Monarchs

GP: 82 | W: 47 | L: 28 | OTL: 7 | P: 101
GF: 339 | GA: 301 | PP%: 22.22% | PK%: 81.09%
GM : Benoit Plouffe | Morale : 50 | Team Overall : 52
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Kenny AgostinoX100.00786781677476816645626665675555050630271800,000$
2Gage Quinney (R)XX100.00787292627371766074586270625151050610244715,000$
3Steven Lorentz (R)X100.00797782617771736480596567624444050610234728,333$
4Joseph BlandisiXX100.00754977736657745456605870255858050600253700,000$
5Stefan MatteauX100.00828275648472745850535567575151050600253600,000$
6Eric FehrXX100.005243847073586952844757734772660505903441,100,000$
7Liam O'BrienX100.00757665677679845668535563534545050590252750,000$
8Mitchell StephensX100.00715091657061645880565772254747050590221825,000$
9Turner ElsonXX100.00716976656772845650505463514444050570271895,000$
10Giovanni FioreXX100.007974905571605656504058655850500505502341,300,000$
11Nick Henry (R)X100.00746985666969744950474660444444050540204783,935$
12Dennis CholowskiX100.00634194776477878025524863255555050640212925,000$
13Andreas EnglundX100.00889083747462765425454464635757050620234900,000$
14Frederic AllardX100.00746788616673795125453964385050050580212742,500$
15Niko Mikkola (R)X100.00757185687173794925434061384444050580254842,500$
16Jesper Lindgren (R)X100.00696189636156584925434058384444050530221650,000$
17Brandon GormleyX100.00483582586445343335313567444136050480273670,000$
Scratches
1Ben Johnson (R)XX100.00354343435933333543353543393230050380253660,000$
2Adam Helewka (R)X100.00344040406933333440343440373230050370241650,000$
3Matthew Mistele (R)X100.00323737376431313237323237343230050350231525,000$
4Viktor LoovX100.00443591596935272935292871443532050470262690,000$
5Dmitry Sinitsyn (R)X100.00313737376629293137313137333230050360253565,000$
TEAM AVERAGE100.0064587661695963504746476145464505054
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anton Forsberg100.0059617678596052625957304848050590
2Zach Sawchenko (R)100.0057526565605852605756304444050560
Scratches
1Evan Fitzpatrick (R)100.0042454476424141414141393230050440
2Wouter Peeters (R)100.0040434278403939393939373230050430
3Jack Lafontaine (R)100.0040434274403939393939373230050420
4Eamon McAdam (R)100.0038434069373535353535343230050390
TEAM AVERAGE100.004648527346454346454535373505047
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe43506474545457CAN381500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kenny AgostinoMonarchs (LA )LW714576121473801451975291353628.51%48157922.2511102196162347112126247.14%68100011.53380001098
2Steven LorentzMonarchs (LA )C714374117462751692424681103189.19%85157322.1610112180161426122166459.51%201300111.49080109127
3Eric FehrMonarchs (LA )C/RW713458923720101693601163019.44%43130818.431151665158000003062.26%10600021.4100000436
4Stefan MatteauMonarchs (LA )LW823636721849514717335410530610.17%51115714.120112111013303453.02%23200021.2411010452
5Joseph BlandisiMonarchs (LA )C/LW55284371-23751261713691032637.59%38104719.0591221791430003805040.26%7700001.3623001452
6Liam O'BrienMonarchs (LA )C822137581728085194283912127.42%4298712.04000470111214055.68%133800011.1700000115
7Mitchell StephensMonarchs (LA )C82213455224069186261631418.05%99112413.7200000000002159.92%49900010.9800000214
8Gage QuinneyMonarchs (LA )C/LW37222547-3140431432125316210.38%3571019.19781550950003612159.71%97300001.3235000321
9Giovanni FioreMonarchs (LA )LW/RW7191019880394510632748.49%174326.0900000000000040.74%2700000.8800000002
10Nick HenryMonarchs (LA )RW71711188120304466236810.61%84296.0500000000001147.83%2300000.8400000010
11Turner ElsonMonarchs (LA )LW/RW2071017-1100322166134810.61%1133816.933361548000000138.46%2600001.0000000021
12Frederic AllardMonarchs (LA )D711910-1344074272810223.57%497039.910001200009100.00%000000.2800000000
13Andreas EnglundMonarchs (LA )D15369216035152271413.64%2027818.55044321011029100.00%000000.6500000001
14Dennis CholowskiMonarchs (LA )D9077520912168200.00%1322324.89011822011037000.00%000000.6300000002
15Derrick PouliotLA KingsD83141140267143921.43%1919023.81101518000027200.00%000000.4200000020
16Niko MikkolaMonarchs (LA )D9112-14011575314.29%1019421.59101419000032000.00%000000.2100000001
17Brandon GormleyMonarchs (LA )D1000-300403110.00%61616.530000000000000.00%000000.0000000000
Team Total or Average8262814387191683291510541651316487823248.88%5941229614.894365108412873891733761361456.65%599500181.17925021374342
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anton ForsbergMonarchs (LA )71442150.9193.25426860231286101140.69226710542
2Zach SawchenkoMonarchs (LA )11001.0000.0041000290000.0000071000
Team Total or Average72452150.9203.22431060231289001140.692267171542


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam HelewkaMonarchs (LA )LW241995-07-21Yes200 Lbs6 ft2NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Andreas EnglundMonarchs (LA )D231996-01-21No189 Lbs6 ft3NoNoNo4Pro & Farm900,000$90,000$0$No900,000$900,000$900,000$Link
Anton ForsbergMonarchs (LA )G261992-11-26No192 Lbs6 ft3NoNoNo2Pro & Farm875,000$87,500$0$No875,000$Link
Ben JohnsonMonarchs (LA )C/LW251994-06-07Yes188 Lbs5 ft11NoNoNo3Pro & Farm660,000$66,000$0$No660,000$660,000$Link
Brandon GormleyMonarchs (LA )D271992-02-18No196 Lbs6 ft2NoNoNo3Pro & Farm670,000$67,000$0$No670,000$670,000$Link
Dennis CholowskiMonarchs (LA )D211998-02-15No170 Lbs6 ft0NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Dmitry SinitsynMonarchs (LA )D251994-06-17Yes200 Lbs6 ft2NoNoNo3Pro & Farm565,000$56,500$0$No565,000$565,000$Link
Eamon McAdamMonarchs (LA )G251994-09-24Yes188 Lbs6 ft2NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Eric FehrMonarchs (LA )C/RW341985-09-07No209 Lbs6 ft4NoNoNo4Pro & Farm1,100,000$110,000$0$No1,100,000$1,100,000$1,100,000$Link
Evan FitzpatrickMonarchs (LA )G211998-01-28Yes202 Lbs6 ft3NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Frederic AllardMonarchs (LA )D211997-12-27No179 Lbs6 ft1NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Gage QuinneyMonarchs (LA )C/LW241995-07-29Yes201 Lbs6 ft0NoNoNo4Pro & Farm715,000$71,500$0$No715,000$715,000$715,000$
Giovanni FioreMonarchs (LA )LW/RW231996-08-13No194 Lbs6 ft1NoNoNo4Pro & Farm1,300,000$130,000$0$No1,200,000$1,200,000$1,100,000$Link
Jack LafontaineMonarchs (LA )G211998-01-06Yes197 Lbs6 ft3NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Jesper LindgrenMonarchs (LA )D221997-05-19Yes161 Lbs6 ft0NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Joseph BlandisiMonarchs (LA )C/LW251994-07-18No182 Lbs5 ft11NoNoNo3Pro & Farm700,000$70,000$0$No700,000$700,000$Link
Kenny AgostinoMonarchs (LA )LW271992-04-30No200 Lbs6 ft1NoNoNo1Pro & Farm800,000$80,000$0$NoLink
Liam O'BrienMonarchs (LA )C251994-07-29No215 Lbs5 ft11NoNoNo2Pro & Farm750,000$75,000$0$No750,000$Link
Matthew MisteleMonarchs (LA )LW231995-10-17Yes190 Lbs6 ft2NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Mitchell StephensMonarchs (LA )C221997-02-05No191 Lbs6 ft0NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Nick HenryMonarchs (LA )RW201999-07-04Yes192 Lbs5 ft11NoNoNo4Pro & Farm783,935$78,394$0$No783,935$783,935$783,935$Link
Niko MikkolaMonarchs (LA )D251994-04-26Yes184 Lbs6 ft4NoNoNo4Pro & Farm842,500$84,250$0$No842,500$842,500$842,500$
Stefan MatteauMonarchs (LA )LW251994-02-23No220 Lbs6 ft2NoNoNo3Pro & Farm600,000$60,000$0$No600,000$600,000$Link
Steven LorentzMonarchs (LA )C231996-04-12Yes201 Lbs6 ft4NoNoNo4Pro & Farm728,333$72,833$0$No728,333$728,333$728,333$
Turner ElsonMonarchs (LA )LW/RW271992-09-12No184 Lbs6 ft0NoNoNo1Pro & Farm895,000$89,500$0$NoLink
Viktor LoovMonarchs (LA )D261992-11-16No212 Lbs6 ft1NoNoNo2Pro & Farm690,000$69,000$0$No690,000$Link
Wouter PeetersMonarchs (LA )G211998-07-31Yes205 Lbs6 ft4NoNoNo2Pro & Farm700,000$70,000$0$No700,000$Link
Zach SawchenkoMonarchs (LA )G211997-12-30Yes179 Lbs6 ft0NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2824.00194 Lbs6 ft12.57760,527$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kenny AgostinoSteven LorentzEric Fehr40122
230122
3Stefan MatteauLiam O'Brien20122
4Giovanni FioreMitchell StephensNick Henry10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
3Frederic AllardMitchell Stephens20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kenny AgostinoSteven LorentzEric Fehr60122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Kenny AgostinoSteven Lorentz60122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Kenny Agostino6012260122
2Steven Lorentz4012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Kenny AgostinoSteven Lorentz60122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Kenny AgostinoSteven LorentzEric Fehr
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kenny AgostinoSteven LorentzEric Fehr
Extra Forwards
Normal PowerPlayPenalty Kill
Stefan Matteau, Liam O'Brien, Stefan Matteau, Liam O'Brien
Extra Defensemen
Normal PowerPlayPenalty Kill
Frederic Allard, , Frederic Allard,
Penalty Shots
Kenny Agostino, Steven Lorentz, , , Stefan Matteau
Goalie
#1 : Anton Forsberg, #2 : Zach Sawchenko


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals503000021420-62020000068-230100002812-420.2001422360015499771424013461296130710925067351271616.25%150100.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
2Baby Hawks312000001011-1110000006422020000047-320.3331017271015499771412613461296130710911425166911327.27%70100.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
3Bears21100000811-3110000005411010000037-420.500814220015499771411113461296130710996341646700.00%8450.00%11742331952.49%1599325749.09%763141953.77%1867131520876001029492
4Bruins2020000069-31010000035-21010000034-100.00068140015499771488134612961307109902119494125.00%50100.00%11742331952.49%1599325749.09%763141953.77%1867131520876001029492
5Cabaret Lady Mary Ann220000001349110000008171100000053241.0001324370015499771420313461296130710981181261400.00%6183.33%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
6Caroline211000006511010000004-41100000061520.500691500154997714841346129613071098424631600.00%3166.67%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
7Chiefs31200000911-21010000034-12110000067-120.33391726001549977141381346129613071091344124669222.22%11190.91%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
8Chill311000101313020100010910-11100000043140.667132134101549977141181346129613071091563616695120.00%8187.50%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
9Comets42100001151502200000074320100001811-350.6251522371015499771417013461296130710915849328613215.38%15286.67%11742331952.49%1599325749.09%763141953.77%1867131520876001029492
10Cougars210001001082110000006331000010045-130.7501016260015499771499134612961307109802316488562.50%6266.67%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
11Crunch21100000710-31010000015-41100000065120.5007121900154997714911346129613071091404212444125.00%7185.71%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
12Heat431000002316721100000109122000000137660.7502341640015499771421913461296130710920755201147342.86%10190.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
13Jayhawks41101010181622010100078-121000010118360.75018335110154997714219134612961307109165463010120735.00%12466.67%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
14Las Vegas412000011315-2210000019722020000048-430.375132033101549977141991346129613071091614812721616.25%5180.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
15Manchots21100000963110000005141010000045-120.500914230015499771487134612961307109763012409111.11%6183.33%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
16Marlies200001108801000010045-11000001043130.75081321001549977147813461296130710976151049600.00%5260.00%21742331952.49%1599325749.09%763141953.77%1867131520876001029492
17Minnesota33000000181172200000011561100000076161.00018294700154997714224134612961307109169421459600.00%7271.43%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
18Monsters21000010954100000104311100000052341.0009122100154997714106134612961307109651912389333.33%6266.67%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
19Monsters3110001011101201000107701100000043140.6671117280015499771415013461296130710912435186814214.29%9277.78%21742331952.49%1599325749.09%763141953.77%1867131520876001029492
20Oceanics30300000519-141010000026-420200000313-1000.00058130015499771497134612961307109189492664800.00%13561.54%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
21Oil Kings412000011217-52110000087120100001410-630.3751221330015499771416913461296130710920561379211327.27%13284.62%11742331952.49%1599325749.09%763141953.77%1867131520876001029492
22Phantoms220000001073110000006421100000043141.0001019290015499771494134612961307109732417446233.33%60100.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
23Rocket21001000752100010005411100000021141.00071320001549977147713461296130710982341838400.00%8275.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
24Senators2020000047-31010000013-21010000034-100.00047110015499771474134612961307109852818552150.00%9366.67%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
25Sharks4300100018117210010009542200000096381.0001829470015499771416813461296130710915249249114321.43%11190.91%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
26Sound Tigers220000001257110000008351100000042241.0001223350015499771491134612961307109702054515360.00%10190.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
27Spiders201010007701010000023-11000100054120.500710170015499771411013461296130710994314453266.67%20100.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
28Stars33000000208122200000011651100000092761.0002034540015499771418413461296130710989349746233.33%2150.00%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
29Thunder22000000954110000005321100000042241.000915240015499771498134612961307109561514515360.00%7185.71%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
Total823828042553393013841191403131178143354119140112416115831010.6163395669055015499771440251346129613071093590103456718712435422.22%2384581.09%81742331952.49%1599325749.09%763141953.77%1867131520876001029492
30Wolf Pack2200000015691100000010281100000054141.00015264100154997714113134612961307109691914295240.00%6183.33%01742331952.49%1599325749.09%763141953.77%1867131520876001029492
_Since Last GM Reset823828042553393013841191403131178143354119140112416115831010.6163395669055015499771440251346129613071093590103456718712435422.22%2384581.09%81742331952.49%1599325749.09%763141953.77%1867131520876001029492
_Vs Conference3715140213214713981877011207965141987010126874-6430.58114724138810154997714167313461296130710915974572918481042322.12%1172281.20%41742331952.49%1599325749.09%763141953.77%1867131520876001029492
_Vs Division1646011206456881301110332948330001031274150.4696410817200154997714808134612961307109690196119395371129.73%531277.36%31742331952.49%1599325749.09%763141953.77%1867131520876001029492

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82101W1339566905402535901034567187150
All Games
GPWLOTWOTL SOWSOLGFGA
8238284255339301
Home Games
GPWLOTWOTL SOWSOLGFGA
4119143131178143
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4119141124161158
Last 10 Games
WLOTWOTL SOWSOL
630001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2435422.22%2384581.09%8
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
134612961307109154997714
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1742331952.49%1599325749.09%763141953.77%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1867131520876001029492


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2020-10-2530Monarchs1Oil Kings6LBoxScore
7 - 2020-10-2842Monarchs7Heat5WBoxScore
8 - 2020-10-2946Monarchs4Comets5LXXBoxScore
11 - 2020-11-0163Chill7Monarchs5LBoxScore
12 - 2020-11-0276Las Vegas5Monarchs4LXXBoxScore
14 - 2020-11-0491Caroline4Monarchs0LBoxScore
16 - 2020-11-06106Crunch5Monarchs1LBoxScore
18 - 2020-11-08122Heat7Monarchs5LBoxScore
21 - 2020-11-11140Monarchs1Oceanics8LBoxScore
23 - 2020-11-13149Monarchs3Chiefs5LBoxScore
25 - 2020-11-15167Monarchs7Minnesota6WBoxScore
26 - 2020-11-16172Monarchs2Baby Hawks4LBoxScore
29 - 2020-11-19193Comets2Monarchs3WBoxScore
32 - 2020-11-22217Baby Hawks4Monarchs6WBoxScore
35 - 2020-11-25228Monarchs4Marlies3WXXBoxScore
37 - 2020-11-27242Monarchs3Senators4LBoxScore
39 - 2020-11-29255Monarchs2Rocket1WBoxScore
42 - 2020-12-02279Minnesota3Monarchs5WBoxScore
44 - 2020-12-04293Cougars3Monarchs6WBoxScore
46 - 2020-12-06312Las Vegas2Monarchs5WBoxScore
48 - 2020-12-08317Monarchs4Jayhawks3WXXBoxScore
51 - 2020-12-11345Oil Kings4Monarchs7WBoxScore
53 - 2020-12-13350Jayhawks4Monarchs5WXBoxScore
55 - 2020-12-15373Sharks3Monarchs6WBoxScore
57 - 2020-12-17388Sound Tigers3Monarchs8WBoxScore
59 - 2020-12-19393Monarchs4Sharks3WBoxScore
60 - 2020-12-20414Oceanics6Monarchs2LBoxScore
62 - 2020-12-22423Monarchs1Admirals3LBoxScore
64 - 2020-12-24437Bears4Monarchs5WBoxScore
66 - 2020-12-26450Monarchs3Oil Kings4LXXBoxScore
67 - 2020-12-27462Monarchs6Heat2WBoxScore
70 - 2020-12-30483Wolf Pack2Monarchs10WBoxScore
72 - 2021-01-01497Monarchs2Admirals3LXXBoxScore
74 - 2021-01-03511Monarchs4Manchots5LBoxScore
75 - 2021-01-04517Monarchs4Cougars5LXBoxScore
77 - 2021-01-06524Monarchs3Bruins4LBoxScore
79 - 2021-01-08541Monarchs5Monsters2WBoxScore
81 - 2021-01-10552Monarchs6Crunch5WBoxScore
83 - 2021-01-12581Chiefs4Monarchs3LBoxScore
87 - 2021-01-16592Monarchs5Sharks3WBoxScore
88 - 2021-01-17599Monarchs4Comets6LBoxScore
91 - 2021-01-20622Phantoms4Monarchs6WBoxScore
95 - 2021-01-24652Chill3Monarchs4WXXBoxScore
97 - 2021-01-26662Monsters3Monarchs4WXXBoxScore
99 - 2021-01-28677Stars3Monarchs7WBoxScore
100 - 2021-01-29686Monarchs2Las Vegas4LBoxScore
102 - 2021-01-31697Monarchs6Caroline1WBoxScore
105 - 2021-02-03716Monarchs4Thunder2WBoxScore
107 - 2021-02-05729Monarchs5Cabaret Lady Mary Ann3WBoxScore
109 - 2021-02-07750Monarchs4Phantoms3WBoxScore
120 - 2021-02-18779Thunder3Monarchs5WBoxScore
121 - 2021-02-19784Monarchs7Jayhawks5WBoxScore
123 - 2021-02-21804Admirals4Monarchs3LBoxScore
126 - 2021-02-24817Monarchs3Bears7LBoxScore
128 - 2021-02-26831Monarchs4Sound Tigers2WBoxScore
130 - 2021-02-28849Monarchs5Spiders4WXBoxScore
131 - 2021-03-01857Monarchs5Wolf Pack4WBoxScore
134 - 2021-03-04878Heat2Monarchs5WBoxScore
137 - 2021-03-07902Monarchs4Monsters3WBoxScore
140 - 2021-03-10926Monarchs2Oceanics5LBoxScore
142 - 2021-03-12940Cabaret Lady Mary Ann1Monarchs8WBoxScore
144 - 2021-03-14958Monsters3Monarchs4WXXBoxScore
145 - 2021-03-15966Oil Kings3Monarchs1LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
148 - 2021-03-18983Manchots1Monarchs5WBoxScore
151 - 2021-03-211000Spiders3Monarchs2LBoxScore
152 - 2021-03-221016Monarchs2Las Vegas4LBoxScore
156 - 2021-03-261041Marlies5Monarchs4LXBoxScore
158 - 2021-03-281052Minnesota2Monarchs6WBoxScore
160 - 2021-03-301069Monsters4Monarchs3LBoxScore
162 - 2021-04-011082Senators3Monarchs1LBoxScore
165 - 2021-04-041099Admirals4Monarchs3LBoxScore
168 - 2021-04-071131Rocket4Monarchs5WXBoxScore
170 - 2021-04-091144Bruins5Monarchs3LBoxScore
172 - 2021-04-111161Comets2Monarchs4WBoxScore
173 - 2021-04-121169Jayhawks4Monarchs2LBoxScore
175 - 2021-04-141184Monarchs9Stars2WBoxScore
177 - 2021-04-161197Monarchs4Chill3WBoxScore
178 - 2021-04-171200Monarchs3Chiefs2WBoxScore
180 - 2021-04-191217Monarchs2Baby Hawks3LBoxScore
182 - 2021-04-211238Sharks2Monarchs3WXBoxScore
185 - 2021-04-241256Monarchs5Admirals6LXXBoxScore
186 - 2021-04-251270Stars3Monarchs4WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price5020
Attendance50,45127,398
Attendance PCT61.53%66.82%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 1899 - 63.29% 74,890$3,070,510$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,206,152$ 2,129,477$ 2,129,477$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
11,449$ 2,206,152$ 28 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 11,449$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT