Senators

GP: 82 | W: 44 | L: 30 | OTL: 8 | P: 96
GF: 316 | GA: 285 | PP%: 19.61% | PK%: 77.29%
DG: Olivier Paquin | Morale : 50 | Moyenne d'Équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Alex Formenton (R)X100.00727371767367686650616864654444050620202742,500$
2Brendan PerliniXX100.00694490847959716626585960756464050620232850,000$
3Alexandre Texier (R)X100.00674290837163676442657060254747050620203925,000$
4Kevin RooneyX100.00796587687362816066585879255656050620263850,000$
5Jayce HawrylukXX100.008746826767585461386762602557570505902321,300,000$
6Jaret Anderson-Dolan (R)XX100.00726783796763645974595462514444050590203792,500$
7Mackenzie MacEachernX100.00816483627253746232546267255555050590254560,000$
8Jeremy BraccoX100.00756596606473775850694964454747050590221700,000$
9Anthony RichardXX100.00706287625980855467485863565555050580221860,000$
10Jansen HarkinsX100.00675091676860825436585661255353050580221825,000$
11Isaac Ratcliffe (R)X100.00797979677970765050474863464444050560204780,833$
12Matthew Strome (R)X100.00827892557861644950454864464444050540203990,000$
13Andrew Peeke (R)X100.00764493767463635725484863254646050600212825,000$
14Grant Hutton (R)X100.00797783657764685125444363414444050580241560,000$
15Thomas SchemitschX100.00797781607768745025384262394444050570221700,000$
16Tyler LewingtonX100.00687152627372754825394159404444050560241525,000$
17Joseph CecconiX100.00817691617652544425343963374444050550222925,000$
Rayé
1Kristian ReichelX100.00716586676562645670466261594444050560211560,000$
2Dmitrij JaskinXX100.00703588637552454735474758474946050520262560,000$
3Cam Morrison (R)X100.00414545457439394145414145433230050420212825,000$
4Luke Martin (R)X100.00575585607854763525343050325858050520214700,000$
MOYENNE D'ÉQUIPE100.0072618366726268544250526142484805057
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kasimir Kaskisuo100.0056597378575953595658304444050570
2Filip Gustavsson100.0055577172495851615753304444050550
Rayé
1Maksim Zhukov (R)100.0045666270404740444043435454050490
2Kent Simpson100.0037454174363333343333333532050390
MOYENNE D'ÉQUIPE100.004857627446494450474734444405050
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alexandre TexierSenators (Ott)C8246469225120491953299221713.98%24127515.568816491340008879143.90%160600011.4401000772
2Kevin RooneySenators (Ott)C82335083134551582163891272948.48%55138416.89812206717611261585157.70%167600101.2017010629
3Troy TerryOttawaC/RW6717547128409132247911746.88%8115717.273141748169000041043.31%12700011.2300000114
4Andrew PeekeSenators (Ott)D8218527020480225831725510910.47%156196723.9941014682321234214200.00%000000.7100000653
5Mackenzie MacEachernSenators (Ott)LW8229336215560205100295732029.83%35132816.216511341240001427141.84%14100000.9300000233
6Alex FormentonSenators (Ott)LW5225356026335106114293812148.53%17116422.401674213321381321244.93%36500101.0314001570
7Brendan PerliniSenators (Ott)LW/RW67243559110049147318962277.55%22124618.605813681930006934236.67%15000010.9513000115
8Jayce HawrylukSenators (Ott)C/RW8218355316380187160257751977.00%16117714.3611210361014614038.52%81000010.9000000142
9Jeremy BraccoSenators (Ott)RW8212344617403599175521246.86%9101412.371018230001120147.13%8700000.9100000111
10Jaret Anderson-DolanSenators (Ott)C/LW75142842329583148168381358.33%1397813.050336290002322158.18%93500000.8634010113
11Thomas SchemitschSenators (Ott)D8212152716831517147104336311.54%126171020.85415281900114175200.00%000000.3200021021
12Joseph CecconiSenators (Ott)D7872027169020209328126438.64%96114614.69213922000123000.00%000000.4700121031
13Jansen HarkinsSenators (Ott)C65111526-280457411428839.65%85518.4900002000002042.72%53600000.9400000300
14Tyler LewingtonSenators (Ott)D82422267635215348819484.55%118168920.60235221810001169000.00%000000.3100001102
15Isaac RatcliffeSenators (Ott)LW6512132592956159113319110.62%1573111.2500001000010041.30%4600000.6800100100
16Vladimir SobotkaOttawaC/LW17910198180335383186610.84%934220.1330322510002230154.63%44300001.1100000010
17Jan RuttaOttawaD1731518912025334420276.82%3740123.622352146000036100.00%000000.9000000002
18Dillon DubeOttawaC/RW2061117-42020476718438.96%341620.8204410661123670033.14%50700000.8214000210
19Kristian ReichelSenators (Ott)C4589171160123459173913.56%12545.6500002000031152.89%32900001.3400000021
20Gabriel VilardiOttawaC1759140001496618387.58%126915.85000000112331163.49%30400001.0400000003
21Anthony RichardSenators (Ott)C/LW406814-48042508120617.41%755313.8400000000010062.50%6400000.5100000110
22Grant HuttonSenators (Ott)D2158131429564152851717.86%3144020.95011733000038000.00%000000.5900001002
23Dmitrij JaskinSenators (Ott)LW/RW49279-46036345316453.77%83366.8600000000020028.00%2500000.5400000100
24Luke MartinSenators (Ott)D243144406894433.33%1236615.2800001000022100.00%000000.2200000001
25Matthew StromeSenators (Ott)LW16101-1204452420.00%2885.5600002000070066.67%1200000.2200000000
Stats d'équipe Total ou en Moyenne139133056589524363965205019673638105525659.07%8292199215.81508013051918586713531446431248.78%816300240.81723265404245
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kasimir KaskisuoSenators (Ott)82432780.9093.4946486327029770210.57726820642
2Filip GustavssonSenators (Ott)91300.9621.523150082130000.0000082000
Stats d'équipe Total ou en Moyenne91443080.9133.3649646327831900210.577268282642


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alex FormentonSenators (Ott)LW201999-09-13Yes190 Lbs6 ft3NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Alexandre TexierSenators (Ott)C201999-09-13Yes192 Lbs6 ft1NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Lien
Andrew PeekeSenators (Ott)D211998-03-17Yes198 Lbs6 ft3NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Anthony RichardSenators (Ott)C/LW221996-12-19No163 Lbs5 ft10YesNoNo1Pro & Farm860,000$86,000$0$NoLien
Brendan PerliniSenators (Ott)LW/RW231996-04-27No212 Lbs6 ft3NoNoNo2Pro & Farm850,000$85,000$0$No850,000$Lien
Cam MorrisonSenators (Ott)LW211998-08-27Yes212 Lbs6 ft3NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Dmitrij JaskinSenators (Ott)LW/RW261993-03-23No216 Lbs6 ft2NoNoNo2Pro & Farm560,000$56,000$0$No560,000$Lien
Filip GustavssonSenators (Ott)G211998-06-07No184 Lbs6 ft2NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Grant HuttonSenators (Ott)D241995-07-25Yes205 Lbs6 ft3YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Isaac RatcliffeSenators (Ott)LW201999-02-15Yes201 Lbs6 ft6NoNoNo4Pro & Farm780,833$78,083$0$No780,833$780,833$780,833$Lien
Jansen HarkinsSenators (Ott)C221997-05-23No182 Lbs6 ft1NoNoNo1Pro & Farm825,000$82,500$0$NoLien
Jaret Anderson-DolanSenators (Ott)C/LW201999-09-11Yes188 Lbs5 ft11NoNoNo3Pro & Farm792,500$79,250$0$No792,500$792,500$Lien
Jayce HawrylukSenators (Ott)C/RW231996-01-01No186 Lbs5 ft11NoNoNo2Pro & Farm1,300,000$130,000$0$No1,300,000$Lien
Jeremy BraccoSenators (Ott)RW221997-03-17No180 Lbs5 ft9NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Joseph CecconiSenators (Ott)D221997-05-23No209 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Kasimir KaskisuoSenators (Ott)G261993-10-01No201 Lbs6 ft2NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Kent SimpsonSenators (Ott)G271992-03-26No198 Lbs6 ft2NoNoNo1Pro & Farm550,000$55,000$0$NoLien
Kevin RooneySenators (Ott)C261993-05-21No190 Lbs6 ft2NoNoNo3Pro & Farm850,000$85,000$0$No850,000$850,000$Lien
Kristian ReichelSenators (Ott)C211998-06-11No176 Lbs6 ft0YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Luke MartinSenators (Ott)D211998-09-20Yes218 Lbs6 ft2NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Lien
Mackenzie MacEachernSenators (Ott)LW251994-03-08No190 Lbs6 ft2YesNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Lien
Maksim ZhukovSenators (Ott)G201999-07-22Yes187 Lbs6 ft3YesNoNo1Pro & Farm560,000$56,000$0$NoLien
Matthew StromeSenators (Ott)LW201999-01-05Yes206 Lbs6 ft4YesNoNo3Pro & Farm990,000$99,000$0$No990,000$990,000$Lien
Thomas SchemitschSenators (Ott)D221996-10-25No200 Lbs6 ft4NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Tyler LewingtonSenators (Ott)D241994-12-05No189 Lbs6 ft1NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2522.36195 Lbs6 ft22.04765,333$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Alex FormentonKevin RooneyBrendan Perlini40122
2Mackenzie MacEachernAlexandre TexierJayce Hawryluk30122
3Anthony RichardJaret Anderson-DolanJeremy Bracco20122
4Isaac RatcliffeJansen HarkinsAlex Formenton10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Andrew PeekeGrant Hutton40122
2Thomas SchemitschTyler Lewington30122
3Joseph CecconiJansen Harkins20122
4Andrew PeekeGrant Hutton10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Alex FormentonKevin RooneyBrendan Perlini60122
2Mackenzie MacEachernAlexandre TexierJayce Hawryluk40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Andrew PeekeGrant Hutton60122
2Thomas SchemitschTyler Lewington40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Alex FormentonBrendan Perlini60122
2Kevin RooneyAlexandre Texier40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Andrew PeekeGrant Hutton60122
2Thomas SchemitschTyler Lewington40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Alex Formenton60122Andrew PeekeGrant Hutton60122
2Brendan Perlini40122Thomas SchemitschTyler Lewington40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Alex FormentonBrendan Perlini60122
2Kevin RooneyAlexandre Texier40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Andrew PeekeGrant Hutton60122
2Thomas SchemitschTyler Lewington40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Alex FormentonKevin RooneyBrendan PerliniAndrew PeekeGrant Hutton
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Alex FormentonKevin RooneyBrendan PerliniAndrew PeekeGrant Hutton
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Matthew Strome, Jaret Anderson-Dolan, Jeremy BraccoMatthew Strome, Jaret Anderson-DolanJeremy Bracco
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Joseph Cecconi, Thomas Schemitsch, Tyler LewingtonJoseph CecconiThomas Schemitsch, Tyler Lewington
Tirs de Pénalité
Alex Formenton, Brendan Perlini, Kevin Rooney, Alexandre Texier, Mackenzie MacEachern
Gardien
#1 : Kasimir Kaskisuo, #2 : Filip Gustavsson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals210000018801000000134-11100000054130.750812200013487898811181112111826875221661500.00%6266.67%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
2Baby Hawks21000100734110000005051000010023-130.750713200113487898102118111211182686714126413323.08%50100.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
3Bears31200000912-31010000025-32110000077020.3339172600134878981361181112111826815137267114214.29%13284.62%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
4Bruins431000001266211000008532200000041360.75012233501134878981381181112111826814940311191300.00%11190.91%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
5Cabaret Lady Mary Ann4310000025111422000000173142110000088060.75025406500134878982651181112111826815445301048225.00%14471.43%21485310047.90%1398306445.63%641141045.46%2013142719185891040517
6Caroline311000101715210000010541211000001211140.6671725420013487898141118111211182681473637864250.00%10370.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
7Chiefs2010001045-11010000024-21000001021120.50045900134878986711811121118268681620634125.00%10280.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
8Chill2020000069-31010000035-21010000034-100.00069150013487898741181112111826876174496116.67%2150.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
9Comets201010006601010000023-11000100043120.5006121800134878989211811121118268862518396233.33%9366.67%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
10Cougars402000021322-920100001510-520100001812-420.25013213400134878981511181112111826818652281028225.00%14564.29%11485310047.90%1398306445.63%641141045.46%2013142719185891040517
11Crunch412000011416-2211000008802010000168-230.375142741001348789818011811121118268159472311311218.18%9277.78%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
12Heat21100000954110000007251010000023-120.5009162500134878989311811121118268671712448337.50%6350.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
13Jayhawks2020000049-51010000015-41010000034-100.00048120013487898791181112111826889231649400.00%8362.50%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
14Las Vegas22000000945110000005231100000042241.00091524001348789885118111211182685514164614321.43%8362.50%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
15Manchots321000001183110000004222110000076140.667112233001348789812611811121118268942225798112.50%10190.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
16Marlies422000001213-12200000010462020000029-740.500122133001348789813511811121118268132373510512216.67%14192.86%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
17Minnesota210010001192100010006511100000054141.00011203100134878981621181112111826890262065200.00%10460.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
18Monarchs22000000743110000004311100000031241.000713200013487898851181112111826874204489333.33%2150.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
19Monsters312000001015-51010000026-42110000089-120.3331016261013487898105118111211182681182322767228.57%9188.89%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
20Monsters20100001610-41000000134-11010000036-310.2506101600134878988511811121118268921723505120.00%9277.78%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
21Oceanics211000008711010000034-11100000053220.50081422001348789870118111211182688421143510220.00%50100.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
22Oil Kings211000007701010000045-11100000032120.5007121900134878988111811121118268802816479444.44%8275.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
23Phantoms311000101213-12100001010821010000025-340.667122133001348789896118111211182681463848848225.00%14378.57%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
24Rocket422000001415-12110000057-22110000098140.50014253900134878981301181112111826816147221111218.33%11190.91%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
25Sharks2010000169-31000000123-11010000046-210.2506111700134878987611811121118268702221558112.50%8362.50%11485310047.90%1398306445.63%641141045.46%2013142719185891040517
26Sound Tigers31101000131302110000089-11000100054140.6671322350013487898124118111211182681283319739222.22%6183.33%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
27Spiders330000001174220000007431100000043161.00011193000134878981101181112111826811141247915426.67%12191.67%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
28Stars21000100972110000006331000010034-130.750915240013487898991181112111826872198325120.00%4175.00%01485310047.90%1398306445.63%641141045.46%2013142719185891040517
29Thunder431000001881021100000770220000001111060.750183048011348789818011811121118268118403691600.00%16287.50%21485310047.90%1398306445.63%641141045.46%2013142719185891040517
Total82383003236316285314120140102416614026411816022121501455960.5853165478631313487898352711811121118268319185764821062555019.61%2736277.29%71485310047.90%1398306445.63%641141045.46%2013142719185891040517
30Wolf Pack3300000018992200000012661100000063361.000183351001348789817911811121118268921822661218.33%10460.00%11485310047.90%1398306445.63%641141045.46%2013142719185891040517
_Since Last GM Reset82383003236316285314120140102416614026411816022121501455960.5853165478631313487898352711811121118268319185764821062555019.61%2736277.29%71485310047.90%1398306445.63%641141045.46%2013142719185891040517
_Vs Conference432415010121611412022127000128575102112801000766610540.6281612834441213487898171511811121118268161843134710911422316.20%1382482.61%41485310047.90%1398306445.63%641141045.46%2013142719185891040517

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8296W131654786335273191857648210613
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8238303236316285
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4120141024166140
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4118162212150145
Derniers 10 Matchs
WLOTWOTL SOWSOL
730000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2555019.61%2736277.29%7
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
1181112111826813487898
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1485310047.90%1398306445.63%641141045.46%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2013142719185891040517


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-10-221Senators1Marlies4LSommaire du Match
4 - 2020-10-2520Wolf Pack3Senators6WSommaire du Match
9 - 2020-10-3051Chiefs4Senators2LSommaire du Match
11 - 2020-11-0162Thunder2Senators4WSommaire du Match
13 - 2020-11-0379Minnesota5Senators6WXSommaire du Match
16 - 2020-11-06105Senators4Las Vegas2WSommaire du Match
18 - 2020-11-08115Senators3Jayhawks4LSommaire du Match
20 - 2020-11-10132Senators3Stars4LXSommaire du Match
22 - 2020-11-12143Cougars5Senators1LSommaire du Match
24 - 2020-11-14158Sound Tigers6Senators3LSommaire du Match
26 - 2020-11-16173Sharks3Senators2LXXSommaire du Match
32 - 2020-11-22207Senators2Bruins1WSommaire du Match
34 - 2020-11-24221Senators6Wolf Pack3WSommaire du Match
35 - 2020-11-25225Senators5Sound Tigers4WXSommaire du Match
37 - 2020-11-27242Monarchs3Senators4WSommaire du Match
39 - 2020-11-29256Caroline4Senators5WXXSommaire du Match
41 - 2020-12-01271Senators5Caroline6LSommaire du Match
43 - 2020-12-03281Senators4Spiders3WSommaire du Match
45 - 2020-12-05298Phantoms4Senators5WXXSommaire du Match
46 - 2020-12-06304Senators4Crunch5LXXSommaire du Match
49 - 2020-12-09323Senators4Cougars5LXXSommaire du Match
50 - 2020-12-10331Senators4Rocket5LSommaire du Match
52 - 2020-12-12347Wolf Pack3Senators6WSommaire du Match
55 - 2020-12-15369Senators3Monsters2WSommaire du Match
57 - 2020-12-17378Bruins4Senators3LSommaire du Match
59 - 2020-12-19395Senators5Minnesota4WSommaire du Match
60 - 2020-12-20405Senators2Heat3LSommaire du Match
63 - 2020-12-23432Senators4Comets3WXSommaire du Match
64 - 2020-12-24436Senators3Oil Kings2WSommaire du Match
67 - 2020-12-27452Senators2Phantoms5LSommaire du Match
69 - 2020-12-29470Bruins1Senators5WSommaire du Match
71 - 2020-12-31485Senators5Rocket3WSommaire du Match
74 - 2021-01-03501Monsters6Senators2LSommaire du Match
76 - 2021-01-05519Senators3Cabaret Lady Mary Ann2WSommaire du Match
77 - 2021-01-06526Senators5Thunder1WSommaire du Match
79 - 2021-01-08542Chill5Senators3LSommaire du Match
81 - 2021-01-10558Phantoms4Senators5WSommaire du Match
83 - 2021-01-12575Crunch2Senators3WSommaire du Match
89 - 2021-01-18603Spiders3Senators4WSommaire du Match
90 - 2021-01-19612Senators6Manchots3WSommaire du Match
93 - 2021-01-22632Cabaret Lady Mary Ann2Senators9WSommaire du Match
95 - 2021-01-24648Thunder5Senators3LSommaire du Match
98 - 2021-01-27667Senators4Bears2WSommaire du Match
101 - 2021-01-30689Senators4Cougars7LSommaire du Match
102 - 2021-01-31693Rocket6Senators3LSommaire du Match
105 - 2021-02-03720Baby Hawks0Senators5WSommaire du Match
107 - 2021-02-05734Las Vegas2Senators5WSommaire du Match
109 - 2021-02-07746Heat2Senators7WSommaire du Match
118 - 2021-02-16769Spiders1Senators3WSommaire du Match
119 - 2021-02-17774Senators2Crunch3LSommaire du Match
122 - 2021-02-20787Bears5Senators2LSommaire du Match
123 - 2021-02-21796Senators1Marlies5LSommaire du Match
126 - 2021-02-24819Admirals4Senators3LXXSommaire du Match
128 - 2021-02-26833Monsters4Senators3LXXSommaire du Match
130 - 2021-02-28843Senators5Oceanics3WSommaire du Match
133 - 2021-03-03874Senators3Monsters6LSommaire du Match
135 - 2021-03-05885Jayhawks5Senators1LSommaire du Match
137 - 2021-03-07901Marlies3Senators6WSommaire du Match
138 - 2021-03-08911Stars3Senators6WSommaire du Match
140 - 2021-03-10922Crunch6Senators5LSommaire du Match
142 - 2021-03-12937Oceanics4Senators3LSommaire du Match
144 - 2021-03-14952Rocket1Senators2WSommaire du Match
146 - 2021-03-16967Senators5Monsters7LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17977Senators3Chill4LSommaire du Match
149 - 2021-03-19988Comets3Senators2LSommaire du Match
151 - 2021-03-211005Cougars5Senators4LXXSommaire du Match
154 - 2021-03-241022Senators1Manchots3LSommaire du Match
156 - 2021-03-261038Sound Tigers3Senators5WSommaire du Match
158 - 2021-03-281053Senators4Sharks6LSommaire du Match
161 - 2021-03-311078Senators5Admirals4WSommaire du Match
162 - 2021-04-011082Senators3Monarchs1WSommaire du Match
164 - 2021-04-031095Senators2Baby Hawks3LXSommaire du Match
166 - 2021-04-051111Senators2Chiefs1WXXSommaire du Match
169 - 2021-04-081132Oil Kings5Senators4LSommaire du Match
171 - 2021-04-101147Senators3Bears5LSommaire du Match
172 - 2021-04-111158Senators7Caroline5WSommaire du Match
175 - 2021-04-141182Cabaret Lady Mary Ann1Senators8WSommaire du Match
177 - 2021-04-161191Senators2Bruins0WSommaire du Match
179 - 2021-04-181209Marlies1Senators4WSommaire du Match
182 - 2021-04-211228Senators6Thunder0WSommaire du Match
184 - 2021-04-231243Senators5Cabaret Lady Mary Ann6LSommaire du Match
186 - 2021-04-251263Manchots2Senators4WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets5020
Assistance50,01926,741
Assistance PCT61.00%65.22%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 1872 - 62.41% 74,043$3,035,770$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,797,846$ 1,913,333$ 1,913,333$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
10,287$ 1,797,846$ 25 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 10,287$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT