Phantoms

GP: 82 | W: 51 | L: 27 | OTL: 4 | P: 106
GF: 327 | GA: 239 | PP%: 19.84% | PK%: 82.18%
GM : Richard Duguay | Morale : 50 | Team Overall : 59
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Evan RodriguesXXX100.0064429077666377616961626975636305063X02621,100,000$
2Antti SuomelaX100.00794393746454716072755766254848050610253700,000$
3Tyler BensonX100.0073707971707578635066576354444405061X0212792,500$
4Austin PoganskiX100.00807590657573776050595766544444050600234750,000$
5Christoffer EhnXXX100.0076439864705683575554567425575705060X0233700,000$
6Jake EvansXX100.0077439962685683576758686725454505060X0232525,000$
7Frederick Gaudreau (A)XX100.00715896646562666169575964595858050590261595,000$
8Connor BunnamanX100.00794496647554735756555761254545050570212730,000$
9Jonah GadjovichX100.00767676667659605750456463614444050570203783,333$
10Skyler McKenzieX100.00706190666171755650525660534444050570212741,666$
11Ben Harpur (A)X100.00817473658564645625444169375959050610244750,000$
12Gavin BayreutherX100.00746886637275835325484365404545050600253650,000$
13Sami NikuX100.00705483756668616126584666254848050600221525,000$
14Chris BigrasX100.00746984637162635625484166395757050590246560,000$
15Sebastian AhoDX100.00726387626271745525544262394444050580232750,000$
Scratches
TEAM AVERAGE100.0074598867706473584856546542505005060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Arvid Holm (R)100.0057716779515662605556575858050600
2Hunter Miska100.0059567363626256636062304444050580
Scratches
1Philippe Desrosiers100.0060597474636250615856304444050580
2Landon Bow100.0053698786495450564848304444050560
TEAM AVERAGE100.005764757656595560555637484805058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Evan RodriguesPhantoms (Phi)C/LW/RW7040529237180602223578924211.20%28158922.715131857189000102107358.69%194400031.1636000526
2Dominic ToninatoPhiladelphieC81404686402401652513338823812.01%25165620.4587155520800061617156.78%208700011.0417000794
3Tyler BensonPhantoms (Phi)LW743145762442101331583108222110.00%9149020.1466125619500051115245.97%12400001.0204011265
4Joel FarabeePhiladelphieLW5228467437613595168288882399.72%10121123.31313163614400031438034.74%38000201.2202214651
5Antti SuomelaPhantoms (Phi)C842243652922096199245601488.98%15132215.741239350001355060.66%78800000.9822000123
6Jake EvansPhantoms (Phi)C/RW752736633722056822598317710.42%14133617.8253843172000062257.01%22100010.9400000043
7Sami NikuPhantoms (Phi)D82134962243801058213161989.92%111177121.6041317612040001211100.00%000000.7000000014
8Ben HarpurPhantoms (Phi)D821247595594026875104469411.54%120191123.315712382250001190100.00%000000.6200000322
9Christoffer EhnPhantoms (Phi)C/LW/RW592430541612077882116614811.37%9108118.338513411610002113156.52%9200011.0001000611
10Frederick GaudreauPhantoms (Phi)C/RW821934531112034156239661797.95%12117314.311128170001353155.21%103600000.9000000114
11Alexandre CarrierPhiladelphieD726414731315121449425556.38%75156221.7021315502120001190210.00%000000.6000100124
12Ryan ReavesPhiladelphieRW6914264020640224103215561476.51%6129918.83156321720001862041.76%18200000.6225000332
13Jonah GadjovichPhantoms (Phi)LW81181533195220112511683510710.71%1383510.320227220001712048.33%12000000.7900103300
14Austin PoganskiPhantoms (Phi)RW441020301846109648150431096.67%375617.1911219660002280043.86%5700000.7901011022
15Connor BunnamanPhantoms (Phi)C741114256180537611537939.57%475010.1500001000092150.40%37900000.6700000141
16Sebastian AhoDPhantoms (Phi)D82020208320103474814380.00%73121714.85000317000094000.00%000000.3300000000
17Chris BigrasPhantoms (Phi)D824151913480150557228565.56%93145517.7500011101000199100.00%000000.2600000001
18Gavin BayreutherPhantoms (Phi)D44514192014069316519237.69%54101122.99224371100000114100.00%000000.3800000121
19Skyler McKenziePhantoms (Phi)LW35336-54011224617316.52%32467.0501115000060033.33%3000000.4900000000
Team Total or Average132432759692344065480202819583450100324439.48%6772368217.8952941465642265000361819521255.15%744000260.78828439404644
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Hunter MiskaPhantoms (Phi)39251210.9212.61232110510112810200.66763921522
2Arvid HolmPhantoms (Phi)2313910.9192.68131921597270010.71472222132
3Philippe DesrosiersPhantoms (Phi)147420.8953.4284300484570000.72711139100
4Landon BowPhantoms (Phi)86200.9133.2548000262990000.0000830000
Team Total or Average84512740.9152.83496312623427640210.708248282754


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Antti SuomelaPhantoms (Phi)C251994-03-17No172 Lbs6 ft0NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Arvid HolmPhantoms (Phi)G201998-11-03Yes214 Lbs6 ft4NoNoNo4Pro & Farm845,833$84,583$0$No845,833$845,833$845,833$Link
Austin PoganskiPhantoms (Phi)RW231996-02-16No201 Lbs6 ft2NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Link
Ben HarpurPhantoms (Phi)D241995-01-12No222 Lbs6 ft6NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Link
Chris BigrasPhantoms (Phi)D241995-02-22No190 Lbs6 ft1YesNoNo6Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$560,000$560,000$Link
Christoffer EhnPhantoms (Phi)C/LW/RW231996-04-05No181 Lbs6 ft3NoYesNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Connor BunnamanPhantoms (Phi)C211998-04-16No207 Lbs6 ft1NoNoNo2Pro & Farm730,000$73,000$0$No730,000$Link
Evan RodriguesPhantoms (Phi)C/LW/RW261993-07-28No182 Lbs5 ft11NoYesNo2Pro & Farm1,100,000$110,000$0$No1,100,000$Link
Frederick GaudreauPhantoms (Phi)C/RW261993-05-01No179 Lbs6 ft0NoNoNo1Pro & Farm595,000$59,500$0$NoLink
Gavin BayreutherPhantoms (Phi)D251994-05-12No195 Lbs6 ft1NoNoNo3Pro & Farm650,000$65,000$0$No650,000$650,000$Link
Hunter MiskaPhantoms (Phi)G241995-07-06No170 Lbs6 ft1NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Jake EvansPhantoms (Phi)C/RW231996-06-02No185 Lbs6 ft0NoYesNo2Pro & Farm525,000$52,500$0$No525,000$Link
Jonah GadjovichPhantoms (Phi)LW201998-10-12No209 Lbs6 ft2NoNoNo3Pro & Farm783,333$78,333$0$No783,333$783,333$Link
Landon BowPhantoms (Phi)G241995-08-23No214 Lbs6 ft4NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Philippe DesrosiersPhantoms (Phi)G241995-08-15No195 Lbs6 ft1NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Sami NikuPhantoms (Phi)D221996-10-10No176 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Sebastian AhoDPhantoms (Phi)D231996-02-17No170 Lbs5 ft10NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Link
Skyler McKenziePhantoms (Phi)LW211998-01-20No170 Lbs5 ft9NoNoNo2Pro & Farm741,666$74,167$0$No741,666$Link
Tyler BensonPhantoms (Phi)LW211998-03-15No192 Lbs6 ft0NoYesNo2Pro & Farm792,500$79,250$0$No792,500$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1923.11191 Lbs6 ft12.68727,544$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler Benson40122
2Jonah GadjovichJake Evans30122
3Skyler McKenzieAntti SuomelaAustin Poganski20122
4Frederick Gaudreau10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurGavin Bayreuther40122
2Sami Niku30122
3Chris BigrasSebastian AhoD20122
4Ben HarpurGavin Bayreuther10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler Benson60122
2Jonah GadjovichJake Evans40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurGavin Bayreuther60122
2Sami Niku40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Tyler Benson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurGavin Bayreuther60122
2Sami Niku40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Ben HarpurGavin Bayreuther60122
240122Sami Niku40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Tyler Benson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurGavin Bayreuther60122
2Sami Niku40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tyler BensonBen HarpurGavin Bayreuther
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tyler BensonBen HarpurGavin Bayreuther
Extra Forwards
Normal PowerPlayPenalty Kill
Connor Bunnaman, Antti Suomela, Austin PoganskiConnor Bunnaman, Antti SuomelaAustin Poganski
Extra Defensemen
Normal PowerPlayPenalty Kill
Chris Bigras, Sebastian AhoD, Chris BigrasSebastian AhoD,
Penalty Shots
, , , Tyler Benson, Antti Suomela
Goalie
#1 : Hunter Miska, #2 : Arvid Holm


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001138110000004221100000071641.0001119300013011378108110981150110042592612439222.22%50100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
2Baby Hawks2110000078-11010000024-21100000054120.500713201013011378105610981150110042871716477228.57%8187.50%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
3Bears42100010151412110000067-12100001097260.75015254000130113781014610981150110042165453012713323.08%15473.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
4Bruins312000006602020000025-31100000041320.3336111700130113781010310981150110042893218711317.69%9277.78%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
5Cabaret Lady Mary Ann330000002161511000000835220000001331061.000213960001301137810228109811501100421122718645120.00%9188.89%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
6Caroline42101000181442110000086221001000108260.750183452001301137810161109811501100421764534947228.57%16381.25%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
7Chiefs2010000168-21010000034-11000000134-110.25061016001301137810581098115011004269212451600.00%11281.82%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
8Chill211000009811010000045-11100000053220.500916250013011378107310981150110042731620725240.00%10280.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
9Comets21100000972110000006241010000035-220.500916250013011378106610981150110042591914464125.00%7185.71%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
10Cougars321000008711010000046-22200000041340.667814220113011378101151098115011004212022388816212.50%10190.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
11Crunch320010001376220000009451000100043161.0001325380113011378101381098115011004211636338112216.67%13192.31%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
12Heat22000000844110000002021100000064241.000814220113011378101321098115011004254182643200.00%8362.50%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
13Jayhawks22000000954110000005321100000042241.000915240013011378108810981150110042751610447114.29%50100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
14Las Vegas2110000089-11010000035-21100000054120.500816240013011378105710981150110042691834574125.00%12283.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
15Manchots413000001416-2211000008802020000068-220.2501424380013011378101271098115011004214649738111218.18%18477.78%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
16Marlies3020000159-42010000136-31010000023-110.167581300130113781098109811501100421062532748112.50%14471.43%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
17Minnesota2200000014212110000008081100000062441.00014274101130113781013210981150110042571011552150.00%30100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
18Monarchs20200000710-31010000034-11010000046-200.00071320001301137810731098115011004294181764600.00%6266.67%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
19Monsters430000011385220000008352100000155070.87513243700130113781013610981150110042116322510110220.00%10190.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
20Monsters2020000058-31010000034-11010000024-200.0005813001301137810731098115011004266158367114.29%4175.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
21Oceanics2110000046-21010000014-31100000032120.500481200130113781062109811501100425712105911218.18%5180.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
22Oil Kings2010100067-1100010004311010000024-220.500610160013011378109310981150110042731920509111.11%8450.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
23Rocket32100000165112110000011561100000050540.66716294501130113781012610981150110042912416727342.86%70100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
24Senators31100001131211100000052320100001810-230.500132437001301137810146109811501100429619267014321.43%8275.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
25Sharks22000000523110000003121100000021141.000581300130113781059109811501100424117144810110.00%7185.71%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
26Sound Tigers43100000181082200000012392110000067-160.7501832500013011378101771098115011004213134259012325.00%10280.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
27Spiders42200000161332110000010732110000066040.5001631470013011378101461098115011004211729299311545.45%12283.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
28Stars210000101064100000106511100000041341.000101525001301137810951098115011004272231244600.00%60100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
29Thunder32100000844110000004042110000044040.667815230113011378101221098115011004272241978700.00%70100.00%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
Total8245270303432723988412216010111681185041231102023159121381060.646327587914161301137810336510981150110042276573968820432525019.84%2754982.18%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
30Wolf Pack4300001025151022000000137621000010128481.00025446900130113781019810981150110042107312410011545.45%12283.33%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
_Since Last GM Reset8245270303432723988412216010111681185041231102023159121381060.646327587914161301137810336510981150110042276573968820432525019.84%2754982.18%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
_Vs Conference462417000231691363323139000018664222311800022837211550.598169302471011301137810174710981150110042146940937411711513221.19%1482980.41%01765320955.00%1438274952.31%788138956.73%2155151217465691065556
_Vs Division2811300011119902914710000065412414420001154495250.446119214333001301137810109110981150110042958265240686752229.33%931880.65%01765320955.00%1438274952.31%788138956.73%2155151217465691065556

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82106W132758791433652765739688204316
All Games
GPWLOTWOTL SOWSOLGFGA
8245273034327239
Home Games
GPWLOTWOTL SOWSOLGFGA
4122161011168118
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4123112023159121
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2525019.84%2754982.18%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
109811501100421301137810
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1765320955.00%1438274952.31%788138956.73%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2155151217465691065556


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2020-10-2413Baby Hawks4Phantoms2LBoxScore
8 - 2020-10-2945Spiders5Phantoms3LBoxScore
11 - 2020-11-0173Phantoms3Comets5LBoxScore
14 - 2020-11-0488Phantoms6Heat4WBoxScore
15 - 2020-11-0595Phantoms2Oil Kings4LBoxScore
18 - 2020-11-08118Stars5Phantoms6WXXBoxScore
20 - 2020-11-10130Las Vegas5Phantoms3LBoxScore
23 - 2020-11-13151Phantoms5Baby Hawks4WBoxScore
25 - 2020-11-15165Monsters1Phantoms3WBoxScore
26 - 2020-11-16174Phantoms5Sound Tigers4WBoxScore
28 - 2020-11-18182Phantoms4Manchots5LBoxScore
31 - 2020-11-21196Phantoms3Spiders4LBoxScore
32 - 2020-11-22210Marlies4Phantoms3LXXBoxScore
35 - 2020-11-25226Caroline2Phantoms5WBoxScore
37 - 2020-11-27240Rocket4Phantoms2LBoxScore
39 - 2020-11-29254Phantoms2Marlies3LBoxScore
40 - 2020-11-30268Phantoms4Bruins1WBoxScore
43 - 2020-12-03283Bears3Phantoms4WBoxScore
45 - 2020-12-05298Phantoms4Senators5LXXBoxScore
46 - 2020-12-06307Sound Tigers2Phantoms6WBoxScore
49 - 2020-12-09319Phantoms9Cabaret Lady Mary Ann2WBoxScore
51 - 2020-12-11336Phantoms6Caroline5WXBoxScore
53 - 2020-12-13349Heat0Phantoms2WBoxScore
55 - 2020-12-15367Comets2Phantoms6WBoxScore
57 - 2020-12-17384Phantoms2Monsters1WBoxScore
59 - 2020-12-19397Cougars6Phantoms4LBoxScore
60 - 2020-12-20404Phantoms5Rocket0WBoxScore
63 - 2020-12-23428Marlies2Phantoms0LBoxScore
65 - 2020-12-25442Jayhawks3Phantoms5WBoxScore
67 - 2020-12-27452Senators2Phantoms5WBoxScore
71 - 2020-12-31486Phantoms2Monsters4LBoxScore
74 - 2021-01-03507Phantoms6Minnesota2WBoxScore
75 - 2021-01-04515Phantoms3Oceanics2WBoxScore
77 - 2021-01-06528Admirals2Phantoms4WBoxScore
79 - 2021-01-08540Crunch0Phantoms4WBoxScore
81 - 2021-01-10558Phantoms4Senators5LBoxScore
83 - 2021-01-12574Wolf Pack5Phantoms6WBoxScore
88 - 2021-01-17601Phantoms2Sharks1WBoxScore
89 - 2021-01-18610Phantoms7Admirals1WBoxScore
91 - 2021-01-20622Phantoms4Monarchs6LBoxScore
93 - 2021-01-22638Phantoms5Las Vegas4WBoxScore
95 - 2021-01-24650Phantoms4Jayhawks2WBoxScore
98 - 2021-01-27668Phantoms4Caroline3WBoxScore
99 - 2021-01-28676Bears4Phantoms2LBoxScore
102 - 2021-01-31695Thunder0Phantoms4WBoxScore
104 - 2021-02-02711Bruins3Phantoms1LBoxScore
106 - 2021-02-04726Phantoms3Chiefs4LXXBoxScore
107 - 2021-02-05731Rocket1Phantoms9WBoxScore
109 - 2021-02-07750Monarchs4Phantoms3LBoxScore
112 - 2021-02-10763Manchots5Phantoms4LBoxScore
122 - 2021-02-20786Phantoms2Manchots3LBoxScore
123 - 2021-02-21799Monsters4Phantoms3LBoxScore
125 - 2021-02-23811Phantoms2Cougars0WBoxScore
128 - 2021-02-26832Spiders2Phantoms7WBoxScore
130 - 2021-02-28850Phantoms6Bears5WXXBoxScore
132 - 2021-03-02861Cabaret Lady Mary Ann3Phantoms8WBoxScore
133 - 2021-03-03869Phantoms1Sound Tigers3LBoxScore
135 - 2021-03-05883Phantoms4Cabaret Lady Mary Ann1WBoxScore
137 - 2021-03-07897Phantoms3Thunder1WBoxScore
140 - 2021-03-10920Monsters2Phantoms5WBoxScore
142 - 2021-03-12936Phantoms3Monsters4LXXBoxScore
144 - 2021-03-14949Oceanics4Phantoms1LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17972Sharks1Phantoms3WBoxScore
150 - 2021-03-20994Wolf Pack2Phantoms7WBoxScore
152 - 2021-03-221011Phantoms6Wolf Pack3WBoxScore
155 - 2021-03-251029Phantoms3Bears2WBoxScore
156 - 2021-03-261037Caroline4Phantoms3LBoxScore
158 - 2021-03-281057Crunch4Phantoms5WBoxScore
161 - 2021-03-311073Bruins2Phantoms1LBoxScore
163 - 2021-04-021085Phantoms1Thunder3LBoxScore
165 - 2021-04-041098Minnesota0Phantoms8WBoxScore
166 - 2021-04-051109Oil Kings3Phantoms4WXBoxScore
168 - 2021-04-071125Chiefs4Phantoms3LBoxScore
171 - 2021-04-101149Phantoms4Stars1WBoxScore
172 - 2021-04-111159Phantoms5Chill3WBoxScore
175 - 2021-04-141179Sound Tigers1Phantoms6WBoxScore
177 - 2021-04-161196Phantoms2Cougars1WBoxScore
179 - 2021-04-181206Phantoms3Spiders2WBoxScore
180 - 2021-04-191216Manchots3Phantoms4WBoxScore
183 - 2021-04-221239Phantoms6Wolf Pack5WXXBoxScore
184 - 2021-04-231246Chill5Phantoms4LBoxScore
186 - 2021-04-251261Phantoms4Crunch3WXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance77,64739,857
Attendance PCT94.69%97.21%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2866 - 95.53% 80,866$3,315,500$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,882,098$ 1,382,333$ 1,382,333$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
7,432$ 1,882,098$ 19 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 7,432$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT