Spiders

GP: 82 | W: 44 | L: 35 | OTL: 3 | P: 91
GF: 292 | GA: 260 | PP%: 20.77% | PK%: 78.68%
GM : Simon Bouchard | Morale : 50 | Team Overall : 56
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Tomas NosekXX100.007845906979608560665961682560620506202741,200,000$
2Anders BjorkXX100.006852948068636661356165624557570506102331,300,000$
3Josh CurrieXX100.00736577656973826375566366644545050610264725,000$
4Gaetan Haas (R)X100.00754396806454726370595965255050050600273925,000$
5Rhett GardnerXX100.00828381688369735771545666534444050590232650,000$
6Garrett WilsonXX100.00726763607367775745515663555758050580282575,000$
7Martin KautX100.00696773736767705950595460514444050580203894,167$
8Logan O'ConnorX100.00784395646451806225506463254545050570235925,000$
9Egor Korshkov (R)X100.00757185667158585950496563624444050570232825,000$
10Riley Tufte (R)X100.00858878618862655150514666444444050560212895,000$
11Mike ReillyX100.007242857873746869256146632560600506402621,590,000$
12Madison BoweyX100.007643807773726960255747682557570506302421,750,000$
13Markus NutivaaraX100.00734396827169766132524861256263050630251792,000$
14Calle RosenX100.00664887706565705925574560255656050590252925,000$
15Mark FriedmanX100.00726681646775814925454061394444050580234850,000$
16Mitch ReinkeX100.007266876366737853254943604144440505802341,200,000$
17Nikolai Knyzhov (R)X100.00787681707657614625364062384444050560214796,667$
Scratches
1Jake Leschyshyn (R)X100.00746789696775834759434660444444050550204778,333$
2Mikhail GrigorenkoXX100.00473586687356735180495365504540050550251900,000$
3Alexey Toropchenko (R)X100.00807688627671784750434663444444050540204775,002$
4Nathan NoelXX100.00686767536351514556394357424444050480221650,000$
5Jens Looke (R)XX100.00374343435635353743373743403230050390221700,000$
6Jeff TaylorX100.00746985516852515025453862374747050530251525,000$
7Oskari Laaksonen (R)X100.00474090676364864625444046425454050530204853,333$
8Alfons Malmstrom (R)X100.00364040406235353640363640383230050390212650,000$
TEAM AVERAGE100.0069588166706269544450496140484805056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Troy Grosenick100.0061698570646561676359304444050620
2Eetu Makiniemi (R)100.0046666267414741454144445454050490
Scratches
1Dylan Wells100.0045445570444450524647304444050490
TEAM AVERAGE100.005160676950525155505035474705053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tomas NosekSpiders (Har)C/LW8231508116160150220327872159.48%23167220.391016266521800041383256.45%238800000.9712000634
2Anders BjorkSpiders (Har)LW/RW7738367418120351573108123512.26%8150619.577916502061014865339.02%24600000.9802000255
3Josh CurrieSpiders (Har)C/RW82264167175010155113292912298.90%22167420.41514195522200061374058.20%12200000.8027110452
4Gaetan HaasSpiders (Har)C82233760711561210311962307.40%19146317.85412166720101141783159.26%172300000.8212001163
5Markus NutivaaraSpiders (Har)D821439532846014686152541179.21%96166220.285914661990001150210.00%000000.6400000523
6Rhett GardnerSpiders (Har)C/LW822625511563151411282196615111.87%20121714.85235261020112813158.58%75800000.8424012435
7Martin KautSpiders (Har)RW8223275015320831071924511411.98%11105512.87011030000672047.54%12200000.9501000441
8Madison BoweySpiders (Har)D82153550-1454020195175661068.57%149195723.8710616952250003197300.00%000000.5100000414
9Mike ReillySpiders (Har)D7954449-546099117160391063.13%120181923.0421416832200111194200.00%000000.5400000031
10Calle RosenSpiders (Har)D823414426240112659843613.06%102169020.62178451980003193100.00%000000.5200000110
11Garrett WilsonSpiders (Har)LW/RW821826447571516464204601368.82%11134816.455510442041015791046.67%7500000.6526201103
12Mikhail GrigorenkoSpiders (Har)C/LW821923429201681203461609.36%19112513.7323523144000003168.35%7900000.7500000210
13Logan O'ConnorSpiders (Har)RW82132538152006581158581338.23%13105812.91000000001802131.82%17600000.7200000132
14Mark FriedmanSpiders (Har)D8262430105201675159212410.17%98143317.49011460000114000.00%000000.4200000210
15Mitch ReinkeSpiders (Har)D825253018415127546034378.33%74127815.59101110000022110.00%000000.4700100132
16Egor KorshkovSpiders (Har)RW82151025-1125510668191611357.85%157268.86000415000004041.77%7900000.6916010222
17Jake LeschyshynSpiders (Har)C646511-520053758220627.32%75438.5000002000011051.51%66400000.4000000000
18Nikolai KnyzhovSpiders (Har)D3011-395510000.00%55819.640000600008000.00%000000.3400100000
Team Total or Average13712865148001635806018861773319396822518.96%8122329416.99541001546282187235341733401155.32%643200000.69930534404337
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickSpiders (Har)70422410.9182.8740614319423580030.840256814527
2Eetu MakiniemiSpiders (Har)1821120.8834.1488500615230100.42971468001
Team Total or Average88443530.9113.0949464325528810130.750328282528


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexey ToropchenkoSpiders (Har)RW201999-06-25Yes201 Lbs6 ft3NoNoNo4Pro & Farm775,002$77,500$0$No775,002$775,002$775,002$Link
Alfons MalmstromSpiders (Har)D211998-06-12Yes190 Lbs6 ft2NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Anders BjorkSpiders (Har)LW/RW231996-08-05No186 Lbs6 ft0NoNoNo3Pro & Farm1,300,000$130,000$0$No1,300,000$1,300,000$Link
Calle RosenSpiders (Har)D251994-02-02No176 Lbs6 ft0NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Link
Dylan WellsSpiders (Har)G211998-01-03No185 Lbs6 ft1NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Link
Eetu MakiniemiSpiders (Har)G201999-04-19Yes176 Lbs6 ft3NoNoNo4Pro & Farm525,000$52,500$0$No525,000$525,000$525,000$Link
Egor KorshkovSpiders (Har)RW231996-07-10Yes181 Lbs6 ft4NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Link
Gaetan HaasSpiders (Har)C271992-01-31Yes176 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$
Garrett WilsonSpiders (Har)LW/RW281991-03-16No199 Lbs6 ft2NoNoNo2Pro & Farm575,000$57,500$0$No575,000$Link
Jake LeschyshynSpiders (Har)C201999-03-09Yes185 Lbs5 ft11NoNoNo4Pro & Farm778,333$77,833$0$No778,333$778,333$778,333$Link
Jeff TaylorSpiders (Har)D251994-04-13No185 Lbs6 ft0NoNoNo1Pro & Farm525,000$52,500$0$NoLink
Jens LookeSpiders (Har)LW/RW221997-04-11Yes180 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLink
Josh CurrieSpiders (Har)C/RW261992-10-29No190 Lbs5 ft11NoNoNo4Pro & Farm725,000$72,500$0$No725,000$725,000$725,000$Link
Logan O'ConnorSpiders (Har)RW231996-08-14No174 Lbs6 ft0NoNoNo5Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$925,000$Link
Madison BoweySpiders (Har)D241995-04-22No198 Lbs6 ft2NoNoNo2Pro & Farm1,750,000$175,000$0$No1,750,000$Link
Mark FriedmanSpiders (Har)D231995-12-25No185 Lbs5 ft11NoNoNo4Pro & Farm850,000$85,000$0$No850,000$850,000$850,000$Link
Markus NutivaaraSpiders (Har)D251994-06-06No191 Lbs6 ft1NoNoNo1Pro & Farm792,000$79,200$0$NoLink
Martin KautSpiders (Har)RW201999-10-02No176 Lbs6 ft2NoNoNo3Pro & Farm894,167$89,417$0$No894,167$894,167$Link
Mike ReillySpiders (Har)D261993-07-12No195 Lbs6 ft2NoNoNo2Pro & Farm1,590,000$159,000$0$No1,590,000$Link
Mikhail GrigorenkoSpiders (Har)C/LW251994-05-16No209 Lbs6 ft3NoNoNo1Pro & Farm900,000$90,000$0$NoLink
Mitch ReinkeSpiders (Har)D231996-02-04No181 Lbs5 ft11NoNoNo4Pro & Farm1,200,000$120,000$0$No1,200,000$1,200,000$1,200,000$Link
Nathan NoelSpiders (Har)C/LW221997-06-21No174 Lbs5 ft11NoNoNo1Pro & Farm650,000$65,000$0$NoLink
Nikolai KnyzhovSpiders (Har)D211998-05-20Yes203 Lbs6 ft3NoNoNo4Pro & Farm796,667$79,667$0$No796,667$796,667$796,667$
Oskari LaaksonenSpiders (Har)D201999-07-02Yes165 Lbs6 ft2NoNoNo4Pro & Farm853,333$85,333$0$No853,333$853,333$853,333$Link
Rhett GardnerSpiders (Har)C/LW231996-02-28No229 Lbs6 ft3NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Link
Riley TufteSpiders (Har)LW211998-04-09Yes230 Lbs6 ft6NoNoNo2Pro & Farm895,000$89,500$0$No895,000$Link
Tomas NosekSpiders (Har)C/LW271992-08-31No210 Lbs6 ft3NoNoNo4Pro & Farm1,200,000$120,000$0$No1,200,000$1,200,000$1,200,000$Link
Troy GrosenickSpiders (Har)G301989-08-27No185 Lbs6 ft1YesNoNo1Pro & Farm570,000$57,000$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2823.36190 Lbs6 ft12.64874,536$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders BjorkTomas NosekJosh Currie35113
2Gaetan HaasGarrett Wilson28113
3Logan O'ConnorRhett GardnerMartin Kaut25122
4Egor Korshkov12122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillyMadison Bowey35122
2Markus NutivaaraCalle Rosen30122
3Mitch ReinkeMark Friedman25122
4Mark FriedmanMadison Bowey10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders BjorkTomas NosekJosh Currie60113
2Gaetan HaasGarrett Wilson40113
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillyMadison Bowey60113
2Markus NutivaaraCalle Rosen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Rhett GardnerGarrett Wilson50122
2Logan O'ConnorGaetan Haas50122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillyMadison Bowey50122
2Mark FriedmanCalle Rosen50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tomas Nosek50122Mitch ReinkeMark Friedman50122
2Josh Currie50122Markus NutivaaraCalle Rosen50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tomas NosekJosh Currie60122
2Anders BjorkGaetan Haas40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillyMadison Bowey60122
2Markus NutivaaraCalle Rosen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anders BjorkTomas NosekJosh CurrieMike ReillyMadison Bowey
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anders BjorkTomas NosekJosh CurrieMarkus NutivaaraMadison Bowey
Extra Forwards
Normal PowerPlayPenalty Kill
Egor Korshkov, , Martin KautEgor Korshkov, Martin Kaut
Extra Defensemen
Normal PowerPlayPenalty Kill
Mitch Reinke, Mark Friedman, Markus NutivaaraMitch ReinkeMark Friedman, Markus Nutivaara
Penalty Shots
Josh Currie, Egor Korshkov, Garrett Wilson, Martin Kaut, Rhett Gardner
Goalie
#1 : Eetu Makiniemi, #2 : Troy Grosenick


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2020000027-51010000003-31010000024-200.000246001149875117110141075107059521518395120.00%8450.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
2Baby Hawks20200000610-41010000034-11010000036-300.00061117001149875116910141075107059661723566116.67%3166.67%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
3Bears421000011316-3210000019812110000048-450.625132639001149875111471014107510705915241301111616.25%100100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
4Bruins32000010945220000006241000001032161.00091524011149875111031014107510705910135336714214.29%14192.86%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
5Cabaret Lady Mary Ann32100000151142110000010821100000053240.66715274200114987511172101410751070591042921759333.33%8450.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
6Caroline42100001161062200000011382010000157-250.625163046001149875111561014107510705913940291038112.50%10190.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
7Chiefs21100000963110000006241010000034-120.500915240011498751182101410751070596129234411436.36%8187.50%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
8Chill22000000963110000005321100000043141.00091625001149875116710141075107059661510478112.50%50100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
9Comets22000000817110000003121100000050541.00081523011149875116110141075107059592212332150.00%60100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
10Cougars312000009902020000047-31100000052320.3339182700114987511901014107510705911226226213430.77%6183.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
11Crunch31100010111011010000045-12100001075240.6671118290011498751112210141075107059149552082600.00%90100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
12Heat21100000642110000005141010000013-220.5006111710114987511801014107510705968186444125.00%20100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
13Jayhawks211000001183110000007251010000046-220.50011182900114987511891014107510705983212258700.00%11372.73%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
14Las Vegas211000008711010000045-11100000042220.50081523001149875119010141075107059641712427114.29%6183.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
15Manchots440000002313102200000097222000000146881.000234265001149875111631014107510705915447349615640.00%15380.00%11772311656.87%1483281452.70%770136556.41%2119148317655761072561
16Marlies30300000612-61010000023-12020000049-500.0006111700114987511102101410751070591182726667228.57%13376.92%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
17Minnesota2110000010911010000046-21100000063320.50010182810114987511120101410751070597615106011100.00%5260.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
18Monarchs210001007701000010045-11100000032130.7507121900114987511941014107510705911037646200.00%3233.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
19Monsters4310000014113220000006332110000088060.750142539001149875111681014107510705911736126820420.00%60100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
20Monsters2020000057-21010000045-11010000012-100.0005914001149875116710141075107059642414585240.00%6183.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
21Oceanics2010001056-1100000103211010000024-220.500571210114987511831014107510705975178399111.11%40100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
22Oil Kings2110000079-2110000004221010000037-420.5007132000114987511701014107510705974154516116.67%2150.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
23Phantoms422000001316-32110000066021100000710-340.500132639001149875111171014107510705914625277512216.67%11554.55%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
24Rocket3210000013112110000004222110000099040.66713223500114987511781014107510705911029285810440.00%12191.67%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
25Senators30300000711-41010000034-12020000047-300.0007111800114987511111101410751070591103130791218.33%15473.33%11772311656.87%1483281452.70%770136556.41%2119148317655761072561
26Sharks2020000057-21010000023-11010000034-100.0005914001149875118810141075107059582614479111.11%7357.14%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
27Sound Tigers42100010151232010001079-22200000083560.750152742001149875111721014107510705912536269118422.22%13376.92%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
28Stars21100000440110000003211010000012-120.500461000114987511601014107510705965192645300.00%13376.92%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
29Thunder32100000936220000009271010000001-140.66791827001149875111301014107510705964172373200.00%8187.50%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
Total8239350015229226032412214001311581203841172100021134140-6910.55529252581733114987511318510141075107059288481060719252605420.77%2585578.68%21772311656.87%1483281452.70%770136556.41%2119148317655761072561
30Wolf Pack42100010171342100001011562110000068-260.7501730470111498751116310141075107059142293811013430.77%19668.42%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
_Since Last GM Reset8239350015229226032412214001311581203841172100021134140-6910.55529252581733114987511318510141075107059288481060719252605420.77%2585578.68%21772311656.87%1483281452.70%770136556.41%2119148317655761072561
_Vs Conference46221800141154144102312600131826517231012000107279-7540.58715427943312114987511177910141075107059159043433510541623018.52%1513576.82%21772311656.87%1483281452.70%770136556.41%2119148317655761072561
_Vs Division289500020111912014420002059411814530000052502220.393111206317011149875111086101410751070599752541966541022221.57%841878.57%11772311656.87%1483281452.70%770136556.41%2119148317655761072561

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8291W129252581731852884810607192533
All Games
GPWLOTWOTL SOWSOLGFGA
8239350152292260
Home Games
GPWLOTWOTL SOWSOLGFGA
4122140131158120
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4117210021134140
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2605420.77%2585578.68%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
10141075107059114987511
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1772311656.87%1483281452.70%770136556.41%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2119148317655761072561


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2020-10-2414Oceanics2Spiders3WXXBoxScore
4 - 2020-10-2518Spiders5Crunch4WXXBoxScore
8 - 2020-10-2945Spiders5Phantoms3WBoxScore
9 - 2020-10-3049Oil Kings2Spiders4WBoxScore
11 - 2020-11-0165Spiders3Bruins2WXXBoxScore
13 - 2020-11-0380Cabaret Lady Mary Ann6Spiders5LBoxScore
16 - 2020-11-06100Wolf Pack5Spiders6WXXBoxScore
18 - 2020-11-08113Comets1Spiders3WBoxScore
24 - 2020-11-14157Jayhawks2Spiders7WBoxScore
29 - 2020-11-19188Thunder1Spiders3WBoxScore
31 - 2020-11-21196Phantoms3Spiders4WBoxScore
32 - 2020-11-22211Spiders2Caroline3LBoxScore
35 - 2020-11-25229Spiders2Oceanics4LBoxScore
37 - 2020-11-27245Spiders1Heat3LBoxScore
38 - 2020-11-28251Spiders3Oil Kings7LBoxScore
40 - 2020-11-30265Spiders5Comets0WBoxScore
43 - 2020-12-03281Senators4Spiders3LBoxScore
45 - 2020-12-05295Manchots3Spiders4WBoxScore
46 - 2020-12-06305Spiders4Rocket5LBoxScore
49 - 2020-12-09320Bruins2Spiders4WBoxScore
52 - 2020-12-12346Spiders7Manchots4WBoxScore
53 - 2020-12-13356Cougars4Spiders2LBoxScore
56 - 2020-12-16375Minnesota6Spiders4LBoxScore
58 - 2020-12-18390Spiders5Rocket4WBoxScore
60 - 2020-12-20403Wolf Pack0Spiders5WBoxScore
62 - 2020-12-22419Spiders2Crunch1WBoxScore
63 - 2020-12-23427Las Vegas5Spiders4LBoxScore
66 - 2020-12-26447Baby Hawks4Spiders3LBoxScore
67 - 2020-12-27460Spiders4Chill3WBoxScore
70 - 2020-12-30478Spiders1Stars2LBoxScore
73 - 2021-01-02500Spiders1Monsters2LBoxScore
74 - 2021-01-03512Spiders4Jayhawks6LBoxScore
78 - 2021-01-07535Admirals3Spiders0LBoxScore
80 - 2021-01-09549Bears3Spiders5WBoxScore
81 - 2021-01-10561Spiders5Monsters3WBoxScore
83 - 2021-01-12578Spiders3Baby Hawks6LBoxScore
87 - 2021-01-16583Marlies3Spiders2LBoxScore
89 - 2021-01-18603Spiders3Senators4LBoxScore
91 - 2021-01-20613Bruins0Spiders2WBoxScore
93 - 2021-01-22630Spiders3Sound Tigers1WBoxScore
95 - 2021-01-24649Monsters5Spiders4LBoxScore
98 - 2021-01-27665Sound Tigers3Spiders4WXXBoxScore
100 - 2021-01-29682Spiders4Wolf Pack3WBoxScore
102 - 2021-01-31696Spiders1Bears6LBoxScore
103 - 2021-02-01708Thunder1Spiders6WBoxScore
105 - 2021-02-03715Spiders3Marlies5LBoxScore
107 - 2021-02-05732Spiders3Bears2WBoxScore
109 - 2021-02-07751Spiders3Monsters5LBoxScore
118 - 2021-02-16769Spiders1Senators3LBoxScore
121 - 2021-02-19783Chill3Spiders5WBoxScore
123 - 2021-02-21798Stars2Spiders3WBoxScore
126 - 2021-02-24815Rocket2Spiders4WBoxScore
128 - 2021-02-26832Spiders2Phantoms7LBoxScore
130 - 2021-02-28849Monarchs5Spiders4LXBoxScore
133 - 2021-03-03868Cabaret Lady Mary Ann2Spiders5WBoxScore
135 - 2021-03-05884Cougars3Spiders2LBoxScore
136 - 2021-03-06894Spiders3Caroline4LXXBoxScore
138 - 2021-03-08912Monsters1Spiders3WBoxScore
140 - 2021-03-10924Spiders3Chiefs4LBoxScore
142 - 2021-03-12934Sharks3Spiders2LBoxScore
144 - 2021-03-14948Bears5Spiders4LXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2021-03-17975Spiders5Cougars2WBoxScore
149 - 2021-03-19993Spiders3Sharks4LBoxScore
151 - 2021-03-211000Spiders3Monarchs2WBoxScore
152 - 2021-03-221015Spiders2Admirals4LBoxScore
154 - 2021-03-241027Spiders4Las Vegas2WBoxScore
157 - 2021-03-271043Chiefs2Spiders6WBoxScore
158 - 2021-03-281056Spiders2Wolf Pack5LBoxScore
161 - 2021-03-311072Manchots4Spiders5WBoxScore
163 - 2021-04-021086Caroline1Spiders7WBoxScore
165 - 2021-04-041102Spiders5Cabaret Lady Mary Ann3WBoxScore
166 - 2021-04-051114Spiders0Thunder1LBoxScore
168 - 2021-04-071123Spiders1Marlies4LBoxScore
170 - 2021-04-091139Heat1Spiders5WBoxScore
172 - 2021-04-111157Sound Tigers6Spiders3LBoxScore
174 - 2021-04-131171Monsters2Spiders3WBoxScore
177 - 2021-04-161198Spiders6Minnesota3WBoxScore
179 - 2021-04-181206Phantoms3Spiders2LBoxScore
180 - 2021-04-191219Caroline2Spiders4WBoxScore
182 - 2021-04-211230Spiders7Manchots2WBoxScore
184 - 2021-04-231244Crunch5Spiders4LBoxScore
186 - 2021-04-251266Spiders5Sound Tigers2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3518
Attendance78,58630,020
Attendance PCT95.84%73.22%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2649 - 88.30% 80,265$3,290,870$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,460,862$ 2,448,700$ 2,448,700$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,165$ 2,460,862$ 28 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 13,165$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT