Minnesota

GP: 82 | W: 13 | L: 67 | OTL: 2 | P: 28
GF: 256 | GA: 475 | PP%: 21.13% | PK%: 76.87%
GM : Fred Villiard | Morale : 50 | Team Overall : 52
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Chase De LeoX100.00766790626575775771565764555454050590232600,000$
2Kristian VesalainenXX100.00827794627771745950565867554444050590203925,000$
3J.T. BrownXX100.00706078666068795760525461516871050580296700,000$
4Philipp Kurashev (R)X100.00777092667064665974575764544444050580194842,501$
5Anthony LouisXX100.00665591655373775670525661555555050570244560,000$
6Evgeny Svechnikov (R)XX100.00757967687952515850545863554444050570221925,000$
7Pavel Shen (R)X100.00766896656855575063474862464444050540204809,169$
8Santeri Virtanen (R)X100.00534993657459744855365147545454050510204650,000$
9Travis DermottX100.00795284827872776025514868255859050650221825,000$
10Brandon ManningX100.007674686778615959374941673765660506102961,500,000$
11Oliver KylingtonX100.00694590796763715925484763255555050610221700,000$
12Evan Bouchard (R)X100.00757378667365675825554663444444050590193925,000$
13Yegor Rykov (R)X100.00817692647656585125474164394444050570221925,001$
14Bobby Nardella (R)X100.00696186636159605825604260404444050560232825,000$
15Filip Westerlund (R)X100.00474192666566924325433645385454050530204825,000$
16Victor Berglund (R)X100.00504484666666924325374147435454050530204818,333$
Scratches
1Julius Vahatalo (R)X100.00313737376729293137313137333230050350242560,000$
2Mathias From (R)XX100.00333737374633333337333337353230050350212525,000$
3Bryce Van BrabantX100.00288535357125352935292935433532050340275650,000$
4Kasper Kotkansalo (R)X100.00555180627253743625362948305858050510204700,000$
5Filip Berglund (R)X100.00364040406935353640363640383230050390222650,000$
6Miles Gendron (R)X100.00354343435633333543353543393230050390231560,000$
TEAM AVERAGE100.0061587560685662494245445542484705052
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joey Daccord (R)100.0060607577626455646160304444050600
2Tyler Bunz100.0039454176373535353550483532050420
Scratches
TEAM AVERAGE100.005053587750504550485539403805051
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Evgeny SvechnikovMinnesota (Min)LW/RW82643599-51771536024656515042811.33%153156719.121562167127000085244.03%15900041.26121111062
Team Total or Average82643599-51771536024656515042811.33%153156719.121562167127000085244.03%15900041.26121111062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anthony LouisMinnesota (Min)C/LW241995-02-10No151 Lbs5 ft7NoNoNo4Pro & Farm560,000$56,000$0$No560,000$560,000$560,000$Link
Bobby NardellaMinnesota (Min)D231996-04-22Yes174 Lbs5 ft9NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Brandon ManningMinnesota (Min)D291990-06-03No205 Lbs6 ft1NoNoNo6Pro & Farm1,500,000$150,000$0$No1,500,000$1,500,000$1,500,000$1,500,000$1,500,000$Link
Bryce Van BrabantMinnesota (Min)LW271991-11-12No205 Lbs6 ft2NoNoNo5Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$650,000$Link
Chase De LeoMinnesota (Min)C231995-10-25No185 Lbs5 ft9NoNoNo2Pro & Farm600,000$60,000$0$No600,000$Link
Evan BouchardMinnesota (Min)D191999-10-20Yes194 Lbs6 ft3NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Evgeny SvechnikovMinnesota (Min)LW/RW221996-10-31Yes212 Lbs6 ft3NoNoNo1Pro & Farm925,000$92,500$0$NoLink
Filip BerglundMinnesota (Min)D221997-05-10Yes209 Lbs6 ft3NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Filip WesterlundMinnesota (Min)D201999-04-17Yes181 Lbs5 ft11NoNoNo4Pro & Farm825,000$82,500$0$No825,000$825,000$825,000$Link
J.T. BrownMinnesota (Min)C/RW291990-07-02No169 Lbs5 ft10NoNoNo6Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$700,000$700,000$Link
Joey DaccordMinnesota (Min)G231996-08-19Yes196 Lbs6 ft2NoNoNo5Pro & Farm1,500,000$150,000$0$No1,500,000$1,500,000$1,500,000$1,500,000$Link
Julius VahataloMinnesota (Min)LW241995-05-23Yes191 Lbs6 ft5NoNoNo2Pro & Farm560,000$56,000$0$No560,000$Link
Kasper KotkansaloMinnesota (Min)D201998-11-16Yes198 Lbs6 ft2NoNoNo4Pro & Farm700,000$70,000$0$No700,000$700,000$700,000$Link
Kristian VesalainenMinnesota (Min)LW/RW201999-06-01No207 Lbs6 ft3NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$Link
Mathias FromMinnesota (Min)LW/RW211997-12-16Yes161 Lbs6 ft0NoNoNo2Pro & Farm525,000$52,500$0$No525,000$Link
Miles GendronMinnesota (Min)D231996-06-28Yes181 Lbs6 ft1NoNoNo1Pro & Farm560,000$56,000$0$NoLink
Oliver KylingtonMinnesota (Min)D221997-05-19No183 Lbs6 ft0NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Pavel ShenMinnesota (Min)C201999-08-14Yes183 Lbs6 ft1NoNoNo4Pro & Farm809,169$80,917$0$No809,169$809,169$809,169$Link
Philipp KurashevMinnesota (Min)C191999-10-12Yes192 Lbs6 ft0NoNoNo4Pro & Farm842,501$84,250$0$No842,501$842,501$842,501$Link
Santeri VirtanenMinnesota (Min)C201999-05-11Yes203 Lbs6 ft2NoNoNo4Pro & Farm650,000$65,000$0$No650,000$650,000$650,000$Link
Travis DermottMinnesota (Min)D221996-12-21No215 Lbs6 ft0NoNoNo1Pro & Farm825,000$82,500$0$NoLink
Tyler BunzMinnesota (Min)G271992-02-11No205 Lbs6 ft1NoNoNo5Pro & Farm1,000,000$100,000$0$No1,000,000$1,000,000$1,000,000$1,000,000$Link
Victor BerglundMinnesota (Min)D201999-08-02Yes181 Lbs6 ft0NoNoNo4Pro & Farm818,333$81,833$0$No818,333$818,333$818,333$Link
Yegor RykovMinnesota (Min)D221997-04-14Yes205 Lbs6 ft2NoNoNo1Pro & Farm925,001$92,500$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2422.54191 Lbs6 ft13.17812,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Evgeny Svechnikov40122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Evgeny Svechnikov60122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Evgeny Svechnikov40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Evgeny Svechnikov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Evgeny Svechnikov
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Evgeny Svechnikov
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , Evgeny Svechnikov, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals30300000418-141010000013-220200000315-1200.00047110094857389710771078112032203671454600.00%8187.50%0828276929.90%1169378930.85%461149730.79%12868462683618974401
2Baby Hawks403000011020-1020200000411-72010000169-310.1251020300094857381461077107811203228080129214428.57%6266.67%0828276929.90%1169378930.85%461149730.79%12868462683618974401
3Bears20200000514-91010000037-41010000027-500.000581300948573898107710781120321424811506116.67%3166.67%0828276929.90%1169378930.85%461149730.79%12868462683618974401
4Bruins20200000514-91010000038-51010000026-400.00059140094857385810771078112032115354434125.00%2150.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
5Cabaret Lady Mary Ann2110000012111110000007431010000057-220.50012243600948573814110771078112032142372682150.00%10100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
6Caroline201000101012-2100000106511010000047-320.50010142400948573882107710781120321303317467114.29%6266.67%0828276929.90%1169378930.85%461149730.79%12868462683618974401
7Chiefs40400000728-2120200000415-1120200000313-1000.00071320009485738118107710781120322748316857228.57%80100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
8Chill50500000930-2120200000114-1330300000816-800.000917260094857382031077107811203235399181391317.69%8275.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
9Comets31200000814-62110000078-11010000016-520.33381624009485738111107710781120321595512508225.00%6266.67%0828276929.90%1169378930.85%461149730.79%12868462683618974401
10Cougars20200000614-81010000026-41010000048-400.0006111700948573859107710781120321253110302150.00%4175.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
11Crunch20200000912-31010000046-21010000056-100.000917261094857389610771078112032125421333200.00%4175.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
12Heat320000102216621000010151141100000075261.00022406200948573815410771078112032158468679444.44%20100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
13Jayhawks30201000918-91010000035-220101000613-720.333917260094857381081077107811203222461465500.00%20100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
14Las Vegas30300000616-1020200000510-51010000016-500.000611170094857389510771078112032199571849200.00%9277.78%0828276929.90%1169378930.85%461149730.79%12868462683618974401
15Manchots20200000813-51010000057-21010000036-300.0008162400948573894107710781120321504818464125.00%9277.78%0828276929.90%1169378930.85%461149730.79%12868462683618974401
16Marlies20200000111-101010000017-61010000004-400.000123009485738591077107811203210532835500.00%4250.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
17Monarchs303000001118-71010000067-120200000511-600.000112233009485738169107710781120322246912787228.57%60100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
18Monsters20200000611-51010000025-31010000046-200.00061218009485738641077107811203210538950700.00%2150.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
19Monsters505000001737-2030300000723-16202000001014-400.00017294600948573821510771078112032334982610717635.29%12558.33%0828276929.90%1169378930.85%461149730.79%12868462683618974401
20Oceanics40400000921-1220200000713-62020000028-600.000918270094857381131077107811203228379238215320.00%9188.89%0828276929.90%1169378930.85%461149730.79%12868462683618974401
21Oil Kings303000001219-720200000913-41010000036-300.000122234009485738118107710781120322005227607571.43%50100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
22Phantoms20200000214-121010000026-41010000008-800.000246009485738571077107811203213237959300.00%2150.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
23Rocket2110000079-2110000006421010000015-420.500712190094857388510771078112032117341637500.00%7185.71%0828276929.90%1169378930.85%461149730.79%12868462683618974401
24Senators20100100911-21010000045-11000010056-110.2509172600948573890107710781120321623343310440.00%20100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
25Sharks30300000713-61010000024-22020000059-400.000713200094857381351077107811203212843126212216.67%5340.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
26Sound Tigers20200000510-51010000046-21010000014-300.000591400948573898107710781120329725455800.00%20100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
27Spiders21100000910-11010000036-31100000064220.500918270094857387610771078112032120342405240.00%110.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
28Stars413000001224-1221100000810-220200000414-1020.250122436009485738168107710781120322638514781119.09%7271.43%0828276929.90%1169378930.85%461149730.79%12868462683618974401
29Thunder21000010853100000103211100000053241.0008142200948573890107710781120329426650400.00%30100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
Total8296701131256475-2194163200030140236-964133501101116239-123280.1712564777331094857383292107710781120325231153635317742134521.13%1473476.87%0828276929.90%1169378930.85%461149730.79%12868462683618974401
30Wolf Pack211000001112-1110000006511010000057-220.500112132009485738951077107811203288294316116.67%20100.00%0828276929.90%1169378930.85%461149730.79%12868462683618974401
_Since Last GM Reset8296701131256475-2194163200030140236-964133501101116239-123280.1712564777331094857383292107710781120325231153635317742134521.13%1473476.87%0828276929.90%1169378930.85%461149730.79%12868462683618974401
_Vs Conference4263201021147250-103235160002087131-44191160100160119-59190.2261472704171094857381696107710781120322730794195867982727.55%791877.22%0828276929.90%1169378930.85%461149730.79%12868462683618974401
_Vs Division240120000179132-531207000004861-131205000013171-4010.02179148227009485738987107710781120321495450107485561526.79%43881.40%0828276929.90%1169378930.85%461149730.79%12868462683618974401

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8228L25256477733329252311536353177410
All Games
GPWLOTWOTL SOWSOLGFGA
829671131256475
Home Games
GPWLOTWOTL SOWSOLGFGA
416320030140236
Visitor Games
GPWLOTWOTL SOWSOLGFGA
413351101116239
Last 10 Games
WLOTWOTL SOWSOL
0100000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2134521.13%1473476.87%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
107710781120329485738
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
828276929.90%1169378930.85%461149730.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12868462683618974401


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-10-239Minnesota4Chill8LBoxScore
4 - 2020-10-2527Minnesota6Monsters7LBoxScore
9 - 2020-10-3053Minnesota1Oceanics5LBoxScore
11 - 2020-11-0171Manchots7Minnesota5LBoxScore
13 - 2020-11-0379Minnesota5Senators6LXBoxScore
14 - 2020-11-0485Minnesota0Marlies4LBoxScore
16 - 2020-11-0699Minnesota1Rocket5LBoxScore
19 - 2020-11-09125Rocket4Minnesota6WBoxScore
21 - 2020-11-11139Oil Kings7Minnesota5LBoxScore
23 - 2020-11-13150Minnesota1Chill4LBoxScore
25 - 2020-11-15167Monarchs7Minnesota6LBoxScore
28 - 2020-11-18186Minnesota2Stars7LBoxScore
29 - 2020-11-19190Minnesota1Chiefs7LBoxScore
32 - 2020-11-22213Chiefs8Minnesota2LBoxScore
35 - 2020-11-25233Minnesota1Admirals7LBoxScore
37 - 2020-11-27247Minnesota2Sharks4LBoxScore
39 - 2020-11-29259Minnesota5Jayhawks4WXBoxScore
42 - 2020-12-02279Minnesota3Monarchs5LBoxScore
44 - 2020-12-04289Jayhawks5Minnesota3LBoxScore
46 - 2020-12-06299Caroline5Minnesota6WXXBoxScore
49 - 2020-12-09318Minnesota5Crunch6LBoxScore
51 - 2020-12-11340Monsters9Minnesota4LBoxScore
53 - 2020-12-13353Minnesota2Bruins6LBoxScore
55 - 2020-12-15366Minnesota5Wolf Pack7LBoxScore
56 - 2020-12-16375Minnesota6Spiders4WBoxScore
59 - 2020-12-19395Senators5Minnesota4LBoxScore
61 - 2020-12-21416Stars3Minnesota4WBoxScore
63 - 2020-12-23426Minnesota5Cabaret Lady Mary Ann7LBoxScore
65 - 2020-12-25440Minnesota5Thunder3WBoxScore
67 - 2020-12-27459Minnesota4Caroline7LBoxScore
70 - 2020-12-30476Admirals3Minnesota1LBoxScore
72 - 2021-01-01493Oil Kings6Minnesota4LBoxScore
74 - 2021-01-03507Phantoms6Minnesota2LBoxScore
75 - 2021-01-04516Minnesota2Baby Hawks3LXXBoxScore
77 - 2021-01-06533Minnesota1Las Vegas6LBoxScore
79 - 2021-01-08546Minnesota1Jayhawks9LBoxScore
81 - 2021-01-10554Oceanics5Minnesota3LBoxScore
83 - 2021-01-12570Heat5Minnesota8WBoxScore
87 - 2021-01-16586Minnesota4Monsters7LBoxScore
89 - 2021-01-18605Sound Tigers6Minnesota4LBoxScore
91 - 2021-01-20616Marlies7Minnesota1LBoxScore
95 - 2021-01-24643Oceanics8Minnesota4LBoxScore
96 - 2021-01-25656Heat6Minnesota7WXXBoxScore
100 - 2021-01-29685Minnesota7Heat5WBoxScore
103 - 2021-02-01704Comets6Minnesota3LBoxScore
105 - 2021-02-03718Minnesota3Manchots6LBoxScore
107 - 2021-02-05736Thunder2Minnesota3WXXBoxScore
109 - 2021-02-07753Stars7Minnesota4LBoxScore
111 - 2021-02-09760Cabaret Lady Mary Ann4Minnesota7WBoxScore
113 - 2021-02-11767Cougars6Minnesota2LBoxScore
123 - 2021-02-21802Bruins8Minnesota3LBoxScore
126 - 2021-02-24821Baby Hawks6Minnesota2LBoxScore
128 - 2021-02-26835Comets2Minnesota4WBoxScore
129 - 2021-02-27842Minnesota2Stars7LBoxScore
131 - 2021-03-01859Monsters8Minnesota0LBoxScore
133 - 2021-03-03871Las Vegas5Minnesota3LBoxScore
135 - 2021-03-05887Wolf Pack5Minnesota6WBoxScore
137 - 2021-03-07899Sharks4Minnesota2LBoxScore
141 - 2021-03-11932Minnesota1Comets6LBoxScore
143 - 2021-03-13946Minnesota3Oil Kings6LBoxScore
145 - 2021-03-15964Chiefs7Minnesota2LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17978Monsters5Minnesota2LBoxScore
149 - 2021-03-19989Minnesota4Cougars8LBoxScore
150 - 2021-03-20995Minnesota4Monsters6LBoxScore
152 - 2021-03-221014Bears7Minnesota3LBoxScore
154 - 2021-03-241023Chill8Minnesota1LBoxScore
156 - 2021-03-261042Minnesota3Sharks5LBoxScore
158 - 2021-03-281052Minnesota2Monarchs6LBoxScore
159 - 2021-03-291063Minnesota2Admirals8LBoxScore
163 - 2021-04-021089Las Vegas5Minnesota2LBoxScore
165 - 2021-04-041098Minnesota0Phantoms8LBoxScore
166 - 2021-04-051116Chill6Minnesota0LBoxScore
168 - 2021-04-071127Baby Hawks5Minnesota2LBoxScore
170 - 2021-04-091143Minnesota4Baby Hawks6LBoxScore
171 - 2021-04-101148Minnesota1Oceanics3LBoxScore
174 - 2021-04-131172Monsters6Minnesota3LBoxScore
177 - 2021-04-161198Spiders6Minnesota3LBoxScore
179 - 2021-04-181213Crunch6Minnesota4LBoxScore
180 - 2021-04-191220Minnesota2Chiefs6LBoxScore
182 - 2021-04-211229Minnesota1Sound Tigers4LBoxScore
184 - 2021-04-231248Minnesota2Bears7LBoxScore
186 - 2021-04-251267Minnesota3Chill4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance77,60039,678
Attendance PCT94.63%96.78%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2860 - 95.35% 80,760$3,311,170$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,288,866$ 1,950,000$ 1,950,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,484$ 2,288,866$ 24 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 10,484$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT