Monsters

GP: 82 | W: 58 | L: 19 | OTL: 5 | P: 121
GF: 329 | GA: 250 | PP%: 22.27% | PK%: 78.13%
GM : Paul-André Desrochers | Morale : 50 | Team Overall : 56
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Colin WhiteXX100.006949838167708470647061575364640506402263,000,000$
2Matt MartinXX100.00996878748356785937565870257577050630304850,000$
3Nick PaulXX100.00856589718762786362616567255656050630244925,000$
4Brett SeneyXX100.00605670775682876379606258594949050610233782,500$
5Jesper Boqvist (R)X100.00764392866357706635506061754747050600204925,001$
6Carter VerhaegheX100.00705091646860815848596762255959050600241850,000$
7Dmytro TimashovX100.00825186676960755733595770255757050600231925,000$
8Jordan KyrouXX100.00614190816557716436646652254848050600212742,500$
9Otto KoivulaXX100.00754594668350765559505571254545050580212650,000$
10Joona KoppanenXX100.00787389637363655670505864554444050570212753,333$
11Marian StudenicX100.00696284606265685750506060574444050560202775,833$
12Haydn FleuryX100.007750947282636458285248727558590506302322,000,000$
13Caleb JonesX100.00724990677168796026514866755959050620222655,000$
14Carl DahlstromX100.00644390618668586234474670755959050610242825,000$
15Steven KampferX100.00804989687064566025524759256263050600314750,000$
16Adam ClendeningX100.00737358637164685625564462445556050590262900,000$
17Teemu Kivihalme (R)X100.00736786666769755025434160394444050570242650,000$
Scratches
1Oskar Steen (R)X100.00696577686566705468545059484444050560214809,168$
2Grant Mismash (R)X100.00514585666759754755434246445454050510204825,000$
3Linus Lindstrom (R)X100.00364040404935353640363640383230050370212650,000$
4Lucas CarlssonX100.00747084657073785425524262404444050590222792,500$
5Dominik MasinX100.00727366607375814925403963385252050580231725,000$
6Connor HobbsX100.00716875596958584925354062395353050550222730,000$
7Niklas Hansson (R)X100.00354343435333333543353543393230050380241700,000$
8Ziyat Paigin (R)X100.00333737377033333337333337353230050370242792,500$
TEAM AVERAGE100.0068557865706068554250506044515105057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Calvin Petersen100.0059779670566450615756304444050590
2Filip Larsson (R)100.0044496171404250514445304444050480
Scratches
1Tyler Parsons (R)100.0042454467424141414141393230050430
TEAM AVERAGE100.004857676946494751474733403905050
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Colin WhiteMonsters (Col)C/RW7834569017220582133441022179.88%11155219.90718256021300021014255.27%206800111.1629000791
2Brett SeneyMonsters (Col)C/LW822058781313537196231782128.66%18150918.4111516472070115832260.31%186700001.0322001333
3Nick PaulMonsters (Col)C/LW76334174163801601483239822210.22%17147819.4685135417200041337059.82%44300001.0047000374
4Jesper BoqvistMonsters (Col)LW82353772281808218833810326010.36%18166220.272026540002195233.06%12400010.8700000734
5Matt MartinMonsters (Col)LW/RW683338711454102361262937920811.26%27129719.08812205416620211938247.58%12400011.0900110567
6Haydn FleuryMonsters (Col)D811454682250020388162481048.64%134188623.2961319782030002170110.00%000100.7211000332
7Dmytro TimashovMonsters (Col)LW8228336118395173116295981909.49%25136616.6652718750006696133.06%12100000.8900001334
8Jordan KyrouMonsters (Col)C/RW82273057116037117293892029.22%6136316.63561147204000003138.74%11100010.8401000522
9Carter VerhaegheMonsters (Col)C8223285126135691592145616210.75%17125215.28000231014863346.30%147300010.8102001153
10Otto KoivulaMonsters (Col)LW/RW8226255122140721052526915310.32%27153818.7664104120001111127447.95%14600000.6600000316
11Steven KampferMonsters (Col)D824343831560130418435634.76%91142917.4415624800000103110.00%000000.5300000123
12Carl DahlstromMonsters (Col)D828263420260868912050816.67%116183522.38358381261124184110.00%000000.3700000201
13Lucas CarlssonMonsters (Col)D755263174715135548928635.62%102151020.1417830189000070000.00%000000.4100012110
14Adam ClendeningMonsters (Col)D543262945210153386017485.00%64109520.2906611124000198010.00%000000.5300101121
15Caleb JonesMonsters (Col)D3771724780444062164411.29%3179821.594262598000169110.00%000000.6000000102
16Teemu KivihalmeMonsters (Col)D6732023382956423487366.25%78104015.53000013000033010.00%000000.4400001100
17Joona KoppanenMonsters (Col)C/LW82101020122210437096257610.42%115967.27000020222712257.41%63400000.6718200101
18Marian StudenicMonsters (Col)RW829101916240402981247711.11%46317.7001104000001246.51%4300000.6000000001
19Grant MismashMonsters (Col)LW20033400468280.00%01829.1200000000000053.33%1500000.3300000000
20Nate ThompsonColoradoC/LW2022100737140.00%04723.9201105000040075.00%400000.8401000010
21Oskar SteenMonsters (Col)C2000000012010.00%084.1000001000000054.55%1100000.0000000000
22Dominik MasinMonsters (Col)D1000020001020.00%11616.600000000000000.00%000000.0000000000
Team Total or Average138132257489632753365183318503403102524339.46%7982410017.45571021595352148459451507522753.87%718400250.741031427484845
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Calvin PetersenMonsters (Col)70491540.9162.9841046220424250200.76025700723
2Filip LarssonMonsters (Col)95200.9292.5844220192660011.0003577000
3Jon GilliesColorado74210.9103.2242800232550000.500270011
Team Total or Average86581950.9162.9749758224629460210.767308277734


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam ClendeningMonsters (Col)D261992-10-26No196 Lbs6 ft0NoNoNo2Pro & Farm900,000$90,000$0$No900,000$Link
Brett SeneyMonsters (Col)C/LW231996-02-28No156 Lbs5 ft9NoNoNo3Pro & Farm782,500$78,250$0$No782,500$782,500$Link
Caleb JonesMonsters (Col)D221997-06-06No192 Lbs6 ft1NoNoNo2Pro & Farm655,000$655,000$0$No655,000$Link
Calvin PetersenMonsters (Col)G241994-10-19No185 Lbs6 ft1NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Link
Carl DahlstromMonsters (Col)D241995-01-28No231 Lbs6 ft4NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Carter VerhaegheMonsters (Col)C241995-08-14No181 Lbs6 ft1NoNoNo1Pro & Farm850,000$85,000$0$NoLink
Colin WhiteMonsters (Col)C/RW221997-01-30No183 Lbs6 ft0NoNoNo6Pro & Farm3,000,000$300,000$0$No3,000,000$3,000,000$3,000,000$3,000,000$3,000,000$Link
Connor HobbsMonsters (Col)D221997-01-04No187 Lbs6 ft1NoNoNo2Pro & Farm730,000$73,000$0$No730,000$Link
Dmytro TimashovMonsters (Col)LW231996-09-30No195 Lbs5 ft10NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Dominik MasinMonsters (Col)D231996-01-31No198 Lbs6 ft2NoNoNo1Pro & Farm725,000$72,500$0$NoLink
Filip LarssonMonsters (Col)G211998-08-17Yes181 Lbs6 ft2NoNoNo3Pro & Farm836,666$83,667$0$No836,666$836,666$Link
Grant MismashMonsters (Col)LW201999-02-19Yes186 Lbs6 ft0NoNoNo4Pro & Farm825,000$82,500$0$No825,000$825,000$825,000$Link
Haydn FleuryMonsters (Col)D231996-07-08No221 Lbs6 ft3NoNoNo2Pro & Farm2,000,000$200,000$0$No2,000,000$Link
Jesper BoqvistMonsters (Col)LW201998-10-30Yes174 Lbs5 ft11NoNoNo4Pro & Farm925,001$92,500$0$No925,001$925,001$925,001$Link
Joona KoppanenMonsters (Col)C/LW211998-02-25No192 Lbs6 ft3NoNoNo2Pro & Farm753,333$75,333$0$No753,333$Link
Jordan KyrouMonsters (Col)C/RW211998-05-05No175 Lbs6 ft0NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Linus LindstromMonsters (Col)C211998-01-08Yes168 Lbs5 ft11NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Lucas CarlssonMonsters (Col)D221997-07-05No190 Lbs6 ft0NoNoNo2Pro & Farm792,500$79,250$0$No792,500$Link
Marian StudenicMonsters (Col)RW201998-10-28No163 Lbs6 ft1NoNoNo2Pro & Farm775,833$77,583$0$No775,833$Link
Matt MartinMonsters (Col)LW/RW301989-05-08No220 Lbs6 ft3NoNoNo4Pro & Farm850,000$85,000$0$No850,000$850,000$850,000$Link
Nick PaulMonsters (Col)C/LW241995-03-20No230 Lbs6 ft4YesNoNo4Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$Link
Niklas HanssonMonsters (Col)D241995-01-08Yes175 Lbs6 ft0NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Oskar SteenMonsters (Col)C211998-03-09Yes187 Lbs5 ft9NoNoNo4Pro & Farm809,168$80,917$0$No809,168$809,168$809,168$Link
Otto KoivulaMonsters (Col)LW/RW211998-10-01No220 Lbs6 ft4NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Steven KampferMonsters (Col)D311988-09-24No195 Lbs5 ft11NoNoNo4Pro & Farm750,000$75,000$0$No750,000$750,000$750,000$Link
Teemu KivihalmeMonsters (Col)D241995-06-14Yes181 Lbs6 ft0YesNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Tyler ParsonsMonsters (Col)G221997-09-18Yes185 Lbs6 ft1NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Ziyat PaiginMonsters (Col)D241995-02-08Yes209 Lbs6 ft6NoNoNo2Pro & Farm792,500$79,250$0$No792,500$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2822.96191 Lbs6 ft12.50907,589$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jesper BoqvistBrett SeneyMatt Martin40122
2Nick PaulColin WhiteOtto Koivula30122
3Dmytro TimashovCarter VerhaegheJordan Kyrou20122
4Jesper BoqvistJoona KoppanenMarian Studenic10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Carl DahlstromHaydn Fleury40122
2Adam ClendeningCaleb Jones30122
3Steven KampferTeemu Kivihalme20122
4Carl DahlstromHaydn Fleury10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt MartinColin WhiteOtto Koivula60122
2Jesper BoqvistBrett SeneyJordan Kyrou40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryCarl Dahlstrom60122
2Adam ClendeningCaleb Jones40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Brett SeneyOtto Koivula60122
2Joona KoppanenMatt Martin40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Carl DahlstromHaydn Fleury60122
2Adam ClendeningSteven Kampfer40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Colin White60122Carl DahlstromHaydn Fleury60122
2Joona Koppanen40122Adam ClendeningSteven Kampfer40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Colin WhiteMatt Martin60122
2Brett SeneyJesper Boqvist40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Carl DahlstromHaydn Fleury60122
2Adam ClendeningSteven Kampfer40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brett SeneyColin WhiteMatt MartinCarl DahlstromSteven Kampfer
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Dmytro TimashovColin WhiteMatt MartinCarl DahlstromHaydn Fleury
Extra Forwards
Normal PowerPlayPenalty Kill
Dmytro Timashov, Jesper Boqvist, Carter VerhaegheDmytro Timashov, Jesper BoqvistCarter Verhaeghe
Extra Defensemen
Normal PowerPlayPenalty Kill
Haydn Fleury, Steven Kampfer, Adam ClendeningHaydn FleurySteven Kampfer, Adam Clendening
Penalty Shots
Colin White, Joona Koppanen, Carter Verhaeghe, Brett Seney, Jordan Kyrou
Goalie
#1 : Calvin Petersen, #2 : Filip Larsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3110001016133211000008621000001087140.6671628440011411592121251059112411925511830187911436.36%9188.89%11673302855.25%1453281551.62%759138854.68%2126150817805721073555
2Baby Hawks41200010121202020000047-32100001085340.5001220320011411592121531059112411925512238279320210.00%11463.64%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
3Bears2110000049-5110000003211010000017-620.5004711001141159212611059112411925592251039600.00%4250.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
4Bruins22000000862110000004311100000043141.00081422001141159212661059112411925567151029200.00%50100.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
5Cabaret Lady Mary Ann220000001147110000004311100000071641.00011213200114115921216310591124119255691710582150.00%50100.00%11673302855.25%1453281551.62%759138854.68%2126150817805721073555
6Caroline2110000057-21010000026-41100000031220.50058130011411592125810591124119255793440474125.00%14285.71%11673302855.25%1453281551.62%759138854.68%2126150817805721073555
7Chiefs54000010181083300000094521000010963101.00018274500114115921218010591124119255163372511725624.00%8187.50%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
8Chill4310000018126211000009542200000097260.7501833510011411592121451059112411925513335169117211.76%8187.50%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
9Comets32100000981110000005232110000046-240.667917260011411592121171059112411925599288619222.22%4250.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
10Cougars2110000089-1110000005321010000036-320.50081220001141159212771059112411925582151250300.00%5260.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
11Crunch21000100871110000005321000010034-130.750814220011411592129310591124119255792410395240.00%5260.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
12Heat311010001211120101000810-21100000041340.6671222340011411592121511059112411925511024146610330.00%7271.43%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
13Jayhawks3110001012111210000107341010000058-340.667122032001141159212133105911241192559728108513538.46%5180.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
14Las Vegas321000001082110000004222110000066040.66710162600114115921210910591124119255973322531000.00%10190.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
15Manchots21100000871110000004221010000045-120.50081523001141159212661059112411925586222353200.00%9188.89%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
16Marlies201000106601010000045-11000001021120.50069150011411592129110591124119255531164510110.00%30100.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
17Minnesota5500000037172022000000141043300000023716101.00037681050111411592123341059112411925521546369912541.67%17664.71%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
18Monarchs311000011011-11010000034-12100000177030.500101828001141159212124105911241192551503928649222.22%14285.71%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
19Monsters211000009721010000024-21100000073420.5009172600114115921265105911241192557418104812325.00%5260.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
20Oceanics42100001131122010000168-22200000073450.6251324370011411592121331059112411925515251288911218.18%13192.31%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
21Oil Kings32100000121201010000025-322000000107340.667122133001141159212104105911241192551153521645120.00%8362.50%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
22Phantoms22000000853110000004221100000043141.000814220011411592126610591124119255732914644125.00%7185.71%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
23Rocket21100000743110000005141010000023-120.50071219001141159212741059112411925565236456116.67%3166.67%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
24Senators210000101064110000006331000001043141.0001015250011411592129210591124119255852715449222.22%5180.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
25Sharks32000001963220000008441000000112-150.8339162500114115921212810591124119255782836603133.33%7271.43%11673302855.25%1453281551.62%759138854.68%2126150817805721073555
26Sound Tigers21001000844100010003211100000052341.00081422001141159212781059112411925567139376233.33%20100.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
27Spiders22000000752110000002111100000054141.000712190011411592126410591124119255671512416116.67%5260.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
28Stars42100100151502110000067-12100010098150.6251525401011411592121761059112411925513835308118633.33%14657.14%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
29Thunder22000000725110000003031100000042241.00071219011141159212731059112411925559151847300.00%90100.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
Total825019022633292507941251202011156120364125700252173130431210.738329573902121141159212340010591124119255294780554518332565722.27%2244978.13%41673302855.25%1453281551.62%759138854.68%2126150817805721073555
30Wolf Pack220000001257110000007341100000052341.00012223400114115921210110591124119255631521453133.33%30100.00%01673302855.25%1453281551.62%759138854.68%2126150817805721073555
_Since Last GM Reset825019022633292507941251202011156120364125700252173130431210.738329573902121141159212340010591124119255294780554518332565722.27%2244978.13%41673302855.25%1453281551.62%759138854.68%2126150817805721073555
_Vs Conference432611012301761354121136010108066142213500220966927620.72117630347911114115921219221059112411925515304172719581423524.65%1163371.55%21673302855.25%1453281551.62%759138854.68%2126150817805721073555
_Vs Division266300200113773613410000048417132200200653629140.2691131973101111411592121121105911241192559232421625701032322.33%711973.24%01673302855.25%1453281551.62%759138854.68%2126150817805721073555

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82121W132957390234002947805545183312
All Games
GPWLOTWOTL SOWSOLGFGA
8250192263329250
Home Games
GPWLOTWOTL SOWSOLGFGA
4125122011156120
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412570252173130
Last 10 Games
WLOTWOTL SOWSOL
900001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2565722.27%2244978.13%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
105911241192551141159212
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1673302855.25%1453281551.62%759138854.68%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2126150817805721073555


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-10-2311Heat5Monsters6WXBoxScore
4 - 2020-10-2527Minnesota6Monsters7WBoxScore
9 - 2020-10-3056Bruins3Monsters4WBoxScore
11 - 2020-11-0172Jayhawks2Monsters3WXXBoxScore
13 - 2020-11-0383Monsters1Bears7LBoxScore
15 - 2020-11-0592Monsters4Manchots5LBoxScore
17 - 2020-11-07107Monsters7Cabaret Lady Mary Ann1WBoxScore
18 - 2020-11-08117Monsters4Thunder2WBoxScore
20 - 2020-11-10131Monsters4Chiefs2WBoxScore
24 - 2020-11-14155Monsters1Las Vegas3LBoxScore
25 - 2020-11-15168Admirals2Monsters5WBoxScore
29 - 2020-11-19192Cabaret Lady Mary Ann3Monsters4WBoxScore
31 - 2020-11-21201Stars3Monsters4WBoxScore
32 - 2020-11-22214Monsters5Jayhawks8LBoxScore
35 - 2020-11-25230Monsters4Stars5LXBoxScore
37 - 2020-11-27244Chill4Monsters2LBoxScore
39 - 2020-11-29260Monsters4Monsters2LBoxScore
42 - 2020-12-02276Monsters4Oceanics2WBoxScore
44 - 2020-12-04290Monsters5Oil Kings3WBoxScore
46 - 2020-12-06311Monsters2Comets5LBoxScore
49 - 2020-12-09328Monsters4Heat1WBoxScore
51 - 2020-12-11340Monsters9Minnesota4WBoxScore
53 - 2020-12-13351Marlies5Monsters4LBoxScore
57 - 2020-12-17387Oil Kings5Monsters2LBoxScore
59 - 2020-12-19394Monsters4Baby Hawks2WBoxScore
60 - 2020-12-20413Baby Hawks4Monsters2LBoxScore
64 - 2020-12-24434Monsters2Marlies1WXXBoxScore
65 - 2020-12-25439Monsters2Rocket3LBoxScore
67 - 2020-12-27455Monsters4Bruins3WBoxScore
69 - 2020-12-29471Heat5Monsters2LBoxScore
71 - 2020-12-31486Phantoms2Monsters4WBoxScore
73 - 2021-01-02500Spiders1Monsters2WBoxScore
76 - 2021-01-05522Monsters5Chiefs4WXXBoxScore
78 - 2021-01-07536Monsters4Baby Hawks3WXXBoxScore
79 - 2021-01-08544Caroline6Monsters2LBoxScore
81 - 2021-01-10562Baby Hawks3Monsters2LBoxScore
83 - 2021-01-12580Monsters5Las Vegas3WBoxScore
87 - 2021-01-16586Minnesota4Monsters7WBoxScore
88 - 2021-01-17593Monsters5Stars3WBoxScore
91 - 2021-01-20621Oceanics3Monsters2LBoxScore
93 - 2021-01-22634Chiefs2Monsters3WBoxScore
95 - 2021-01-24649Monsters5Spiders4WBoxScore
97 - 2021-01-26661Monsters5Sound Tigers2WBoxScore
98 - 2021-01-27666Monsters5Wolf Pack2WBoxScore
101 - 2021-01-30691Manchots2Monsters4WBoxScore
105 - 2021-02-03722Stars4Monsters2LBoxScore
107 - 2021-02-05738Sharks2Monsters4WBoxScore
109 - 2021-02-07744Chiefs1Monsters4WBoxScore
111 - 2021-02-09759Cougars3Monsters5WBoxScore
123 - 2021-02-21799Monsters4Phantoms3WBoxScore
126 - 2021-02-24813Monsters3Crunch4LXBoxScore
128 - 2021-02-26833Monsters4Senators3WXXBoxScore
130 - 2021-02-28851Monsters7Monsters3WBoxScore
131 - 2021-03-01859Monsters8Minnesota0WBoxScore
133 - 2021-03-03874Senators3Monsters6WBoxScore
135 - 2021-03-05888Bears2Monsters3WBoxScore
137 - 2021-03-07902Monarchs4Monsters3LBoxScore
139 - 2021-03-09919Thunder0Monsters3WBoxScore
141 - 2021-03-11931Sound Tigers2Monsters3WXBoxScore
143 - 2021-03-13947Monsters8Admirals7WXXBoxScore
144 - 2021-03-14958Monsters3Monarchs4LXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
148 - 2021-03-18981Crunch3Monsters5WBoxScore
150 - 2021-03-20996Monsters3Caroline1WBoxScore
151 - 2021-03-211008Monsters4Chill3WBoxScore
153 - 2021-03-231017Monsters3Cougars6LBoxScore
155 - 2021-03-251031Admirals4Monsters3LBoxScore
157 - 2021-03-271047Monsters2Comets1WBoxScore
159 - 2021-03-291065Monsters1Sharks2LXXBoxScore
160 - 2021-03-301069Monsters4Monarchs3WBoxScore
162 - 2021-04-011081Wolf Pack3Monsters7WBoxScore
164 - 2021-04-031096Comets2Monsters5WBoxScore
166 - 2021-04-051110Las Vegas2Monsters4WBoxScore
168 - 2021-04-071129Sharks2Monsters4WBoxScore
170 - 2021-04-091142Monsters5Chill4WBoxScore
172 - 2021-04-111154Rocket1Monsters5WBoxScore
174 - 2021-04-131172Monsters6Minnesota3WBoxScore
176 - 2021-04-151188Monsters5Oil Kings4WBoxScore
178 - 2021-04-171201Monsters3Oceanics1WBoxScore
180 - 2021-04-191222Chill1Monsters7WBoxScore
182 - 2021-04-211235Jayhawks1Monsters4WBoxScore
184 - 2021-04-231251Oceanics5Monsters4LXXBoxScore
186 - 2021-04-251258Chiefs1Monsters2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance78,83139,392
Attendance PCT96.14%96.08%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2883 - 96.12% 81,706$3,349,965$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,514,211$ 3,130,750$ 3,130,750$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
16,832$ 2,514,413$ 28 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,832$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT