Monsters

GP: 55 | W: 32 | L: 21 | OTL: 2 | P: 66
GF: 180 | GA: 159 | PP%: 23.49% | PK%: 85.03%
DG: Benoit Toupin | Morale : 50 | Moyenne d'Équipe : 54
Prochain matchs #851 vs Monsters
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1William CarrierX100.009655848078558060475959592561620506102421,300,000$
2Sheldon DriesXX100.00696170746568776568546360644848050600255700,000$
3Julien GauthierX100.00755285698458855439585558254747050580212925,000$
4Zach Senyshyn (R)X100.00777090707171745350485564534444050570221895,000$
5Marcus KrugerXXX100.005443837458536246824447724763600505502921,000,000$
6Griffen MolinoXX100.00716489606354525265504662455151050530253900,000$
7Tim Soderlund (R)XX100.00665885655856594750434556434444050510214825,834$
8Kasper Bjorkqvist (R)XX100.00777289507249495050385662534444050510222700,000$
9Teemu PulkkinenXX100.00463581715748384736405460454338050500272650,000$
10Alexander KhokhlachevXX100.00413591715540273040303061483936050430261600,000$
11Scott KosmachukX100.00413584685740273135333064443532050430251560,000$
12Brian LashoffX100.00838281688268724825364069396364050620292775,000$
13Gustav Lindstrom (R)X100.00774475727070686125454774254545050620204775,833$
14Kurtis MacDermidX100.00878870668259695928484865255151050610254650,000$
15Julian MelchioriX100.00848189688168755025374266404848050600274725,000$
16Keaton MiddletonX100.00828867618864684925404264404444050580212715,000$
17Jeremy RoyX100.00707181616858644725394062384747050550221825,000$
Rayé
1Adam Tambellini (R)XX100.00354343435133333543353543393230050370242560,000$
2Reece Scarlett (R)X100.00746986616949504925404260404444050530262650,000$
3Sergei Boikov (R)X100.00333737376633333337333337353230050370232705,000$
MOYENNE D'ÉQUIPE100.0067597864695558484143456141464505053
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jake Oettinger100.0059526586636356636362304444050600
2Michael Hutchinson100.0052616681594952555657785959050580
Rayé
1Cory Schneider100.0057616580585253596357726970050600
2Jean-Francois Berube100.0058698266535953625855304748050580
MOYENNE D'ÉQUIPE100.005761707858565460605853555505059
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sheldon DriesMonsters (Clb)C/LW4528235118801341582406018111.67%13106823.7337103710801161196055.64%131200110.9602000733
2Zach SenyshynMonsters (Clb)RW55232750-330013394252671749.13%14109419.9051217451330113735146.83%12600010.9103000550
3Gustav LindstromMonsters (Clb)D517394601007988140401005.00%92121223.776915691340110134000.00%000000.7600000023
4Kurtis MacDermidMonsters (Clb)D551029391289151637310448719.62%70112120.394812461250002109010.00%000000.7000201214
5Griffen MolinoMonsters (Clb)C/LW55102535-72007910415537976.45%4100918.35178271290001271253.23%82100000.6901000124
6Brian LashoffMonsters (Clb)D5314183203751124996195914.58%76124323.477714391391012124300.00%000000.5100001114
7Marcus KrugerMonsters (Clb)C/LW/RW5010223238019116154461196.49%1192618.52246211191013634062.92%62300000.6903000022
8Julian MelchioriMonsters (Clb)D55112031131006454106267110.38%86115721.056713401280002131320.00%000000.5400000132
9Julien GauthierMonsters (Clb)RW55121830111608780150351018.00%7105419.173473213800011172144.12%20400000.5724000142
10Teemu PulkkinenMonsters (Clb)LW/RW551514294601565124449612.10%1069612.67000280000291140.00%6000000.8300000230
11Kasper BjorkqvistMonsters (Clb)LW/RW5511122324201435412428908.87%1285515.561349400000210052.00%7500000.5401000201
12Jeremy RoyMonsters (Clb)D5541822-3140364633132312.12%7189816.33011111000153000.00%000000.4900000002
13Keaton MiddletonMonsters (Clb)D5561420-344101645549162312.24%6688816.15000718000125300.00%000000.4500011131
14Tim SoderlundMonsters (Clb)LW/RW5571118-818056479029687.78%1091816.70134973000050040.00%8000000.3900000110
15Alexander KhokhlachevMonsters (Clb)C/LW53210122002904310234.65%1277514.62000016000010136.59%89100000.3111000000
16William CarrierMonsters (Clb)LW173811514073325120485.88%331718.690229480001430140.68%11800000.6901000101
17Adam TambelliniMonsters (Clb)C/LW36134-68091932633.33%02817.8200000000000034.02%33800000.2800000000
18Scott KosmachukMonsters (Clb)RW53224-200522296296.90%83997.53000130000441133.33%5700000.2000000000
19Adam ErneColumbusLW/RW11010204331333.33%02222.32000120000010100.00%300000.9000000000
20Reece ScarlettMonsters (Clb)D4011-300510020.00%76716.960000200001000.00%000000.2900000000
21Sergei BoikovMonsters (Clb)D2000-100100000.00%23316.630000000000000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne915177314491343763013831250194654713849.10%5741604217.5339741133951381235231129301149.15%470800120.61316213253029
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake OettingerMonsters (Clb)52311910.9232.7730378114018220000.84613514471
2Michael HutchinsonMonsters (Clb)61210.8923.6428000171570100.6673451000
Stats d'équipe Total ou en Moyenne58322120.9212.8433188115719790100.813165555471


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam TambelliniMonsters (Clb)C/LW241994-11-01Yes169 Lbs6 ft2NoNoNo2Pro & Farm560,000$171,612$56,000$17,161$No560,000$Lien
Alexander KhokhlachevMonsters (Clb)C/LW261993-09-09No181 Lbs5 ft10NoNoNo1Pro & Farm600,000$183,870$60,000$18,387$NoLien
Brian LashoffMonsters (Clb)D291990-07-15No221 Lbs6 ft3NoNoNo2Pro & Farm775,000$237,500$77,500$23,750$No775,000$Lien
Cory SchneiderMonsters (Clb)G331986-03-18No200 Lbs6 ft3NoNoNo3Pro & Farm5,250,000$1,608,870$525,000$160,887$No5,250,000$5,250,000$Lien
Griffen MolinoMonsters (Clb)C/LW251994-01-21No171 Lbs5 ft11NoNoNo3Pro & Farm900,000$275,806$90,000$27,581$No900,000$900,000$Lien
Gustav LindstromMonsters (Clb)D201998-10-20Yes187 Lbs6 ft2NoNoNo4Pro & Farm775,833$237,755$77,583$23,775$No775,833$775,833$775,833$Lien
Jake OettingerMonsters (Clb)G201998-12-18No212 Lbs6 ft4NoNoNo3Pro & Farm925,000$283,467$92,500$28,347$No925,000$925,000$Lien
Jean-Francois BerubeMonsters (Clb)G281991-07-13No177 Lbs6 ft1NoNoNo2Pro & Farm999,999$306,451$100,000$30,645$No999,999$Lien
Jeremy RoyMonsters (Clb)D221997-05-14No185 Lbs6 ft0NoNoNo1Pro & Farm825,000$252,822$82,500$25,282$NoLien
Julian MelchioriMonsters (Clb)D271991-12-06No214 Lbs6 ft5NoNoNo4Pro & Farm725,000$222,177$72,500$22,218$No725,000$725,000$725,000$Lien
Julien GauthierMonsters (Clb)RW211997-10-15No225 Lbs6 ft4NoNoNo2Pro & Farm925,000$283,467$92,500$28,347$No925,000$Lien
Kasper BjorkqvistMonsters (Clb)LW/RW221997-07-10Yes198 Lbs6 ft1NoNoNo2Pro & Farm700,000$214,516$70,000$21,452$No700,000$Lien
Keaton MiddletonMonsters (Clb)D211998-02-10No233 Lbs6 ft6NoNoNo2Pro & Farm715,000$219,112$71,500$21,911$No715,000$Lien
Kurtis MacDermidMonsters (Clb)D251994-03-25No208 Lbs6 ft5NoNoNo4Pro & Farm650,000$199,193$65,000$19,919$No650,000$650,000$650,000$Lien
Marcus KrugerMonsters (Clb)C/LW/RW291990-05-27No186 Lbs6 ft0NoNoNo2Pro & Farm1,000,000$306,451$100,000$30,645$No1,000,000$Lien
Michael HutchinsonMonsters (Clb)G291990-03-01No202 Lbs6 ft3YesNoNo2Pro & Farm560,000$171,612$56,000$17,161$No560,000$Lien
Reece ScarlettMonsters (Clb)D261993-05-31Yes185 Lbs6 ft1NoNoNo2Pro & Farm650,000$199,193$65,000$19,919$No650,000$Lien
Scott KosmachukMonsters (Clb)RW251994-01-24No185 Lbs5 ft11NoNoNo1Pro & Farm560,000$171,612$56,000$17,161$NoLien
Sergei BoikovMonsters (Clb)D231996-01-24Yes200 Lbs6 ft2NoNoNo2Pro & Farm705,000$216,048$70,500$21,605$No705,000$Lien
Sheldon DriesMonsters (Clb)C/LW251994-04-23No185 Lbs5 ft9NoNoNo5Pro & Farm700,000$214,516$70,000$21,452$No700,000$700,000$700,000$700,000$Lien
Teemu PulkkinenMonsters (Clb)LW/RW271992-01-02No185 Lbs5 ft10NoNoNo2Pro & Farm650,000$199,193$65,000$19,919$No650,000$Lien
Tim SoderlundMonsters (Clb)LW/RW211998-01-23Yes163 Lbs5 ft9NoNoNo4Pro & Farm825,834$253,078$82,583$25,308$No825,834$825,834$825,834$Lien
William CarrierMonsters (Clb)LW241994-12-20No212 Lbs6 ft2NoNoNo2Pro & Farm1,300,000$398,387$130,000$39,839$No1,300,000$Lien
Zach SenyshynMonsters (Clb)RW221997-03-30Yes192 Lbs6 ft1NoNoNo1Pro & Farm895,000$274,274$89,500$27,427$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2424.75195 Lbs6 ft12.42965,486$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1William CarrierSheldon DriesJulien Gauthier40023
2Griffen MolinoMarcus KrugerZach Senyshyn30023
3Kasper BjorkqvistAlexander KhokhlachevTim Soderlund20032
4Teemu PulkkinenSheldon DriesScott Kosmachuk10022
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brian LashoffGustav Lindstrom40032
2Kurtis MacDermidJulian Melchiori30023
3Keaton MiddletonJeremy Roy20122
4Brian LashoffGustav Lindstrom10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1William CarrierSheldon DriesJulien Gauthier60014
2Griffen MolinoMarcus KrugerZach Senyshyn40014
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brian LashoffGustav Lindstrom60014
2Kurtis MacDermidJulian Melchiori40014
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1William CarrierSheldon Dries60041
2Julien GauthierZach Senyshyn40041
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brian LashoffGustav Lindstrom60050
2Kurtis MacDermidJulian Melchiori40050
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1William Carrier60050Brian LashoffGustav Lindstrom60050
2Sheldon Dries40050Kurtis MacDermidJulian Melchiori40050
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1William CarrierSheldon Dries60122
2Julien GauthierZach Senyshyn40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Brian LashoffGustav Lindstrom60122
2Kurtis MacDermidJulian Melchiori40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
William CarrierSheldon DriesJulien GauthierBrian LashoffGustav Lindstrom
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
William CarrierSheldon DriesJulien GauthierBrian LashoffGustav Lindstrom
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Kasper Bjorkqvist, Tim Soderlund, Teemu PulkkinenKasper Bjorkqvist, Tim SoderlundTeemu Pulkkinen
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Keaton Middleton, Jeremy Roy, Kurtis MacDermidKeaton MiddletonJeremy Roy, Kurtis MacDermid
Tirs de Pénalité
William Carrier, Sheldon Dries, Julien Gauthier, Zach Senyshyn, Marcus Kruger
Gardien
#1 : Jake Oettinger, #2 : Michael Hutchinson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000972110000007251010000025-320.50091827006560533676326676382968111848500.00%9188.89%11000198550.38%938200246.85%42288147.90%13028771281411735370
2Baby Hawks2020000025-31010000023-11010000002-200.000235006560533496326676382972221868600.00%9188.89%01000198550.38%938200246.85%42288147.90%13028771281411735370
3Bears321000009541010000013-22200000082640.66791625006560533856326676382911947226911327.27%11190.91%01000198550.38%938200246.85%42288147.90%13028771281411735370
4Bruins21000010862100000104311100000043141.000813210065605336963266763829741716567342.86%8275.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
5Cabaret Lady Mary Ann3300000018992200000012661100000063361.00018314900656053319063266763829871514984375.00%7185.71%01000198550.38%938200246.85%42288147.90%13028771281411735370
6Caroline32100000981220000008621010000012-140.66791524006560533104632667638291153923828225.00%80100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
7Chiefs21000010642110000002111000001043141.00068140065605337363266763829742883510110.00%4175.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
8Cougars321000001082220000009541010000013-240.667101929006560533756326676382910328198310440.00%70100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
9Crunch22000000954110000006331100000032141.000915240065605336663266763829782621546116.67%8275.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
10Heat1010000023-11010000023-10000000000000.00024600656053325632667638294011423200.00%20100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
11Jayhawks2020000048-41010000024-21010000024-200.00047110065605336563266763829941720535120.00%10190.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
12Las Vegas20100001811-31000000167-11010000024-210.250813210065605338163266763829702012556233.33%6266.67%01000198550.38%938200246.85%42288147.90%13028771281411735370
13Manchots330000001275110000004312200000084461.0001219310065605331456326676382910634126112433.33%50100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
14Marlies20200000410-61010000025-31010000025-300.000471100656053353632667638291023233526233.33%9366.67%01000198550.38%938200246.85%42288147.90%13028771281411735370
15Monarchs2010000159-41010000025-31000000134-110.250591400656053365632667638291063318586233.33%9366.67%01000198550.38%938200246.85%42288147.90%13028771281411735370
16Monsters11000000422000000000001100000042221.000481200656053332632667638291898192150.00%40100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
17Oceanics211000008801010000035-21100000053220.50081321006560533736326676382961198511218.33%40100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
18Oil Kings11000000303110000003030000000000021.000358016560533436326676382930124263133.33%20100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
19Phantoms2020000025-31010000012-11010000013-200.0002460065605335663266763829691611364125.00%3166.67%01000198550.38%938200246.85%42288147.90%13028771281411735370
20Rocket31200000611-51010000025-32110000046-220.3336111700656053374632667638291153420585120.00%10280.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
21Senators211000008531010000023-11100000062420.500814220065605337763266763829692312447114.29%40100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
22Sharks22000000633110000003211100000031241.00061016006560533776326676382956815545120.00%5180.00%11000198550.38%938200246.85%42288147.90%13028771281411735370
23Sound Tigers33000000835110000002112200000062461.00081624006560533110632667638297826148710220.00%70100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
24Spiders21100000880211000008800000000000020.50081422006560533726326676382984281843200.00%9188.89%01000198550.38%938200246.85%42288147.90%13028771281411735370
25Stars1010000025-31010000025-30000000000000.00024600656053338632667638294146335120.00%3233.33%01000198550.38%938200246.85%42288147.90%13028771281411735370
Total5530210002218015921291512000111009192615900011806812660.600180314494016560533195063266763829197957538413841663923.49%1672585.03%21000198550.38%938200246.85%42288147.90%13028771281411735370
26Wolf Pack220000001046110000005141100000053241.0001018280065605338663266763829501610387114.29%40100.00%01000198550.38%938200246.85%42288147.90%13028771281411735370
_Since Last GM Reset5530210002218015921291512000111009192615900011806812660.600180314494016560533195063266763829197957538413841663923.49%1672585.03%21000198550.38%938200246.85%42288147.90%13028771281411735370
_Vs Conference29171000011978017146700010444311511300001533716370.638971712680065605331035632667638291042310207697942122.34%871385.06%21000198550.38%938200246.85%42288147.90%13028771281411735370
_Vs Division186300000584018932000002924593100000291613120.3335810216000656053365863266763829621206110416541324.07%47393.62%01000198550.38%938200246.85%42288147.90%13028771281411735370

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5566W418031449419501979575384138401
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
5530210022180159
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
291512001110091
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2615900118068
Derniers 10 Matchs
WLOTWOTL SOWSOL
820000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1663923.49%1672585.03%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
632667638296560533
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1000198550.38%938200246.85%42288147.90%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
13028771281411735370


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2020-10-2416Marlies5Monsters2LSommaire du Match
4 - 2020-10-2522Monsters4Manchots3WSommaire du Match
6 - 2020-10-2735Crunch3Monsters6WSommaire du Match
10 - 2020-10-3159Admirals2Monsters7WSommaire du Match
11 - 2020-11-0169Monsters1Caroline2LSommaire du Match
15 - 2020-11-0594Stars5Monsters2LSommaire du Match
17 - 2020-11-07110Monsters0Baby Hawks2LSommaire du Match
18 - 2020-11-08120Sound Tigers1Monsters2WSommaire du Match
20 - 2020-11-10129Monsters2Marlies5LSommaire du Match
23 - 2020-11-13148Caroline2Monsters3WSommaire du Match
25 - 2020-11-15165Monsters1Phantoms3LSommaire du Match
29 - 2020-11-19189Oil Kings0Monsters3WSommaire du Match
31 - 2020-11-21200Monsters4Chiefs3WXXSommaire du Match
32 - 2020-11-22212Heat3Monsters2LSommaire du Match
35 - 2020-11-25227Las Vegas7Monsters6LXXSommaire du Match
37 - 2020-11-27246Monsters2Jayhawks4LSommaire du Match
39 - 2020-11-29260Monsters4Monsters2WSommaire du Match
42 - 2020-12-02273Monsters0Rocket3LSommaire du Match
45 - 2020-12-05297Chiefs1Monsters2WSommaire du Match
49 - 2020-12-09322Rocket5Monsters2LSommaire du Match
51 - 2020-12-11337Cougars2Monsters4WSommaire du Match
53 - 2020-12-13352Monsters5Oceanics3WSommaire du Match
55 - 2020-12-15369Senators3Monsters2LSommaire du Match
57 - 2020-12-17384Phantoms2Monsters1LSommaire du Match
59 - 2020-12-19400Manchots3Monsters4WSommaire du Match
60 - 2020-12-20410Monsters3Sound Tigers1WSommaire du Match
63 - 2020-12-23429Jayhawks4Monsters2LSommaire du Match
65 - 2020-12-25444Wolf Pack1Monsters5WSommaire du Match
67 - 2020-12-27458Monsters6Cabaret Lady Mary Ann3WSommaire du Match
69 - 2020-12-29469Monsters5Bears1WSommaire du Match
72 - 2021-01-01490Monsters4Manchots1WSommaire du Match
74 - 2021-01-03501Monsters6Senators2WSommaire du Match
76 - 2021-01-05521Bears3Monsters1LSommaire du Match
77 - 2021-01-06529Monsters1Cougars3LSommaire du Match
79 - 2021-01-08541Monarchs5Monsters2LSommaire du Match
81 - 2021-01-10561Spiders5Monsters3LSommaire du Match
83 - 2021-01-12573Monsters3Sound Tigers1WSommaire du Match
87 - 2021-01-16585Monsters3Bears1WSommaire du Match
89 - 2021-01-18604Baby Hawks3Monsters2LSommaire du Match
91 - 2021-01-20619Cabaret Lady Mary Ann2Monsters6WSommaire du Match
93 - 2021-01-22627Monsters4Bruins3WSommaire du Match
95 - 2021-01-24642Sharks2Monsters3WSommaire du Match
97 - 2021-01-26662Monsters3Monarchs4LXXSommaire du Match
98 - 2021-01-27674Monsters2Admirals5LSommaire du Match
100 - 2021-01-29688Monsters3Sharks1WSommaire du Match
102 - 2021-01-31700Monsters2Las Vegas4LSommaire du Match
105 - 2021-02-03719Bruins3Monsters4WXXSommaire du Match
107 - 2021-02-05733Caroline4Monsters5WSommaire du Match
109 - 2021-02-07751Spiders3Monsters5WSommaire du Match
110 - 2021-02-08758Monsters5Wolf Pack3WSommaire du Match
113 - 2021-02-11766Oceanics5Monsters3LSommaire du Match
123 - 2021-02-21792Monsters3Crunch2WSommaire du Match
124 - 2021-02-22807Monsters4Rocket3WSommaire du Match
126 - 2021-02-24818Cabaret Lady Mary Ann4Monsters6WSommaire du Match
129 - 2021-02-27841Cougars3Monsters5WSommaire du Match
130 - 2021-02-28851Monsters-Monsters-
132 - 2021-03-02863Thunder-Monsters-
135 - 2021-03-05880Monsters-Crunch-
136 - 2021-03-06893Wolf Pack-Monsters-
138 - 2021-03-08912Monsters-Spiders-
140 - 2021-03-10920Monsters-Phantoms-
142 - 2021-03-12936Phantoms-Monsters-
144 - 2021-03-14955Monsters-Chill-
146 - 2021-03-16967Senators-Monsters-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17978Monsters-Minnesota-
150 - 2021-03-20995Minnesota-Monsters-
152 - 2021-03-221013Comets-Monsters-
155 - 2021-03-251030Monsters-Heat-
158 - 2021-03-281058Monsters-Oil Kings-
159 - 2021-03-291064Monsters-Comets-
163 - 2021-04-021088Manchots-Monsters-
165 - 2021-04-041105Chill-Monsters-
167 - 2021-04-061118Monsters-Bruins-
170 - 2021-04-091141Bears-Monsters-
172 - 2021-04-111155Monsters-Marlies-
174 - 2021-04-131171Monsters-Spiders-
175 - 2021-04-141178Monsters-Wolf Pack-
178 - 2021-04-171199Monsters-Thunder-
179 - 2021-04-181212Monsters-Stars-
181 - 2021-04-201226Sound Tigers-Monsters-
184 - 2021-04-231249Thunder-Monsters-
185 - 2021-04-241255Monsters-Caroline-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance55,25227,892
Assistance PCT95.26%96.18%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
12 2867 - 95.57% 81,110$2,352,200$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,537,613$ 2,317,166$ 2,317,166$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
12,458$ 1,537,613$ 24 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
973,324$ 57 12,458$ 710,106$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT