-1220105199248842317.26%39120420.08416205016000091665158.65%152600010.9817000223
8Rasmus KupariHeat (Cal)C75332154-484151292162927719811.30%64123616.4821313400000364054.34%134700000.8711001321
9Sergey TolchinskyHeat (Cal)LW/RW75103242-43009174179411015.59%62118215.770223221012480022.86%10500000.7101000100
10Nicolas BeaudinHeat (Cal)D75102232-336202066412426668.06%178182824.39224391930000137000.00%100000.3500000101
11Jonathan DahlenHeat (Cal)LW756915-5710056409428616.38%11120016.0100005000041043.66%7100000.2511000001
12Aapeli RasanenHeat (Cal)C75145-584401111342625.00%58113115.0800002000000033.78%14800000.0900000000
13Jacob MoverareHeat (Cal)D82235-4254015917268147.69%89145517.7510161380001108000.00%100000.0700000000
14Julius HonkaHeat (Cal)D22145040814249164.17%4552023.65000757000042000.00%000000.1900000001
15Anthony FlorentinoHeat (Cal)D75044-5024091611480.00%50118215.77000249000053000.00%100000.0700000000
16Ryan PilonHeat (Cal)D75044-3430011766590.00%63141418.8501121400001117000.00%100000.0600000000
Team Total or Average1139245425670-5714644016741947296085620738.28%10112179719.144284126433189522437129222652.35%805500160.61825215222322
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ilya SorokinHeat (Cal)56113620.8775.3527352024419780000.625165175101
2Michael DipietroHeat (Cal)2481510.9084.13129200899710201.0002240122
Team Total or Average80195130.8874.9640282033329490200.667187575223


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aapeli RasanenHeat (Cal)C211998-06-01Yes196 Lbs6 ft0NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Andrey MakarovHeat (Cal)G261993-04-20No178 Lbs6 ft1NoNoNo0Pro & Farm0$0$NoLink
Anthony FlorentinoHeat (Cal)D241995-01-30Yes227 Lbs6 ft1NoNoNo3Pro & Farm560,000$56,000$0$No560,000$560,000$Link
Boo NievesHeat (Cal)C251994-01-23No212 Lbs6 ft3NoNoNo3Pro & Farm850,000$85,000$0$No850,000$850,000$Link
Charles HudonHeat (Cal)LW/RW251994-06-23No188 Lbs5 ft10NoNoNo3Pro & Farm750,000$75,000$0$No750,000$750,000$Link
Cole UllyHeat (Cal)LW/RW241995-02-20Yes164 Lbs5 ft10NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Colton PointHeat (Cal)G211998-03-07Yes219 Lbs6 ft4NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Eric CornelHeat (Cal)C/RW231996-04-11No194 Lbs6 ft2NoNoNo3Pro & Farm850,000$85,000$0$No850,000$850,000$Link
Hudson FaschingHeat (Cal)RW241995-07-28No209 Lbs6 ft2YesNoNo2Pro & Farm850,000$85,000$0$No850,000$Link
Ilya SorokinHeat (Cal)G241995-08-04Yes167 Lbs6 ft2NoNoNo2Pro & Farm900,000$100,000$0$No1,100,000$Link
Jacob MoverareHeat (Cal)D211998-08-31Yes198 Lbs6 ft2NoNoNo2Pro & Farm720,000$72,000$0$No720,000$Link
Jonathan DahlenHeat (Cal)LW211997-12-20Yes180 Lbs5 ft11NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Julius HonkaHeat (Cal)D231995-12-03Yes180 Lbs5 ft11NoNoNo3Pro & Farm950,000$95,000$0$No950,000$950,000$Link
Michael DipietroHeat (Cal)G201999-06-09Yes200 Lbs6 ft0NoNoNo3Pro & Farm792,500$79,250$0$No792,500$792,500$Link
Mikhail MaltsevHeat (Cal)C/LW211998-03-12Yes205 Lbs6 ft3NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Nicolas BeaudinHeat (Cal)D191999-10-07Yes174 Lbs5 ft11NoNoNo4Pro & Farm894,168$89,417$0$No894,168$894,168$894,168$Link
Nikolai ProkhorkinHeat (Cal)C261993-09-17Yes183 Lbs6 ft2NoNoNo0Pro & Farm0$0$NoLink
Oliver WahlstromHeat (Cal)RW192000-06-12Yes205 Lbs6 ft1NoNoNo4Pro & Farm925,001$92,500$0$No925,001$925,001$925,001$Link
Rasmus KupariHeat (Cal)C192000-03-15Yes185 Lbs6 ft1NoNoNo4Pro & Farm894,167$89,417$0$No894,167$894,167$894,167$Link
Ryan MacInnisHeat (Cal)C231996-02-13No185 Lbs6 ft3NoNoNo3Pro & Farm850,000$85,000$0$No850,000$850,000$Link
Ryan PilonHeat (Cal)D221996-10-10Yes206 Lbs6 ft2NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Ryan PoehlingHeat (Cal)C/LW201999-01-02Yes183 Lbs6 ft2NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Sergey TolchinskyHeat (Cal)LW/RW241995-02-03No170 Lbs5 ft8NoNoNo4Pro & Farm625,000$62,500$0$No625,000$625,000$625,000$Link
Ville HeinolaHeat (Cal)D182001-03-02Yes181 Lbs5 ft11NoNoNo4Pro & Farm925,002$92,500$0$No925,002$925,002$925,002$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2422.21191 Lbs6 ft12.54710,868$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan PoehlingBoo NievesEric Cornel40122
2Charles HudonRyan MacInnisOliver Wahlstrom30122
3Sergey TolchinskyRasmus KupariJonathan Dahlen20122
4Jonathan DahlenAapeli RasanenBoo Nieves10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas Beaudin40122
2Jacob MoverareRyan Pilon30122
3Anthony FlorentinoAapeli Rasanen20122
4Nicolas Beaudin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan PoehlingBoo NievesEric Cornel60122
2Charles HudonRyan MacInnisOliver Wahlstrom40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas Beaudin60122
2Jacob MoverareRyan Pilon40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Boo NievesRyan Poehling60122
2Eric CornelCharles Hudon40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas Beaudin60122
2Jacob MoverareRyan Pilon40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Boo Nieves60122Nicolas Beaudin60122
2Ryan Poehling40122Jacob MoverareRyan Pilon40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Boo NievesRyan Poehling60122
2Eric CornelCharles Hudon40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas Beaudin60122
2Jacob MoverareRyan Pilon40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Ryan PoehlingBoo NievesEric CornelNicolas Beaudin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Ryan PoehlingBoo NievesEric CornelNicolas Beaudin
Extra Forwards
Normal PowerPlayPenalty Kill
Rasmus Kupari, Sergey Tolchinsky, Oliver WahlstromRasmus Kupari, Sergey TolchinskyOliver Wahlstrom
Extra Defensemen
Normal PowerPlayPenalty Kill
Anthony Florentino, Jacob Moverare, Ryan PilonAnthony FlorentinoJacob Moverare, Ryan Pilon
Penalty Shots
Boo Nieves, Ryan Poehling, Eric Cornel, Charles Hudon, Oliver Wahlstrom
Goalie
#1 : , #2 : Ilya Sorokin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals403000101116-52010001068-22020000058-320.2501118290010182687154101010031009331516116829222.22%7271.43%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
2Baby Hawks30300000716-920200000512-71010000024-200.000711180010182687891010100310093314137315712216.67%12375.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
3Bears20200000512-71010000037-41010000025-300.000581300101826875410101003100933983422448225.00%9366.67%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
4Bruins22000000862110000005411100000032141.000814220010182687691010100310093381298296116.67%30100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
5Cabaret Lady Mary Ann220000001486110000007341100000075241.00014233700101826871521010100310093384194562150.00%2150.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
6Caroline2020000039-61010000015-41010000024-200.00035800101826876010101003100933108261050300.00%40100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
7Chiefs3210000011101211000007701100000043140.6671119300010182687113101010031009331403012611317.69%5180.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
8Chill30300000719-121010000036-320200000413-900.00071219001018268789101010031009331412222597228.57%10460.00%11397284449.12%1444296748.67%717144649.59%1771121721386001038488
9Comets413000001523-820200000711-421100000812-420.25015284300101826871481010100310093319050206514321.43%4175.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
10Cougars2020000059-41010000013-21010000046-200.000581300101826876110101003100933932194311218.18%220.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
11Crunch2010001079-21010000014-31000001065120.50071118001018268783101010031009339834163811218.18%80100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
12Jayhawks404000001322-920200000912-320200000410-600.000132033001018268715610101003100933190582480800.00%12191.67%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
13Las Vegas41300000818-102020000039-62110000059-420.250815230010182687119101010031009331904726728112.50%110100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
14Manchots20200000612-61010000034-11010000038-500.0006111700101826877510101003100933922112398112.50%6266.67%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
15Marlies2010000149-51010000015-41000000134-110.25045900101826877110101003100933822414618112.50%6183.33%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
16Minnesota302000011622-61010000057-2201000011115-410.167162541001018268715810101003100933154602267200.00%9455.56%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
17Monarchs413000001623-720200000713-621100000910-120.250162945001018268720710101003100933219621410710110.00%7357.14%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
18Monsters211000008801010000056-11100000032120.50081321001018268773101010031009337430642600.00%30100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
19Monsters311001001112-11010000014-321000100108230.5001120310010182687110101010031009331515020717228.57%10370.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
20Oceanics30200100715-820200000512-71000010023-110.167713200010182687661010100310093313953226411327.27%11190.91%11397284449.12%1444296748.67%717144649.59%1771121721386001038488
21Oil Kings505000001132-2130300000717-1020200000415-1100.000111930001018268714810101003100933270954210013215.38%16475.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
22Phantoms2020000048-41010000046-21010000002-200.0004812001018268754101010031009331323614528337.50%20100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
23Rocket20200000311-81010000015-41010000026-400.000358001018268772101010031009331012121427114.29%60100.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
24Senators2110000059-4110000003211010000027-520.500571200101826876710101003100933933516476350.00%8362.50%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
25Sharks404000001322-920200000510-520200000812-400.00013233600101826871611010100310093317850169311218.18%7185.71%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
26Sound Tigers21100000880110000005411010000034-120.500814220010182687801010100310093356178414250.00%4175.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
27Spiders2110000046-2110000003121010000015-420.50047110010182687681010100310093380361040200.00%4175.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
28Stars30300000814-61010000036-32020000058-300.000813210010182687107101010031009331713810711218.33%5180.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
29Thunder2110000067-1110000005321010000014-320.5006111700101826878210101003100933592314506116.67%6183.33%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
Total82175900222253398-1454183200010126197-714192700212127201-74420.25625343068300101826873037101010031009333820114548517522394317.99%2014577.61%21397284449.12%1444296748.67%717144649.59%1771121721386001038488
30Wolf Pack22000000936110000005141100000042241.000915240010182687911010100310093364264296116.67%2150.00%01397284449.12%1444296748.67%717144649.59%1771121721386001038488
_Since Last GM Reset82175900222253398-1454183200010126197-714192700212127201-74420.25625343068300101826873037101010031009333820114548517522394317.99%2014577.61%21397284449.12%1444296748.67%717144649.59%1771121721386001038488
_Vs Conference4273200111132215-83212190000058105-47215130011174110-36180.214132222354001018268715761010100310093320815862678731231814.63%1062180.19%01397284449.12%1444296748.67%717144649.59%1771121721386001038488

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8242L4253430683303738201145485175200
All Games
GPWLOTWOTL SOWSOLGFGA
8217590222253398
Home Games
GPWLOTWOTL SOWSOLGFGA
418320010126197
Visitor Games
GPWLOTWOTL SOWSOLGFGA
419270212127201
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2394317.99%2014577.61%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1010100310093310182687
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1397284449.12%1444296748.67%717144649.59%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1771121721386001038488


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-10-2311Heat5Monsters6LXBoxScore
4 - 2020-10-2529Comets4Heat1LBoxScore
7 - 2020-10-2842Monarchs7Heat5LBoxScore
9 - 2020-10-3055Heat3Stars4LBoxScore
11 - 2020-11-0174Heat0Las Vegas5LBoxScore
12 - 2020-11-0277Heat5Sharks7LBoxScore
14 - 2020-11-0488Phantoms6Heat4LBoxScore
16 - 2020-11-06103Cougars3Heat1LBoxScore
18 - 2020-11-08122Heat7Monarchs5WBoxScore
19 - 2020-11-09128Heat2Admirals3LBoxScore
21 - 2020-11-11142Bears7Heat3LBoxScore
23 - 2020-11-13153Cabaret Lady Mary Ann3Heat7WBoxScore
25 - 2020-11-15169Heat2Oceanics3LXBoxScore
28 - 2020-11-18183Heat2Caroline4LBoxScore
30 - 2020-11-20194Heat2Chill6LBoxScore
32 - 2020-11-22212Heat3Monsters2WBoxScore
33 - 2020-11-23218Heat2Bears5LBoxScore
35 - 2020-11-25231Jayhawks6Heat4LBoxScore
37 - 2020-11-27245Spiders1Heat3WBoxScore
39 - 2020-11-29261Chiefs4Heat3LBoxScore
43 - 2020-12-03284Stars6Heat3LBoxScore
46 - 2020-12-06301Heat2Jayhawks4LBoxScore
47 - 2020-12-07315Heat5Las Vegas4WBoxScore
49 - 2020-12-09328Monsters4Heat1LBoxScore
51 - 2020-12-11338Heat4Chiefs3WBoxScore
53 - 2020-12-13349Heat0Phantoms2LBoxScore
55 - 2020-12-15368Heat3Manchots8LBoxScore
57 - 2020-12-17377Heat6Crunch5WXXBoxScore
60 - 2020-12-20405Senators2Heat3WBoxScore
65 - 2020-12-25446Crunch4Heat1LBoxScore
67 - 2020-12-27462Monarchs6Heat2LBoxScore
69 - 2020-12-29471Heat5Monsters2WBoxScore
70 - 2020-12-30480Heat2Jayhawks6LBoxScore
72 - 2021-01-01494Marlies5Heat1LBoxScore
74 - 2021-01-03504Caroline5Heat1LBoxScore
77 - 2021-01-06531Manchots4Heat3LBoxScore
79 - 2021-01-08545Rocket5Heat1LBoxScore
82 - 2021-01-11566Heat2Stars4LBoxScore
83 - 2021-01-12570Heat5Minnesota8LBoxScore
87 - 2021-01-16590Heat2Oil Kings7LBoxScore
89 - 2021-01-18611Comets7Heat6LBoxScore
91 - 2021-01-20623Baby Hawks7Heat3LBoxScore
93 - 2021-01-22635Wolf Pack1Heat5WBoxScore
96 - 2021-01-25656Heat6Minnesota7LXXBoxScore
98 - 2021-01-27672Heat2Baby Hawks4LBoxScore
100 - 2021-01-29685Minnesota7Heat5LBoxScore
102 - 2021-01-31701Oil Kings4Heat1LBoxScore
104 - 2021-02-02709Heat2Rocket6LBoxScore
107 - 2021-02-05728Heat3Marlies4LXXBoxScore
109 - 2021-02-07746Heat2Senators7LBoxScore
119 - 2021-02-17775Chiefs3Heat4WBoxScore
120 - 2021-02-18780Heat2Oil Kings8LBoxScore
123 - 2021-02-21803Oil Kings7Heat3LBoxScore
126 - 2021-02-24823Sharks5Heat2LBoxScore
128 - 2021-02-26836Chill6Heat3LBoxScore
130 - 2021-02-28853Heat4Comets3WBoxScore
132 - 2021-03-02865Heat3Sharks5LBoxScore
134 - 2021-03-04878Heat2Monarchs5LBoxScore
135 - 2021-03-05890Heat3Admirals5LBoxScore
137 - 2021-03-07903Baby Hawks5Heat2LBoxScore
139 - 2021-03-09916Admirals5Heat2LBoxScore
143 - 2021-03-13945Bruins4Heat5WBoxScore
145 - 2021-03-15963Heat4Cougars6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17968Heat3Bruins2WBoxScore
149 - 2021-03-19991Heat2Chill7LBoxScore
151 - 2021-03-211001Heat1Thunder4LBoxScore
152 - 2021-03-221012Heat7Cabaret Lady Mary Ann5WBoxScore
155 - 2021-03-251030Monsters6Heat5LBoxScore
157 - 2021-03-271046Jayhawks6Heat5LBoxScore
159 - 2021-03-291061Las Vegas5Heat2LBoxScore
163 - 2021-04-021091Sound Tigers4Heat5WBoxScore
165 - 2021-04-041108Oceanics6Heat1LBoxScore
167 - 2021-04-061119Heat4Wolf Pack2WBoxScore
168 - 2021-04-071124Heat3Sound Tigers4LBoxScore
170 - 2021-04-091139Heat1Spiders5LBoxScore
172 - 2021-04-111162Thunder3Heat5WBoxScore
174 - 2021-04-131173Sharks5Heat3LBoxScore
176 - 2021-04-151187Admirals3Heat4WXXBoxScore
178 - 2021-04-171204Heat4Comets9LBoxScore
182 - 2021-04-211236Oceanics6Heat4LBoxScore
184 - 2021-04-231252Las Vegas4Heat1LBoxScore
186 - 2021-04-251269Oil Kings6Heat3LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance78,62439,416
Attendance PCT95.88%96.14%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2879 - 95.97% 81,539$3,343,080$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,614,767$ 1,706,084$ 1,716,084$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,226$ 1,624,797$ 22 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 9,172$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT