Spiders

GP: 82 | W: 44 | L: 35 | OTL: 3 | P: 91
GF: 292 | GA: 260 | PP%: 20.77% | PK%: 78.68%
DG: Simon Bouchard | Morale : 50 | Moyenne d'Équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire Moyen
1Tomas NosekXX100.007845906979608560665961682560620506202741,200,000$
2Anders BjorkXX100.006852948068636661356165624557570506102331,300,000$
3Josh CurrieXX100.00736577656973826375566366644545050610264725,000$
4Gaetan Haas (R)X100.00754396806454726370595965255050050600273925,000$
5Rhett GardnerXX100.00828381688369735771545666534444050590232650,000$
6Garrett WilsonXX100.00726763607367775745515663555758050580282575,000$
7Martin KautX100.00696773736767705950595460514444050580203894,167$
8Logan O'ConnorX100.00784395646451806225506463254545050570235925,000$
9Egor Korshkov (R)X100.00757185667158585950496563624444050570232825,000$
10Riley Tufte (R)X100.00858878618862655150514666444444050560212895,000$
11Mike ReillyX100.007242857873746869256146632560600506402621,590,000$
12Madison BoweyX100.007643807773726960255747682557570506302421,750,000$
13Markus NutivaaraX100.00734396827169766132524861256263050630251792,000$
14Calle RosenX100.00664887706565705925574560255656050590252925,000$
15Mark FriedmanX100.00726681646775814925454061394444050580234850,000$
16Mitch ReinkeX100.007266876366737853254943604144440505802341,200,000$
17Nikolai Knyzhov (R)X100.00787681707657614625364062384444050560214796,667$
Rayé
1Jake Leschyshyn (R)X100.00746789696775834759434660444444050550204778,333$
2Mikhail GrigorenkoXX100.00473586687356735180495365504540050550251900,000$
3Alexey Toropchenko (R)X100.00807688627671784750434663444444050540204775,002$
4Nathan NoelXX100.00686767536351514556394357424444050480221650,000$
5Jens Looke (R)XX100.00374343435635353743373743403230050390221700,000$
6Jeff TaylorX100.00746985516852515025453862374747050530251525,000$
7Oskari Laaksonen (R)X100.00474090676364864625444046425454050530204853,333$
8Alfons Malmstrom (R)X100.00364040406235353640363640383230050390212650,000$
MOYENNE D'ÉQUIPE100.0069588166706269544450496140484805056
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Troy Grosenick100.0061698570646561676359304444050620
2Eetu Makiniemi (R)100.0046666267414741454144445454050490
Rayé
1Dylan Wells100.0045445570444450524647304444050490
MOYENNE D'ÉQUIPE100.005160676950525155505035474705053
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tomas NosekSpiders (Har)C/LW8231508116160150220327872159.48%23167220.391016266521800041383256.45%238800000.9712000634
2Anders BjorkSpiders (Har)LW/RW7738367418120351573108123512.26%8150619.577916502061014865339.02%24600000.9802000255
3Josh CurrieSpiders (Har)C/RW82264167175010155113292912298.90%22167420.41514195522200061374058.20%12200000.8027110452
4Gaetan HaasSpiders (Har)C82233760711561210311962307.40%19146317.85412166720101141783159.26%172300000.8212001163
5Markus NutivaaraSpiders (Har)D821439532846014686152541179.21%96166220.285914661990001150210.00%000000.6400000523
6Rhett GardnerSpiders (Har)C/LW822625511563151411282196615111.87%20121714.85235261020112813158.58%75800000.8424012435
7Martin KautSpiders (Har)RW8223275015320831071924511411.98%11105512.87011030000672047.54%12200000.9501000441
8Madison BoweySpiders (Har)D82153550-1454020195175661068.57%149195723.8710616952250003197300.00%000000.5100000414
9Mike ReillySpiders (Har)D7954449-546099117160391063.13%120181923.0421416832200111194200.00%000000.5400000031
10Calle RosenSpiders (Har)D823414426240112659843613.06%102169020.62178451980003193100.00%000000.5200000110
11Garrett WilsonSpiders (Har)LW/RW821826447571516464204601368.82%11134816.455510442041015791046.67%7500000.6526201103
12Mikhail GrigorenkoSpiders (Har)C/LW821923429201681203461609.36%19112513.7323523144000003168.35%7900000.7500000210
13Logan O'ConnorSpiders (Har)RW82132538152006581158581338.23%13105812.91000000001802131.82%17600000.7200000132
14Mark FriedmanSpiders (Har)D8262430105201675159212410.17%98143317.49011460000114000.00%000000.4200000210
15Mitch ReinkeSpiders (Har)D825253018415127546034378.33%74127815.59101110000022110.00%000000.4700100132
16Egor KorshkovSpiders (Har)RW82151025-1125510668191611357.85%157268.86000415000004041.77%7900000.6916010222
17Jake LeschyshynSpiders (Har)C646511-520053758220627.32%75438.5000002000011051.51%66400000.4000000000
18Nikolai KnyzhovSpiders (Har)D3011-395510000.00%55819.640000600008000.00%000000.3400100000
Stats d'équipe Total ou en Moyenne13712865148001635806018861773319396822518.96%8122329416.99541001546282187235341733401155.32%643200000.69930534404337
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickSpiders (Har)70422410.9182.8740614319423580030.840256814527
2Eetu MakiniemiSpiders (Har)1821120.8834.1488500615230100.42971468001
Stats d'équipe Total ou en Moyenne88443530.9113.0949464325528810130.750328282528


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alexey ToropchenkoSpiders (Har)RW201999-06-25Yes201 Lbs6 ft3NoNoNo4Pro & Farm775,002$77,500$0$No775,002$775,002$775,002$Lien
Alfons MalmstromSpiders (Har)D211998-06-12Yes190 Lbs6 ft2NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Lien
Anders BjorkSpiders (Har)LW/RW231996-08-05No186 Lbs6 ft0NoNoNo3Pro & Farm1,300,000$130,000$0$No1,300,000$1,300,000$Lien
Calle RosenSpiders (Har)D251994-02-02No176 Lbs6 ft0NoNoNo2Pro & Farm925,000$92,500$0$No925,000$Lien
Dylan WellsSpiders (Har)G211998-01-03No185 Lbs6 ft1NoNoNo2Pro & Farm742,500$74,250$0$No742,500$Lien
Eetu MakiniemiSpiders (Har)G201999-04-19Yes176 Lbs6 ft3NoNoNo4Pro & Farm525,000$52,500$0$No525,000$525,000$525,000$Lien
Egor KorshkovSpiders (Har)RW231996-07-10Yes181 Lbs6 ft4NoNoNo2Pro & Farm825,000$82,500$0$No825,000$Lien
Gaetan HaasSpiders (Har)C271992-01-31Yes176 Lbs5 ft11NoNoNo3Pro & Farm925,000$92,500$0$No925,000$925,000$
Garrett WilsonSpiders (Har)LW/RW281991-03-16No199 Lbs6 ft2NoNoNo2Pro & Farm575,000$57,500$0$No575,000$Lien
Jake LeschyshynSpiders (Har)C201999-03-09Yes185 Lbs5 ft11NoNoNo4Pro & Farm778,333$77,833$0$No778,333$778,333$778,333$Lien
Jeff TaylorSpiders (Har)D251994-04-13No185 Lbs6 ft0NoNoNo1Pro & Farm525,000$52,500$0$NoLien
Jens LookeSpiders (Har)LW/RW221997-04-11Yes180 Lbs6 ft1NoNoNo1Pro & Farm700,000$70,000$0$NoLien
Josh CurrieSpiders (Har)C/RW261992-10-29No190 Lbs5 ft11NoNoNo4Pro & Farm725,000$72,500$0$No725,000$725,000$725,000$Lien
Logan O'ConnorSpiders (Har)RW231996-08-14No174 Lbs6 ft0NoNoNo5Pro & Farm925,000$92,500$0$No925,000$925,000$925,000$925,000$Lien
Madison BoweySpiders (Har)D241995-04-22No198 Lbs6 ft2NoNoNo2Pro & Farm1,750,000$175,000$0$No1,750,000$Lien
Mark FriedmanSpiders (Har)D231995-12-25No185 Lbs5 ft11NoNoNo4Pro & Farm850,000$85,000$0$No850,000$850,000$850,000$Lien
Markus NutivaaraSpiders (Har)D251994-06-06No191 Lbs6 ft1NoNoNo1Pro & Farm792,000$79,200$0$NoLien
Martin KautSpiders (Har)RW201999-10-02No176 Lbs6 ft2NoNoNo3Pro & Farm894,167$89,417$0$No894,167$894,167$Lien
Mike ReillySpiders (Har)D261993-07-12No195 Lbs6 ft2NoNoNo2Pro & Farm1,590,000$159,000$0$No1,590,000$Lien
Mikhail GrigorenkoSpiders (Har)C/LW251994-05-16No209 Lbs6 ft3NoNoNo1Pro & Farm900,000$90,000$0$NoLien
Mitch ReinkeSpiders (Har)D231996-02-04No181 Lbs5 ft11NoNoNo4Pro & Farm1,200,000$120,000$0$No1,200,000$1,200,000$1,200,000$Lien
Nathan NoelSpiders (Har)C/LW221997-06-21No174 Lbs5 ft11NoNoNo1Pro & Farm650,000$65,000$0$NoLien
Nikolai KnyzhovSpiders (Har)D211998-05-20Yes203 Lbs6 ft3NoNoNo4Pro & Farm796,667$79,667$0$No796,667$796,667$796,667$
Oskari LaaksonenSpiders (Har)D201999-07-02Yes165 Lbs6 ft2NoNoNo4Pro & Farm853,333$85,333$0$No853,333$853,333$853,333$Lien
Rhett GardnerSpiders (Har)C/LW231996-02-28No229 Lbs6 ft3NoNoNo2Pro & Farm650,000$65,000$0$No650,000$Lien
Riley TufteSpiders (Har)LW211998-04-09Yes230 Lbs6 ft6NoNoNo2Pro & Farm895,000$89,500$0$No895,000$Lien
Tomas NosekSpiders (Har)C/LW271992-08-31No210 Lbs6 ft3NoNoNo4Pro & Farm1,200,000$120,000$0$No1,200,000$1,200,000$1,200,000$Lien
Troy GrosenickSpiders (Har)G301989-08-27No185 Lbs6 ft1YesNoNo1Pro & Farm570,000$57,000$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2823.36190 Lbs6 ft12.64874,536$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Anders BjorkTomas NosekJosh Currie35113
2Gaetan HaasGarrett Wilson28113
3Logan O'ConnorRhett GardnerMartin Kaut25122
4Egor Korshkov12122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mike ReillyMadison Bowey35122
2Markus NutivaaraCalle Rosen30122
3Mitch ReinkeMark Friedman25122
4Mark FriedmanMadison Bowey10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Anders BjorkTomas NosekJosh Currie60113
2Gaetan HaasGarrett Wilson40113
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mike ReillyMadison Bowey60113
2Markus NutivaaraCalle Rosen40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Rhett GardnerGarrett Wilson50122
2Logan O'ConnorGaetan Haas50122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mike ReillyMadison Bowey50122
2Mark FriedmanCalle Rosen50122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Tomas Nosek50122Mitch ReinkeMark Friedman50122
2Josh Currie50122Markus NutivaaraCalle Rosen50122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Tomas NosekJosh Currie60122
2Anders BjorkGaetan Haas40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mike ReillyMadison Bowey60122
2Markus NutivaaraCalle Rosen40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Anders BjorkTomas NosekJosh CurrieMike ReillyMadison Bowey
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Anders BjorkTomas NosekJosh CurrieMarkus NutivaaraMadison Bowey
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Egor Korshkov, , Martin KautEgor Korshkov, Martin Kaut
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mitch Reinke, Mark Friedman, Markus NutivaaraMitch ReinkeMark Friedman, Markus Nutivaara
Tirs de Pénalité
Josh Currie, Egor Korshkov, Garrett Wilson, Martin Kaut, Rhett Gardner
Gardien
#1 : Eetu Makiniemi, #2 : Troy Grosenick


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2020000027-51010000003-31010000024-200.000246001149875117110141075107059521518395120.00%8450.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
2Baby Hawks20200000610-41010000034-11010000036-300.00061117001149875116910141075107059661723566116.67%3166.67%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
3Bears421000011316-3210000019812110000048-450.625132639001149875111471014107510705915241301111616.25%100100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
4Bruins32000010945220000006241000001032161.00091524011149875111031014107510705910135336714214.29%14192.86%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
5Cabaret Lady Mary Ann32100000151142110000010821100000053240.66715274200114987511172101410751070591042921759333.33%8450.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
6Caroline42100001161062200000011382010000157-250.625163046001149875111561014107510705913940291038112.50%10190.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
7Chiefs21100000963110000006241010000034-120.500915240011498751182101410751070596129234411436.36%8187.50%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
8Chill22000000963110000005321100000043141.00091625001149875116710141075107059661510478112.50%50100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
9Comets22000000817110000003121100000050541.00081523011149875116110141075107059592212332150.00%60100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
10Cougars312000009902020000047-31100000052320.3339182700114987511901014107510705911226226213430.77%6183.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
11Crunch31100010111011010000045-12100001075240.6671118290011498751112210141075107059149552082600.00%90100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
12Heat21100000642110000005141010000013-220.5006111710114987511801014107510705968186444125.00%20100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
13Jayhawks211000001183110000007251010000046-220.50011182900114987511891014107510705983212258700.00%11372.73%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
14Las Vegas211000008711010000045-11100000042220.50081523001149875119010141075107059641712427114.29%6183.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
15Manchots440000002313102200000097222000000146881.000234265001149875111631014107510705915447349615640.00%15380.00%11772311656.87%1483281452.70%770136556.41%2119148317655761072561
16Marlies30300000612-61010000023-12020000049-500.0006111700114987511102101410751070591182726667228.57%13376.92%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
17Minnesota2110000010911010000046-21100000063320.50010182810114987511120101410751070597615106011100.00%5260.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
18Monarchs210001007701000010045-11100000032130.7507121900114987511941014107510705911037646200.00%3233.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
19Monsters4310000014113220000006332110000088060.750142539001149875111681014107510705911736126820420.00%60100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
20Monsters2020000057-21010000045-11010000012-100.0005914001149875116710141075107059642414585240.00%6183.33%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
21Oceanics2010001056-1100000103211010000024-220.500571210114987511831014107510705975178399111.11%40100.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
22Oil Kings2110000079-2110000004221010000037-420.5007132000114987511701014107510705974154516116.67%2150.00%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
23Phantoms422000001316-32110000066021100000710-340.500132639001149875111171014107510705914625277512216.67%11554.55%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
24Rocket3210000013112110000004222110000099040.66713223500114987511781014107510705911029285810440.00%12191.67%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
25Senators30300000711-41010000034-12020000047-300.0007111800114987511111101410751070591103130791218.33%15473.33%11772311656.87%1483281452.70%770136556.41%2119148317655761072561
26Sharks2020000057-21010000023-11010000034-100.0005914001149875118810141075107059582614479111.11%7357.14%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
27Sound Tigers42100010151232010001079-22200000083560.750152742001149875111721014107510705912536269118422.22%13376.92%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
28Stars21100000440110000003211010000012-120.500461000114987511601014107510705965192645300.00%13376.92%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
29Thunder32100000936220000009271010000001-140.66791827001149875111301014107510705964172373200.00%8187.50%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
Total8239350015229226032412214001311581203841172100021134140-6910.55529252581733114987511318510141075107059288481060719252605420.77%2585578.68%21772311656.87%1483281452.70%770136556.41%2119148317655761072561
30Wolf Pack42100010171342100001011562110000068-260.7501730470111498751116310141075107059142293811013430.77%19668.42%01772311656.87%1483281452.70%770136556.41%2119148317655761072561
_Since Last GM Reset8239350015229226032412214001311581203841172100021134140-6910.55529252581733114987511318510141075107059288481060719252605420.77%2585578.68%21772311656.87%1483281452.70%770136556.41%2119148317655761072561
_Vs Conference46221800141154144102312600131826517231012000107279-7540.58715427943312114987511177910141075107059159043433510541623018.52%1513576.82%21772311656.87%1483281452.70%770136556.41%2119148317655761072561
_Vs Division289500020111912014420002059411814530000052502220.393111206317011149875111086101410751070599752541966541022221.57%841878.57%11772311656.87%1483281452.70%770136556.41%2119148317655761072561

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8291W129252581731852884810607192533
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8239350152292260
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4122140131158120
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4117210021134140
Derniers 10 Matchs
WLOTWOTL SOWSOL
640000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2605420.77%2585578.68%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
10141075107059114987511
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1772311656.87%1483281452.70%770136556.41%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2119148317655761072561


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2020-10-2414Oceanics2Spiders3WXXSommaire du Match
4 - 2020-10-2518Spiders5Crunch4WXXSommaire du Match
8 - 2020-10-2945Spiders5Phantoms3WSommaire du Match
9 - 2020-10-3049Oil Kings2Spiders4WSommaire du Match
11 - 2020-11-0165Spiders3Bruins2WXXSommaire du Match
13 - 2020-11-0380Cabaret Lady Mary Ann6Spiders5LSommaire du Match
16 - 2020-11-06100Wolf Pack5Spiders6WXXSommaire du Match
18 - 2020-11-08113Comets1Spiders3WSommaire du Match
24 - 2020-11-14157Jayhawks2Spiders7WSommaire du Match
29 - 2020-11-19188Thunder1Spiders3WSommaire du Match
31 - 2020-11-21196Phantoms3Spiders4WSommaire du Match
32 - 2020-11-22211Spiders2Caroline3LSommaire du Match
35 - 2020-11-25229Spiders2Oceanics4LSommaire du Match
37 - 2020-11-27245Spiders1Heat3LSommaire du Match
38 - 2020-11-28251Spiders3Oil Kings7LSommaire du Match
40 - 2020-11-30265Spiders5Comets0WSommaire du Match
43 - 2020-12-03281Senators4Spiders3LSommaire du Match
45 - 2020-12-05295Manchots3Spiders4WSommaire du Match
46 - 2020-12-06305Spiders4Rocket5LSommaire du Match
49 - 2020-12-09320Bruins2Spiders4WSommaire du Match
52 - 2020-12-12346Spiders7Manchots4WSommaire du Match
53 - 2020-12-13356Cougars4Spiders2LSommaire du Match
56 - 2020-12-16375Minnesota6Spiders4LSommaire du Match
58 - 2020-12-18390Spiders5Rocket4WSommaire du Match
60 - 2020-12-20403Wolf Pack0Spiders5WSommaire du Match
62 - 2020-12-22419Spiders2Crunch1WSommaire du Match
63 - 2020-12-23427Las Vegas5Spiders4LSommaire du Match
66 - 2020-12-26447Baby Hawks4Spiders3LSommaire du Match
67 - 2020-12-27460Spiders4Chill3WSommaire du Match
70 - 2020-12-30478Spiders1Stars2LSommaire du Match
73 - 2021-01-02500Spiders1Monsters2LSommaire du Match
74 - 2021-01-03512Spiders4Jayhawks6LSommaire du Match
78 - 2021-01-07535Admirals3Spiders0LSommaire du Match
80 - 2021-01-09549Bears3Spiders5WSommaire du Match
81 - 2021-01-10561Spiders5Monsters3WSommaire du Match
83 - 2021-01-12578Spiders3Baby Hawks6LSommaire du Match
87 - 2021-01-16583Marlies3Spiders2LSommaire du Match
89 - 2021-01-18603Spiders3Senators4LSommaire du Match
91 - 2021-01-20613Bruins0Spiders2WSommaire du Match
93 - 2021-01-22630Spiders3Sound Tigers1WSommaire du Match
95 - 2021-01-24649Monsters5Spiders4LSommaire du Match
98 - 2021-01-27665Sound Tigers3Spiders4WXXSommaire du Match
100 - 2021-01-29682Spiders4Wolf Pack3WSommaire du Match
102 - 2021-01-31696Spiders1Bears6LSommaire du Match
103 - 2021-02-01708Thunder1Spiders6WSommaire du Match
105 - 2021-02-03715Spiders3Marlies5LSommaire du Match
107 - 2021-02-05732Spiders3Bears2WSommaire du Match
109 - 2021-02-07751Spiders3Monsters5LSommaire du Match
118 - 2021-02-16769Spiders1Senators3LSommaire du Match
121 - 2021-02-19783Chill3Spiders5WSommaire du Match
123 - 2021-02-21798Stars2Spiders3WSommaire du Match
126 - 2021-02-24815Rocket2Spiders4WSommaire du Match
128 - 2021-02-26832Spiders2Phantoms7LSommaire du Match
130 - 2021-02-28849Monarchs5Spiders4LXSommaire du Match
133 - 2021-03-03868Cabaret Lady Mary Ann2Spiders5WSommaire du Match
135 - 2021-03-05884Cougars3Spiders2LSommaire du Match
136 - 2021-03-06894Spiders3Caroline4LXXSommaire du Match
138 - 2021-03-08912Monsters1Spiders3WSommaire du Match
140 - 2021-03-10924Spiders3Chiefs4LSommaire du Match
142 - 2021-03-12934Sharks3Spiders2LSommaire du Match
144 - 2021-03-14948Bears5Spiders4LXXSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
147 - 2021-03-17975Spiders5Cougars2WSommaire du Match
149 - 2021-03-19993Spiders3Sharks4LSommaire du Match
151 - 2021-03-211000Spiders3Monarchs2WSommaire du Match
152 - 2021-03-221015Spiders2Admirals4LSommaire du Match
154 - 2021-03-241027Spiders4Las Vegas2WSommaire du Match
157 - 2021-03-271043Chiefs2Spiders6WSommaire du Match
158 - 2021-03-281056Spiders2Wolf Pack5LSommaire du Match
161 - 2021-03-311072Manchots4Spiders5WSommaire du Match
163 - 2021-04-021086Caroline1Spiders7WSommaire du Match
165 - 2021-04-041102Spiders5Cabaret Lady Mary Ann3WSommaire du Match
166 - 2021-04-051114Spiders0Thunder1LSommaire du Match
168 - 2021-04-071123Spiders1Marlies4LSommaire du Match
170 - 2021-04-091139Heat1Spiders5WSommaire du Match
172 - 2021-04-111157Sound Tigers6Spiders3LSommaire du Match
174 - 2021-04-131171Monsters2Spiders3WSommaire du Match
177 - 2021-04-161198Spiders6Minnesota3WSommaire du Match
179 - 2021-04-181206Phantoms3Spiders2LSommaire du Match
180 - 2021-04-191219Caroline2Spiders4WSommaire du Match
182 - 2021-04-211230Spiders7Manchots2WSommaire du Match
184 - 2021-04-231244Crunch5Spiders4LSommaire du Match
186 - 2021-04-251266Spiders5Sound Tigers2WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3518
Assistance78,58630,020
Assistance PCT95.84%73.22%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 2649 - 88.30% 80,265$3,290,870$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,460,862$ 2,448,700$ 2,448,700$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
13,165$ 2,460,862$ 28 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 13,165$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT